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The presented study offers a comprehensive insight in design and application of the Kalman filters for improvement of control
efficiency of small unmanned aerial vehicles with fixed wing. The presented control scheme of the UAV includes its model, a
servo drive model, and an optimal proportional-integral-derivative (PID) controller for the selected flight speed. Subsequently,
process noise and measurement noise components were introduced into the whole constructed UAV model. The process noise
was formed by disturbances caused by horizontal and vertical airflow in the atmosphere. The measurement noise contained
deterministic and stochastic errors of the inertial measurement unit (IMU) UAV sensors and engine noise. The obtained
results showed that the designed optimal Kalman filter was able to eliminate the influence of interfering signals from the
control process and increased the phase safety, controllability, and stability of UAV control as a lean design can be applied in
real-time control systems like Pixhawk PX4.

1. Introduction

A large group of sensors installed in the UAV inertial mea-
surement units is based on micro-electromechanical system
(MEMS). These sensors have limited accuracy, so it is
necessary to correct the sensor noise that affects measure-
ment accuracy. The impact of positional and sensor errors
requires the solution of a complex mathematical apparatus
[1, 2]. The individual components of the three-axis gyro-
scopes and accelerometers affect the accuracy of the individ-
ual channels of the UAV control and navigation system [3].
Errors occur between individual channels due to the
transformation of acceleration. The accuracy of the primary
sources of the UAV’s inertial measurement unit is determined
by environmental temperature changes and vibrations.

Interfering signals may affect the overall stability of UAV
control. Interference consists of the noise mechanisms of the
IMU UAV’s inertial measuring unit sensors, the surround-
ing atmosphere, the operation of the engine, and the pilot
inputs to the control. The UAV contains a control unit
Pixhawk, which is part of the avionic equipment used by
the UAV “Skydog.” The unit provides data collection from

the IMU sensors and performs calculations and processing
of these data. The UAV control system operates in a closed
loop that contains an IMU with sensors to determine the
position of the UAV.

Disturbance signals can affect the overall stability of UAV
control. Interference can be caused by noise from the sensors
of the UAV’s inertial measurement unit (IMU), the surround-
ing atmosphere, the engine operation, and the pilot inputs into
the control. The UAV used in the study contains the Pixhawk
control unit, which is part of its avionic equipment. The unit
ensures data collection from IMU sensors and performs
calculations and processing of this data. The UAV control
system operates in a closed loop, which includes IMU with
sensors to determine the position of the UAV.

The internal control loop of the UAV performs its
primary stabilization, while the outer loop performs tasks
related to the UAV’s manoeuvring and navigation. The
analysis performed, with an emphasis on the accuracy of
the UAV’s IMU sensors, plays a decisive role in autonomous
navigation using integration algorithms [4]. The Kalman
filter in the UAV control circuit is used to estimate the state
variables of the UAV system for given measurements of

Hindawi
International Journal of Aerospace Engineering
Volume 2023, Article ID 9252640, 19 pages
https://doi.org/10.1155/2023/9252640

https://orcid.org/0000-0003-4508-0246
https://orcid.org/0000-0001-6343-5034
https://orcid.org/0000-0002-3621-5092
https://orcid.org/0000-0002-2581-9173
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9252640


output signals of the system, including measurement and
process noise. Static measurements of the Pixhawk PX4
IMU sensors are required to determine the measurement
noise parameters. The analysis is performed for all three axes
of the Pixhawk PX4 IMU accelerometers and gyroscopes
using standardized procedures [5, 6]. For longitudinal
UAV movement, it is primarily necessary to analyse the
gyroscope data on the Y-axis.

The design of new UAV control algorithms can be imple-
mented in theMatlab/Simulink simulation environment using
the PX4 Autopilot Support from Embedded Coder software.
The software can generate C++ (object-oriented computer
language) code from the Simulink simulation environment.
The code structure is compatible with the Pixhawk PX4 auto-
pilot software. The proposed algorithms can be changed and
adapted as needed or completely replace the Pixhawk PX4
control system. For control commands from the remote con-
trol (RC) transmitter, it is possible to use input blocks, which
can be used to adjust the control signal. The modified signal
can be used as input for the “pulse-width modulation
(PWM) output” block, which represents the control servos
attached to the control surfaces of the UAV. With the use of
libraries in the Matlab/Simulink program, it is possible to
use individual blocks of sensors that will generate data from
the analysed sensors of accelerometers and gyroscopes. To
implement the proposed algorithms in the Pixhawk PX4 auto-
pilot unit, it is necessary to install the necessary “Cygwin tool-
chain” interface [7].

The design of a suitable control system for a small fixed
wing UAVmust be preceded by the creation of a mathematical
simulation model to assess the optimal UAV control algo-
rithm’s influence on its properties under the influence of dis-
turbing signals. The mathematical simulation model is based
on physical quantities obtained during experimental flights
and measurements of its aerodynamic and mechanical proper-
ties. This model is used to design an optimal controller, which
is analysed by changing its coefficients as the UAV’s flight
speed changes. The optimal controller can be verified by the
real flight of the UAV and a mathematical model with six
degrees of freedom (6DoF). Using the 6DoF model of a small
fixed wing UAV, inputs represent elevator deflection, and out-
puts that are represented by the angular velocity of pitch angle
ϑ are obtained. The proposed control system for UAVs with an
optimal controller is extended by a Kalman filter.

The Allan variation method can be used to analyse the
sensors of the Pixhawk PX4 autopilot. The method is a
possible equivalent of the power spectrum in time. Allan’s var-
iance is a tool that graphically displays the performance of the
analysed signal. It displays the signal as a function of time the
averaged sensor output subparts compared to a graphical rep-
resentation of the signal power as a function of frequency. The
use of Allan’s variance is determined by the Institute of Electri-
cal and Electronic Engineers (IEEE) standard, which defines
not only its application but also the procedure by which the
results are analysed. The result is a representation of noises
in the output of the IMU sensors in terms of long-term time
development. The slopes of the straight lines represent the
individual types of noise represented in the output of the Pix-
hawk PX4 IMU sensors [6].

Atmospheric turbulence is one of the sources of UAV
control errors. Turbulence is the movement of air caused
by the unstable distribution of pressure and temperature in
clouds near the earth and in the area of currents. Atmo-
spheric turbulence can be defined as a stochastic process
determined by velocity. Of the disturbances that affect the
UAV during flight and landing, the moments are caused
by horizontal and vertical airflow. Turbulent flow is charac-
terized by the fact that the velocity at a given point varies
considerably and irregularly. A sudden gust of wind acting
on the UAV from below results in an increase in the angle
of attack. The random component of the wind speed vector
represented by the turbulence of the atmosphere affects the
short-term oscillations and position angles of the UAV [8].
The pilot is one of the members of the UAV control loop,
and their good training can reduce the control deviation.
Other interfering signals are introduced into the UAV con-
trol process by the operation of the engine.

The control loop of the UAV includes feedback from sen-
sors that contain various types of noise and interference in
addition to the required information. These noises and distur-
bances are processed by control systems and therefore need to
be identified [9]. The sensor error model and Alan’s variation
can be used to identify sensor errors. When creating a sensor
error model, it is necessary to perform a long-term static mea-
surement from which sensor errors are identified [4]. Based on
the knowledge of the sensor error model, it is possible to design
an optimal linear-quadratic-Gaussian (LQG) controller for the
UAV control system [10]. In the kinematic vehicle, models are
used together with IMU, global navigation satellite system
(GNSS), and multidirectional airspeed sensors to estimate the
wind field [11]. The work focused on approaches using aircraft
models that fully model the aerodynamic and kinematic behav-
iour of UAVs [12]. Ravi Kumar and Dr Ramamurthy, in their
paper in 2015 [13], validated amodel of aircraft inclination, tilt,
and side slip control using an linear-quadratic regulator (LQR)
controller and an LQG controller. The results of the simulation
and analysis showed that the linear-quadratic regulator (LQR)
controller delivered relatively better performance. The LQG
controller achieved very good results with an output device
with limited constant shift error, and the Kalman filter was
the optimal estimator when working with Gaussian white
noise. LQR control is used with a Kalman filter (KF) that esti-
mates the real states of the system in noisy environments in
state feedback servo control systems [14]. Based on [15, 16],
it can be stated that PID, LQR, and LQG controllers can be
used to increase the stabilization of the pitch angle. The use
of one regulator will increase the stability of the UAV and
reduce the impact of noise that may occur in the control pro-
cess. The system’s response to the required change is shortened,
and unwanted oscillations are also eliminated. According to
[17], random vibrations caused by the UAV engine or external
influences must also be considered in the process of estimating
the optimal state of the system. Li et al. [18] improved the lon-
gitudinal static stability and dynamic properties of the UAV
flying wing by designing an extended robust LQR.

Thanks to non-Gaussian methods, new concepts of
approximation methodologies for optimal filtration that are
more efficient than the Kalman one have been developed
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[19]. The most popular methods in this area are the unscented
and extended Kalman filters [20] as well as methods based on
particle filtering. These methods are however quite complex to
develop and implement in real-time systems with limited
computational power [21].

Based on the previous study, the aim of the present
research was to design an optimal standard Kalman filter,
which should be able to reduce interfering signals acting
on Pixhawk PX4 sensors by extending the control scheme
applied on a fixed wing unmanned aerial vehicle. The opti-
mally designed standard Kalman filter is aimed at applying
real-time control systems improving its phase safety, man-
oeuvrability, and control stability in general by application
of precise analysis of disturbing signals acting on the UAV.

2. Materials and Methods

The object of observation was an unmanned aerial vehicle with
a fixed wing, called “Skydog” (UAV). Due to its flight control
and mechanical similarity with general aircraft, it can be used
to perform experiments in the field of autonomous aircraft con-
trol. The wingspan of the UAV “Skydog” is 2.3 meters, the basic
empty weight is 6.85 kilograms, and the maximum take-off
weight is 8.65 kilograms. The UAV is able to carry the necessary
measuring equipment or small experimental equipment.

2.1. Dynamic Modelling of UAV Flight. During the flight, sev-
eral different types of forces act on the UAV, the interaction of
which affects the movement and position of the UAV in space.
According to the basic understanding, there are four forces:
lift, thrust, aerodynamic drag, and weight (gravity). The force
of weight (gravity) depends on the mass of the UAV and the
gravitational acceleration. In the case of UAVs, the mass is
constant during flight, and the change in gravitational acceler-
ation due to the change in altitude is negligible. Lift and aero-
dynamic drag depend on the airspeed, pressure, temperature,
ambient density, and aerodynamic coefficients of the aircraft.

The aerodynamic coefficients of UAVs are derived from the
geometric dimensions of the UAVs. The thrust depends on the
characteristics of the power unit, the shape and size of the pro-
peller, and the environment in which it operates. The position
angles are an important factor when calculating UAV forces.
Using position angles can transform the individual components
of forces and moments into a common system. In our case, we
used the aircraft coordinate system.When describing the trans-
lational motion of UAVs, we began with the equation of aero-
dynamic forces. Aerodynamic forces are generated on the
lifting aerofoil area and tail surfaces [22]. The calculation of
aerodynamic forces is described by the following relations:

Fx aero = − Cxα · αð Þ + Cx0ð Þ ·Wsurf · qbar,

Fy aero = β · Cyβ +
Cyr · r ·Wspan

2 ·Vaero

� �
+ CyΔRUD · ΔRUD

� �
·Wsurf · qbar,

Fz aero = Cz0 + Czα · α +
Czq · q ·Wc

Vaero

� �
+ CzΔEL · ΔEL

� �
·Wsurf · qbar,

ð1Þ

where

Fx aero: Aerodynamic force acting on the aircraft X-axis,
Cx α: Aerodynamic coefficient expressing the depen-

dence of drag on angle α,
α: Angle of attack,
Cx 0: Aerodynamic coefficient expressing the depen-

dence of drag on angle α = 0,
Wsurf : Wing surface,
qbar: Total atmospheric pressure (dynamic pressure),
Fy aero: Aerodynamic force acting on the aircraft Y-axis,
β: Sideslip angle,
Cy β: Aerodynamic coefficient expressing dependence on

lateral force β,
Cy r : Aerodynamic coefficient expressing dependence on

lateral force r,
r: Angular speed of rotation around the Z-axis in the

plane coordinate system,
Wspan: Wing span,
Vaero: Indicated air speed,
Cy ΔRUD: Aerodynamic coefficient expressing the depen-

dence of the yaw moment,
ΔRUD: Vertical control surface (rudder) deflection,
Fz aero : Aerodynamic force acting on the aircraft Z-axis,
Cz 0: Aerodynamic coefficient expressing the depen-

dence of lift on angle α = 0,
Cz α: Aerodynamic coefficient expressing the depen-

dence of lift on angle α,
Cz q: Aerodynamic coefficient expressing the depen-

dence of q,
q: Angular speed of rotation around the Y-axis in the

plane coordinate system,
Wc: Wing chord,
Cz ΔEL: Aerodynamic coefficient expressing the depen-

dence of the pitch moment,
ΔEL: Horizontal control surface (elevator) deflection.
The constants in the equations are the aerodynamic coef-

ficients of the aircraft denoted by c and the geometric dimen-
sions of the wings as the wingspan, wing area, and center of
the wing chord (Wspan, Wsurf , and Wc, respectively).

The UAV variables are angle of attack α, dynamic pressure
qbar, airspeed Vaero, horizontal control surface (elevator), and
vertical control surface (rudder) deviations ΔEL and ΔRUD.
All the forces are situated in the aerodynamic coordinate
system. We created the change in the UAV position with
moments using control surfaces.

The aerodynamic moments in the individual axes of a
UAV are described by the following relations [23]:

Laero = ClΔRUD · ΔRUD + ClΔAIL · ΔAIL + Clβ · β +
Clp · p ·Wspan

2 ·Vaero

� ��

+
Clr · r ·Wspan

2 · Vaero

� ��
·Wsurf ·Wspan · qbar,

Maero = CmΔEL · ΔEL + Cmα · α + Cm0 +
Cmq · q ·Wc

Vaero

� �� �

·Wsurf ·Wc · qbar,
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Naero = CnΔAIL · ΔAIL + CnΔRUD · ΔRUD + Cnβ · β +
Cnp · p ·Wspan

2 · Vaero

� ��

+
Cnr · r ·Wspan

2 ·Vaero

� ��
·Wspan ·Wsurf · qbar,

ð2Þ

where
Laero: Rotation moment around X-axis,
Cl ΔRUD: The aerodynamic coefficient expressing the roll

moment dependence on ΔRUD,
Cl ΔAIL: The aerodynamic coefficient expressing the roll

moment dependence on ΔAIL,
ΔAIL: Aileron deflection,
Cl β: Coefficient expressing the roll moment dependence

on β,
Cl p: Coefficient expressing the roll moment dependence

on p,
Cl r : Coefficient expressing the roll moment dependence

on r,
p: Angular speed of rotation around the X-axis in the

plane coordinate system,
Maero: Rotation moment around the Y-axis,
Cm ΔEL: The aerodynamic coefficient expressing the

pitch moment dependence on ΔEL,
ΔEL: The aerodynamic coefficient expressing the pitch

moment dependence on ΔEL,
Cm α: The aerodynamic coefficient expressing the pitch

moment dependence on α,
Cm 0: The aerodynamic coefficient expressing the pitch

moment dependence on α = 0,
Cm q: The aerodynamic coefficient expressing the pitch

moment dependence on q,
Naero: Rotation moment around the Z-axis,
Cn ΔAIL: Aerodynamic coefficient expressing the turning

moment dependence ΔAIL,
Cn ΔRUD: Aerodynamic coefficient expressing the turning

moment dependence ΔRUD,
Cn β: Aerodynamic coefficient expressing the turning

moment dependence β,
Cn p: Aerodynamic coefficient expressing the turning

moment dependence p,
Cn r : Aerodynamic coefficient expressing the turning

moment dependence r.
The longitudinal motion of UAVs is described by a set of

four first-order linear differential equations with four unknowns
xlon = ½u,w, q, θ�T . The equations are related to the axes of the
coordinate system firmly connected to the aircraft. The longitu-
dinal motion of UAV is described by the motion equations
corresponding to the forces X and Z and themomentM. Move-
ments that are not limited in the longitudinal plane have no
effect, i.e., “v = p = r = lateral angles”…“= 0” [24].

The following relationship is used to describe the system
in the state space:

_xlon = Alonxlon + Blonδe: ð3Þ

The notation of linear differential equations for the lon-
gitudinal motion of the UAV has the following form [25]:

_xlon =

xu xw xq −we −g cos θe
zu zw zq + ue −g sin θe

mu mw mq 0
0 0 1 0

0
BBBBB@

1
CCCCCA

u

w

q

θ

0
BBBBB@

1
CCCCCA

+

xδe
zδe
mδe

0

0
BBBBB@

1
CCCCCA

δeð Þ:

ð4Þ

The root shape of the characteristic equation determines
the properties of the UAV’s motion. Depending on the coef-
ficient values of the characteristic equation, which determine
the aerodynamic and inertial characteristics of the UAV, it is
possible to determine variants of the UAV’s motion from the
graphical solution of differential equations. The longitudinal
motion of the UAV is characterized by two complex associ-
ated roots, and the motion of the UAV is described by two
oscillating members, the short-period and phugoid modes.

We observed the static and dynamic stability of UAVs.
With static stability, when the UAV deviates from the
equilibrium position, the UAV returns spontaneously to
the equilibrium position without mechanical or human
intervention. In the longitudinal plane with a dynamically
stable UAV, the amplitude of the oscillations will decrease
with external intervention until it reaches a stable value.

2.2. Modelling the Noise of UAV Sensors. In hobby-type
UAVs, it is not effective to install expensive and large INS
sensors. It is therefore necessary to analyse the output of
the IMU sensors or take steps to increase the accuracy of
the measurement. These MEMS sensors are more suscepti-
ble to the different types of noise that can be registered in
the sensor.

For reliable analysis of the noise mechanisms of the IMU
inertial sensors, it is necessary to perform static measure-
ments over a long-time interval. The Allan variation method
can be used for the analysis of UAV sensors [15]. The use of
Allan variance for the analysis of IMU sensors is determined
by the IEEE standard, which defines the procedure of steps
by which the results are analysed. The result of the analysis
is the representation of noise in the output of the IMU sen-
sors in terms of long-term time development [26].

To create an Allan variance graph, it is necessary to sam-
ple a continuous time series. It is defined by the sampling
frequency f s, which is already defined before the start of
the static measurement. The total number of samples is
defined by the following relation:

N = f sT: ð5Þ

In equation (5), T represents the time of the entire mea-
surement series in seconds. After subsequent sampling of
this continuous signal, the Allan variance calculation process
is as follows:
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A vector of averaged intervals τAV in seconds is
created.

τAV 1 2⋯ T
2

� �
: ð6Þ

For each vector τAV, the time series aðtÞ is divided
into M clusters.

M τAVð Þ = T
τAV

: ð7Þ

The average aðtÞ is then calculated for each cluster M:

�a τAV, kð Þ = 1
L
〠
L

i=1
ai, L = f s:τAV, k = 1 2⋯M τAVð Þ½ �: ð8Þ

Using the Allan variance σ2ðτAVÞ the output for the
individual cluster averages of vectors is the averaged inter-
val τAV according to the following relation:

σ2 τAVð Þ = 1
2 K − 1ð Þ 〠

K−1

k=1
�ak+1 Lð Þ − �ak Lð Þð Þ2: ð9Þ

Output

x_w+1

GM_xWhite noise
generator

GM
sqrt (sigma_gm_x2⁎ (1-exp (–2'beta_x⁎dt)))

exp (–beta_x⁎dt)
z
1

+

+

Figure 1: Bias drift modelled as a first-order Gauss-Markov process.
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Figure 2: Discrete linearized Kalman filter model in Matlab/Simulink.
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For the analysis of IMU noise in the time domain, a
graph is created in a logarithmic scale, where it is an inde-
pendent variable τAV and a dependent variable σ2ðτAVÞ.

To correctly model the error model according to the
standard, it is necessary to determine the bias drift correla-
tion time, the bias drift standard deviation, and the broad-
band noise standard deviation.

Bias drift is modelled as a first-order Gauss-Markov pro-
cess. These parameters can be determined using the Allan
variation and appropriate relationships. The standard devia-
tion of the wideband noise is defined by the standard as a
line with a slope of −1/2. Its range can be determined by
the following relationship:

σRW = NAVffiffiffiffiffi
Δt

p , ð10Þ

where NAV is the wideband noise coefficient and Δt is the
sample time.

The point in the Allan variation graph at which the curve
reaches the local maximum is used to determine the bias
drift correlation time. The definition of correlation time is
based on the following relationship:

τAC = 1:89TC: ð11Þ

There is a quick direct approach for extraction of the N
and B noise parameters that does not require least mean
square estimation procedure.

To determine the bias instability of the sensors, a coeffi-
cient B is used, which is calculated according to the follow-
ing relation:

N =
σA τð RÞ

ffiffiffiffiffi
τRÞ

p
60 deg/hrð Þ,

B =
σA τð BÞ

0,664 degð Þ:
ð12Þ

τR and τB represent the time on the root AVAR versus
τ, graph where the parameters N and B are to be
evaluated.

In analysing UAV sensor errors, it is also necessary
to determine the misalignment error and the nonortho-
gonality error. These errors must be included in the sensor
error model.

Table 1: The UAV’s aerodynamic coefficient values obtained by simulation.

Effects Shortcut Dependency on variable Value

Aerodynamic coefficients of forces

Axis Z

CL α Dependency of lift on α 4.56

CL α0 Dependency of lift on α = 0 0.51

CL ΔEL Dependency of lift on ΔEL -0.85

CL_q Dependency of lift on q 7.2

Axis X
CD α Dependency of drag on α 0.39

CD α0 Dependency of drag on α = 0 0.03

Axis Y

CY β Dependency of side force on β -0.18

CY r Dependency of side force on r 0.314

CY ΔRUD Dependency of side force on ΔRUD 0.2

Aerodynamic coefficients of moments

Axis X

Cl ΔRUD Dependency of roll moment on ΔRUD 0.004

Cl ΔAL Dependency of roll moment on ΔAL -0.1

Cl β Dependency of roll moment on β 0.012

Cl p Dependency of roll moment on p -0.32

Cl r Dependency of roll moment on r 0.028

Axis Y

Cm ΔEL Dependency of pitch moment on ΔEL -2.442

Cm q Dependency of pitch moment on q -48

Cm α Dependency of pitch moment on α -1.13

Cm α0 Dependency of pitch moment on α = 0 -0.04

Axis Z

Cn r Dependency of yaw moment on r -0.09

Cn p Dependency of yaw moment on p -0.07

Cn ΔAL Dependency of yaw moment on ΔAL -0.12

Cn ΔRUD Dependency of yaw moment on ΔRUD -0.04

Cn β Dependency of yaw moment on β 0.089
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When we model bias drift as a first-order Gauss-Markov
process, we can describe its behaviour as follows:

xn+1 = e−βΔt:xn +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2GM 1 − e−2βΔt

À Áq
:wn: ð13Þ

We calculate the constant β according to the following
relation:

β = 1
TC

, ð14Þ

where TC is calculated as follows:

TC ≈
Τ

1, 89 , ð15Þ

where TC is the correlation time and the numerical value of
T is read from the Allan variance graph at the point of over-
shoot of the curve (local maximum).

For calculation, the previous sample xn, white noise wn,
and constants β, Δt, and σGM are used. Constant Δt repre-
sents the sampling time. The value of the constant σGM is
equal to the standard deviation of the filtered signal. Con-
stant β is calculated as the inverse of the known value of cor-
relation time TC .

If the first-order relationship describing the Gauss-
Markov process is known, then a simulation scheme in
Matlab/Simulink can be created to simulate the effect of bias
drift on sensor measurements. The basis for simulating the
Gauss-Markov process is a white noise generator. The model
representing the sensor bias drift is shown in Figure 1.
Another noise mechanism like angle random walk (ARW)
affecting sensor measurement needs to be modelled. White
noise generator block is used to simulate ARW noise. In the
field that determines the power of the generator, we insert
the square of the N value obtained from the Allan graph.

To determine the sensor misalignment, we used the fol-
lowing relationship:

ωD
C,B = I3 + ΔED

B ×
Â Ã

:ωB
C,B, ð16Þ

where ωD
C,B is the misalignment error, I3 is the unit matrix,

ΔED
B × is the antisymmetric matrix of deviations in the indi-

vidual axes, and ωB
C,B is the input angular velocities of the

gyroscopes in the axes (body frame) of the aircraft.
To model the nonorthogonality error, we began with the

following relation:

ωi
C,B = I3 + ΔEi

B ×
Â Ã

:ωD
C,B, ð17Þ

where ωi
C,B is the error of gyroscope nonorthogonality and

ΔEi
B × is the antisymmetric matrix of deviations in the indi-

vidual axes (INS, body frame).

2.3. Atmospheric Disturbances Affecting UAVs. The overall
stability of UAV control is influenced by the atmosphere
in the environment in which the aircraft flies. The moments

caused by horizontal and vertical airflow are fundamental
disturbances that affect the UAVs during flight and the land-
ing phase [27].

Turbulence denotes changes in atmospheric motion that
disrupt flight, especially during take-off and landing. Turbu-
lence can arise from changes in atmospheric pressure or hot
or cold fronts. The instantaneous velocity vector changes ran-
domly within certain limits, changing its size and direction.

Due to the complexity, simplified models were used for
simulation and description of Dryden’s turbulence model.
In Dryden’s turbulence model, the components of the linear
and angular velocities of continuous impacts are spatially
changing stochastic processes.

Noise with known spectral properties such as velocity
and angular velocity deviation in individual aircraft axes is
used for modelling. The noise spectrum for each of the
disturbances is defined by the turbulence length L, the air
velocity V , and the turbulence intensity σ.

Table 3: Autocorrelation τAC and correlation time τC of IMU
sensors.

Sensor axis τAC (s) TC (s)

Accelerometer (m/s)

X 772.1 (s) 408.52 (s)

Y 725.6 (s) 383.92 (s)

Z 710.8 (s) 376.08 (s)

Gyroscope (°/s)

X 700.9 (s) 370.85 (s)

Y 725.4 (s) 383.81 (s)

Z 730 (s) 386.24 (s)

Table 4: Drift bias size for individual IMU UAV sensor axes.

Sensor axis Drift bias value

Accelerometer (m/s)

X 3.0571∗10-4 (m/s)

Y 7.9462∗10-5 (m/s)

Z 2.9856∗10-6 (m/s)

Gyroscope (°/s)

X 8.0532∗10-3 (°/s)

Y 6.8521∗10-3 (°/s)

Z 1.2557∗10-3 (°/s)

Table 2: VRW and ARW sensor values of the Pixhawk PX4 control
unit.

Sensor axis
Calculation using the Allan

variation graph

Accelerometer (m/s)

X 1.3044∗10-2 (m/s)

Y 1.3835∗10-2 (m/s)

Z 1.5381∗10-2(m/s)

Gyroscope (°/s)

X 7.9778∗10-4 (°/s)

Y 7.2051∗10-4 (°/s)

Z 7.6183∗10-4 (°/s)
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The turbulence rate length is the length of the turbulent
field expressed in the longitudinal, lateral, and vertical axes
(Lu, Lv , and Lw, respectively).

The turbulence intensity is the magnitude of turbulence
expressed in the longitudinal, lateral, and vertical axes (σu,
σv , and σw, respectively); it is given in ft/s or m/s.

To overcome the UAV turbulence, the time T is required:

T = L
V
: ð18Þ

The UAV experiences a turbulent wave with a fre-
quency of

ω = 2π
T

= 2π
L/V : ð19Þ

Dryden’s turbulence model is characterized by the
power spectral density Φ as a function of frequency.
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Figure 4: IMU Pixhawk PX-4 sensor error model constructed using Matlab/Simulink.
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The power spectral density for the linear flow velocity
components (ug, vg, and wg) has the following form:

Φu ωð Þ = 2σ2
uLu

πV
1

1 + Lu ω/Vð Þð Þ2 ,

Φv ωð Þ = 2σ2vLv
πV

1 + 12 Lv ω/Vð Þð Þ2
1 + 4 Lv ω/Vð Þð Þ2Â Ã2 ,

Φw ωð Þ = 2σ2wLv
πV

1 + 12 Lw ω/Vð Þð Þ2
1 + 4 Lw ω/Vð Þð Þ2Â Ã2 :

ð20Þ

The power spectral density for the angular flow velocity
components (pg, qg, and rg) has the following form:

Φp ωð Þ = σ2w
VLw

0, 8 2πLw/4bð Þ1/3
1 + 4bω/πVð Þ2

,

Φq ωð Þ = ± ω/Vð Þ2
1 + 4bω/πVð Þ2 Φw ωð Þ,

Φr ωð Þ = ± ω/Vð Þ2
1 + 3bω/πVð Þ2

Φv ωð Þ,

ð21Þ

where b is the wingspan of the UAV.
Wind shear is defined as a change in wind speed and

direction at a relatively short distance from the atmosphere.
The wind, by its action, introduces an error component into
the measurement of UAV sensors. A sudden gust of wind
acting on the UAV from below results in an increase in the
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Figure 5: Analysis of measured and simulated sensor data using the Allan variation and the generated IMU error model.
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angle of attack and a change in the airspeed vector relative to
the ground.

The UAV “Skydog” uses an electric noncontact AC
(alternating current) motor with rotating housing and neo-
dymium magnets for forward movement, which introduces a
certain component of the error into the measurement process.

2.4. Design and Implementation of Kalman Filter. The
Kalman filter method can be an effective and versatile
method of combining the outputs of IMU sensors that are
loaded with various noise mechanisms and disturbances to
estimate the states of a system that has indeterminate
dynamics. The basic parts defined by the Kalman filter are
the state vector and its covariance, the system model, the
measurement vector and its covariance, and the measure-
ment model.

When used in UAV control and navigation, the state
vector contains position-determining components or errors
in position. The Kalman filter also contains estimates of
angular position, velocities, and errors of individual IMU
UAV sensors. The covariance matrix of the state vector
defines the uncertainties in the state estimates of the Kalman
filter and the degree of correlation between the errors of the
estimates [28].

The state estimate can be considered optimal if the sum
of squared errors of the estimated state variables is as small
as possible at any time.

To use the UAV model with the optimal Kalman filter, it
is necessary to create a state space of the UAV model in the
discrete form [29].

Discrete state space is characterized by the following
relationships:

xk+1 = ADxk + BDuk +Gwk,
yk+1 = CDxk+1 +DDvk+1,

ð22Þ

where xk+1 is the n-dimensional state vector, yk+1 is the m
-dimensional measurement vector, vk+1 is the m-dimensional
measurement error vector (Gaussian white noise), uk is the
input signal,wk is an n-dimensional Gaussian white noise with
zero mean, AD is a system matrix of n × n, BD is an excitation
matrix of n ×m, CD is an output matrix of m × n, DD is the
direct feedback matrix bonds, and k = 1, 2, 3,⋯ is the sample
number.

To update the estimated state vector, we used the follow-
ing relation:

x̂k = x̂k,k−1Φk−1 + Kk · yk −H · x̂k,k−1½ �: ð23Þ
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To calculate the matrix gain (weight matrix), the follow-
ing relation is used:

Kk = Pk,k−1 ·HT
k · Hk · Pk,k−1 ·HT

k + Rk

À Á−1
: ð24Þ

To update the covariance matrix, the following relation-
ship is used:

Pk = I − Kk ·Hkð Þ · Pk,k−1 · I − Kk ·Hkð ÞT + Kk · Rk · KT
k ,
ð25Þ

where x̂k−1 is the corrected value of the estimated state vector
from the previous state of the algorithm, Φk−1 is the discrete
matrix of the dynamical system, x̂k,k−1 is the predicted value
of the estimated state vector, Kk is the gain matrix, Hk is the
measurement matrix, Rk is the covariance measurement
matrix, yk is the current measurement vector, x̂k is the
updated value of the estimated state vector, Pk is the updated
value of the estimated covariance, and Qk is the covariance
matrix of the process noise.

It is assumed that the noises wk and vk are white noises
with zero mean value [29].

The mean and covariance of the random processes are
described by

E wkh i = 0, E wkw
T
i


 �
=Qk · Δ k − ið Þ,

E vkh i = 0, E vkv
T
i


 �
= Rk · Δ k − ið Þ,

ð26Þ

where wk is the process noise vector and vk is the measure-
ment noise vector, shown in Figure 2.

3. Results and Discussion

The values of the forces and moments acting on the UAV
“Skydog” affected the geometric and aerodynamic coeffi-
cients. The necessary geometric coefficients for the calcula-
tion of the forces and moments of the UAV were obtained
from the technical documentation and by measuring the air-
craft itself. Aerodynamic coefficients for the UAV “Skydog”
were obtained using the XFLR5 program. Their values are
given in Table 1 [30].

Based on the obtained aerodynamic coefficients shown
in Table 1, a mathematical simulation model of the dynamic
movement UAV “Skydog” was created. To verify it, a longi-
tudinal plane comparison was performed [31].

When designing an optimal regulator for the motion
control of the UAV “Skydog,” a control model scheme from
the UAV transfer function expressed the response of the air-
craft in pitch rate to elevator deflection, PID pitch rate

Allan deviation with engine noise

10–2

10–3

10–4

10–5
10–2

𝜎
 (𝜏

)

10–1 100

𝜏

𝜎

𝜎N

𝜎K
𝜎B

N0.664B

K

Figure 7: Analysis of the motor effect on the gyroscope in the Y-axis using the Allan variation.

Table 5: Standard deviation values of the noise introduced into the
measurement by the UAV engine.

Sensor axis σVM

Accelerometer (m/s)

X 0.0547927

Y 0.0495273

Z 0.0741763

Gyroscope (°/s)

X 0.0032016

Y 0.0017807

Z 0.0020208
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controller, and the actuator transfer function [29]. Based on
the knowledge of the approximation polynomials, the PID
controller coefficients for the selected UAV “Skydog” speed
were calculated. The best PID gains obtained by tuning were
Kp = 10:25, Ki = 65:12, Kd = 0:898; and filter coefficient is
N = 0:002666 [29].

The controller with these coefficients was then used to
create a state space model of the Skydog airplane with the
PID controller in a feedback loop. The observed state
parameter _x1 represents the pitch rate –q.

_x1

_x2

_x3

_x4

0
BBBBB@

1
CCCCCA

=

−1:003 ∗ 104 1 0 0
−2:474 ∗ 105 0 1 0
−1:619 ∗ 106 0 0 1
−6:944 ∗ 105 0 0 0

0
BBBBB@

1
CCCCCA

x1

x2

x3

x4

0
BBBBB@

1
CCCCCA

+

9654
2:457 ∗ 105

1:618 ∗ 106

6:944 ∗ 105

0
BBBBB@

1
CCCCCA

qcmdð Þ,

ð27Þ

C90 = 1 0 0 0½ �, ð28Þ

D90 = 0½ �: ð29Þ
The UAV “Skydog” model for a speed of 90 km/h in a

discreet time with a sampling rate of 100Hz has the form
of matrixes A (30) and B (31), and the state variable _x1 rep-
resents the pitch rate –q. It is the observed parameter of the
model; matrixes C and D are the same as (28) and (29):

AD90 =

−0:002058 −7:575 ∗ 10−5 8:752 ∗ 10−7 4:515 ∗ 10−9

−20:61 −0:7762 0:008858 4:618 ∗ 10−5

−126:2 −1:42 −0:9927 −0:009975
−53:87 −0:6078 −0:003135 1

2
666664

3
777775
,

ð30Þ

BD90 =

0:9711
90:63
672:2
289:8

2
66664

3
77775: ð31Þ

The resulting output of this representation of the UAV
in longitudinal plane of motion is the pitch rate q as a
response to the commanded pitch rate qcmd.

The UAV Pixhawk control unit is a programmable
platform; it contains SCA3100-D04 accelerometers and
IDG-500 gyroscopes for the X- and Y-axes and an ISZ-500
gyroscope for the Z-axis.

For the analysis of IMU sensors, a static measurement
was performed with zero effect of external forces. The Allan
variation method was used to define and eliminate the noise
mechanisms of the sensors. The specified velocity random
walk (VRW) and angle random walk (ARW) values for the
accelerometers and gyroscopes of the Pixhawk control unit
are given in Table 2, for a sampling time of Δt 0.1 seconds,
N gyroscope for Y axe 2.278∗10-4.

Where N is the broadband noise coefficient, B is the bias
instability coefficient, K is the random walk coefficient.

The determined values of the autocorrelation τAC, corre-
lation time τC , and drift bias of IMU sensors are given in
Tables 3 and 4.

The Allan variation method was used to define and
remove noise IMU mechanisms. Figure 3 shows graphs of
the Allan variation of individual accelerometer axes and
IMU gyroscopes. A sensor error model was compiled using
Matlab/Simulink, which included blocks for modelling noise
mechanisms, nonorthogonality errors, and IMU Pixhawk
PX4 sensor misalignment errors, shown in Figure 4.

The internal structure of the error model for accelerom-
eters and gyroscopes is the same, and the output is different
only in the measured units.

Using the Allan variation, the output waveforms from the
measured IMUUAV sensor data and the data from the gener-
ated IMU error model were compared, shown in Figure 5.

The IMU fault model includes the simulation of noise
introduced into the measurement of sensors with the engine
influence. The UAV “Skydog” uses an electric noncontact
AC motor with rotating housing and AXI 5320/34 neodym-
ium magnets for forward movement. The motor is powered
and controlled by the regulator SPIN 77 opto, which serves
to regulate the voltage and current to the motor depending
on the required power from the pilot. The regulator is pow-
ered by FOXY G2 onboard batteries with a voltage of 18.5V
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Figure 8: Implemented filter into the UAV control system.
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and a capacity of 5000mAh. The effect of the motor on the
IMU UAV sensors was simulated as white noise. The magni-
tude of the interference is proportional to the standard devi-
ation of the noise measured during the static measurement
of the motor influence on the measurement of the IMU sen-
sors, shown in Figures 6 and 7. The standard deviation
values of the noise are shown in Table 5.

To reduce the impact of the motor on the IMU UAV
sensors, a filter was designed, which was implemented using
the “digital filter design” block, Figure 8, in the Matlab/
Simulink program environment. A low-pass Butterworth
IIR filter was designed as optimal, shown in Figure 9.

The coefficients of the designed filter have the following
values listed in Table 6.

For better information about the functioning of the
designed filter, the basic parameters of the signal were there-
fore evaluated, namely, mean value, standard deviation,
median, and variance. The result from the simulation is
shown in Figure 10. These values for all three axes of the
accelerometer are shown in Table 7.

The atmospheric impact model was based on the “Dry-
den wind turbulence model” block in the Matlab/Simulink
environment. The inputs of this block were airplane flight
speed, airplane flight altitude, and cosine control matrix

IMU pixhawk PX–4
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Figure 9: Engine vibration simulation model.

Table 6: Values of the coefficients of the designed filter.

a0 a1 a2 b0 b1 b2
0.02008 0.04017 0.02008 1 -1.561 0.6414
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(DCM). The UAV flight speed was 90 km/h, and the flight
altitude was set at 50 meters. The input DCM was calcu-
lated based on the zero angles of the attack and sideslip
angle. The simulation provides the necessary turbulence
model, which is suitable for implementation in the filter,
where it simulates the real impact of turbulence on UAV
control. The turbulence simulation represents the process
noise entering the control, shown in Figure 11. The low
altitude area is defined by an altitude of up to 305 meters.
In this area, the values of turbulence intensity and turbu-
lence rate were defined as follows. The degree of turbu-
lence is a function of height:

2Lw = h,

Lu = 2Lv =
h

0:177 + 0:000823hð Þ1:2 :
ð32Þ

The following is the turbulence intensity:

σw = 0:1W20,

σu = σv = σw
1

0:177 + 0:000823hð Þ0:4
, ð33Þ

where W20 is the wind speed at 6m.
For weak turbulences, this value was given at a wind

speed of 7:72ms−1; for medium turbulences, it was 15:43m
s−1, and for strong turbulences, it was 23:15ms−1.

The Kalman filter method can be used to combine the
outputs of UAV sensors, which are loaded with various
noise mechanisms and faults. The proposed Kalman filter
estimates the states of a system that has indeterminate
dynamics, shown in Figure 12.

The proposed optimal Kalman filter estimates the
immeasurable output of the UAV pitch angle, shown in

3
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Figure 10: Accelerometer error model simulation process for the X-axis and engine.

Table 7: Statistical data of original and filtered flight data accelerometer IMU Pixhawk PX4.

Axis Data Mean Standard deviation Median Dispersion

X
Unfiltered 1.5391 0.8897 1.7624 0.7917

Filtered 1.5391 0.8206 1.7627 0.6734

Y
Unfiltered -0.4376 0.8159 -0.4939 0.6658

Filtered -0.4376 0.4668 -0.4981 0.2179

Z
Unfiltered -10.1512 2.0575 -9.8886 4.2332

Filtered -10.1508 1.7718 -9.8889 3.1392
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Figure 13. The Kalman filter filters out noisy signals from
airspeed, angle of attack, and pitch rate sensors [25]. In the
design of the KF, the covariance matrices Q and R proved
to be optimal. The diagonal elements of the matrix represent
the variations of the individual sensors, and, in the simula-
tions, they had the following values:

Q =

0:01
0
0
0

0
0:01
0
0

0
0

0:001
0

0
0
0

0:001

2
6664

3
7775,

R = 0:05½ �:

ð34Þ

The optimization of the Q and R matrices is essential for
the best possible KF response to noisy sensor signals, wind
gusts, and motor impact. Based on the determined values
of the Q and R matrices, the gain was calculated as follows:

K90 =

−5:6186 ∗ 10−7

−0:0056
0:0216
0:0110

2
666664

3
777775
: ð35Þ

Process noise is created by disturbances that affect the
UAV during take-off, flight, and landing; these are moments
caused by horizontal and vertical airflow. Based on these
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components of the process noise, the error vector of the pro-
cess vk (Gaussian white noise with zero mean value) was
determined, which has the following form:

wk =

0:07 0 0 0
0 0:07 0 0
0 0 0:07 0
0 0 0 0:07

2
666664

3
777775
: ð36Þ

The measurement noise was created by the UAV sensors
themselves and their error models. Therefore, the definition
of the measurement noise was based on the analysis of the
Pixhawk PX4 IMU sensors. Based on these measurement
noise components, the vector of the measurement errors vk

(Gaussian white noise with zero mean value) was deter-
mined, which has the following form:

vk = 0:0054½ �: ð37Þ

The process noise in the assembled model is represented
by the q component of the angular flow velocity from the
turbulence model. The measurement noise is represented
by the noise signal analysed on the Y-axis gyroscope. The
output signal of the UAV model was affected by interference
signals. The estimate of the Kalman filter has an average
error of 0.002°/s as shown in Figure 14, and the estimation
of the state of the optimal Kalman filter is shown in
Figure 15. The suitability of the selected size of the covari-
ance matrices Q and R is proved by Table 8, which shows
the difference in the size of the covariance error at differ-
ent set values of the covariance matrices Q and R with real
input noise.
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4. Conclusions

The proposed optimal Kalman filter obtained from the UAV
control process eliminates the influence of interfering signals
with the required controllability and stability. Because the
signals outputted from the IMU sensors serve as feedback
to the UAV control system, they must provide real informa-
tion about position angles and angular velocities. If this
information contains noise components, UAV controllabil-
ity is reduced or lost. Due to this requirement, it was neces-
sary to perform an analysis of IMU Pixhawk PX4 inertial
sensors. Error models of the IMU sensors were created,
and the sensor measurement outputs were compared with
the real static sensor measurement outputs. The values of
the biases of the IMU accelerometers and gyroscopes were
used for comparison. The results of Allan’s sensor analysis

are shown in Figure 5. The Y-axis gyroscope was given pri-
ority in the analysis of the longitudinal movement of the
UAV. The accuracy of the sensor was determined by the
standard deviation of the wideband noise and angular ran-
dom walk (ARW) given in Table 2.

Based on the acquired knowledge, an error model of
inertial sensors, a turbulence model, and a model of the lon-
gitudinal motion of the “Skydog” aircraft in a discrete state
space were created. An optimal Kalman filter model was
created, which estimates the state of the angular velocity of
the UAV’s pitch angle. The results showed that the UAV’s
longitudinal motion model was significantly disturbed after
the connection of measurement noise and process noise,
which made UAV control difficult. By connecting the opti-
mal Kalman filter to the UAV control process, the influence
of covariance errors on the control process was reduced, as
shown in Table 8. The setting of the Kalman filter in the
UAV control process was optimal, with an estimated average
error of 0.002°/s. The requirements for the created UAV
control system were determined by the criteria contained
in the identification of the control object so that the control
system was robust enough to ensure the stability of the sys-
tem during various phases of the flight and state of the UAV.

The proposed system improved the phase stability of the
UAV. During the entire speed range from 50 km/h to
150 km/h, it had a value of around 68 degrees, and the cut-
off frequency varied at -3 dB in the range from 87 rad/s to
219 rad/s.
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Figure 15: Estimation of the state of the optimal Kalman filter.

Table 8: Combination covariance errors of the Kalman filter with
real input noise.

Matrix values Before using KF After using KF

Q = 0:0001, R = 0:5

0.73672095

0.01399459

Q = 0:001, R = 0:5 0.01401158

Q = 0:01, R = 0:5 0.01966605

Q = 0:0001, R = 0:05 0.01401158

Q = 0:0001, R = 0:005 0.01966595

17International Journal of Aerospace Engineering



Data Availability

The numerical data used to support the findings of this
study are available from the corresponding author upon
request.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this manuscript.

Acknowledgments

This work was funded by the project Mobile Monitoring
System for the Protection of Isolated and Vulnerable Popu-
lation Groups against Spread of Viral Diseases, ITMS code
313011AUP1, co-funded by the European Regional Devel-
opment Fund under the Operational Programme Integrated
Infrastructure. This work was supported by the Scientific
Grant Agency of the Ministry of Education, Science, Research
and Sport of the Slovak Republic under the project VEGA 1/
0701/23—Efficient control algorithms for small gas turbine
engines.

References

[1] J. T. Jang, A. Santamaria-Navarro, B. T. Lopez, and A. Agha-
Mohammadi, “Analysis of state estimation drift on a MAV
using PX4 autopilot and MEMS IMU during dead-reckoning,”
in 2020 IEEE Aerospace Conference, pp. 1–11, Big Sky, MT,
USA, March 2020.

[2] X. Zhang, P. Mumford, and C. Rizos, Allan Variance Analysis
on Error Characters of MEMS Inertial Sensors for an FPGA-
Based GPS/INS System, International Symposium on GPS/
GNSS, 2008.

[3] M. Mousa, K. Sharma, and C. G. Claudel, “Inertial measure-
ment units-based probe vehicles: automatic calibration, trajec-
tory estimation, and context detection,” IEEE Transactions on
Intelligent Transportation Systems, vol. 19, no. 10, pp. 3133–
3143, 2018.

[4] F. Sadi and R. Klukas, “New jump trajectory determination
method using low-cost MEMS sensor fusion and augmented
observations for GPS/INS integration,” GPS Solutions, vol. 17,
no. 2, pp. 139–152, 2013.

[5] N. El–Sheimy, H. Hou, and X. Niu, “Analysis and modelling of
inertial sensors using Allan variance,” IEEE Transactions on
Instrumentation and Measurement, vol. 57, no. 1, pp. 140–
149, 2008.

[6] M. Šipoš, P. Pačes, J. Roháč, and P. Nováček, “Analyses of tri-
axial accelerometer calibration algorithms,” IEEE sensor Jour-
nal, vol. 12, no. 52, pp. 1157–1165, 2012.

[7] “Dronecode: Windows Cygwin toolchain,” 2020, https://dev
.px4 . io/v1 .8 .0/en/setup/dev_env_windows_cygwin
.html#windows-cygwin-toolchain.

[8] M. A. Al-Mashhadani, “Optimal control and state estimation
for unmanned aerial vehicle under random vibration and
uncertainty,” Measurement and Control, vol. 52, no. 9-10,
pp. 1264–1271, 2019.

[9] L. Chrif and Z. M. Kadda, “Aircraft control system using LQG
and LQR controller with optimal estimation- Kalman filter
design,” Procedia Engineering, vol. 80, pp. 245–257, 2014.

[10] K. T. Borup, T. I. Fossen, and T. A. Johansen, “A nonlinear
model-based wind velocity observer for unmanned aerial vehi-
cles,” IFAC-PapersOnLine, vol. 49, no. 18, pp. 276–283, 2016.

[11] J. W. Langelaan, N. Alley, and J. Neidhoefer, “Wind field estima-
tion for small unmanned aerial vehicles,” Journal of Guidance,
Control, and Dynamics, vol. 34, no. 4, pp. 1016–1030, 2011.

[12] J. T. Li and J. C. Fang, “Sliding average Allan variance for iner-
tial sensor stochastic error analysis,” IEEE Transactions on
Instrumentation and Measurement, vol. 62, no. 12, pp. 3291–
3300, 2013.

[13] M. G. Ravi Kumar and T. V. Dr Ramamurthy, “Fault detection
of aircraft plant using Kalman filter,” IJCTA, vol. 8, no. 3,
pp. 923–932, 2015.

[14] Y. Zhi, G. Li, Q. Song, K. Yu, and J. Zhang, “Flight control law
of unmanned aerial vehicles based on robust servo linear qua-
dratic regulator and Kalman filtering,” International Journal of
Advanced Robotic Systems, vol. 14, no. 1, p. 172988141668695,
2017.

[15] J. Rohač, “Accelerometers and an aircraft attitude evaluation,”
in SENSORS, 2005 IEEE, pp. 784–788, Irvine, CA, USA, Octo-
ber 2005 - November 2005.

[16] J. Roskam, Flight Dynamics of Rigid and Elastic Airplanes, Uni-
versity of Kansas Press, Lawrence KS, 1972, Ananth Krishnan
& Sinha 22.

[17] M. K. Joyo, D. Hazry, S. F. Ahmed, M. H. Tanveer, F. A. Warsi,
and A. Hussain, “Altitude, and horizontal motion control of
quadrotor UAV in the presence of air turbulence,” in 2013
IEEE Conference on Systems, Process & Control (ICSPC),
pp. 16–20, Kuala Lumpur, Malaysia, December 2013.

[18] Y. Li, C. Chen, and W. Chen, “Research on longitudinal con-
trol algorithm for flying wing UAV based on LQR technol-
ogy,” International Journal on Smart Sensing and Intelligent
Systems, vol. 6, no. 5, pp. 2155–2181, 2013.

[19] D. L. Halls and J. Llinas, Handbook of Multisensor Data
Fusion, CRC Press, New York, 2008.

[20] S. J. Julier, J. K. Uhlmann, and H. F. Durrant-Whyte, “A new
method for the nonlinear transformation of means and covari-
ances in filters and estimators,” IEEE Transactions on Aero-
space and Electronics Systems, vol. 45, no. 3, pp. 477–482, 2000.

[21] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A
tutorial on particle filters for online nonlinear/non-Gaussian
Bayesian tracking,” IEEE Transactions on Aerospace and Elec-
tronic Systems, vol. 50, no. 2, pp. 174–188, 2002.

[22] C. Hajiyev, H. E. Soken, and S. Y. Vural, State Estimation and
Control for Low-Cost Unmanned Aerial Vehicles, Springer,
Switzerland, 2015.

[23] R. F. Stengel, Flight Dynamics, Princeton University Press,
2004.

[24] N. Lwin and H. M. Tun, “Implementation of flight control sys-
tem based on Kalman and PID controller for UAV,” Interna-
tional Journal of Scientific and Technology Research, vol. 3,
no. 4, 2014.

[25] A. Ingabire and A. A. Sklyarov, “Control of longitudinal flight
dynamics of a fixedwing UAV using LQR, LQG and nonlinear
control,” E3S Web of Conferences, vol. 104, article 02001, 2019.

[26] IEEE Standard Specification Format Guide and Test Procedure
for Single-Axis Interferometric Fiber Optic Gyros, IEEE Std
952-1997, 1998.

[27] C. Hajiyev and S. Y. Vural, “LQR controller with Kalman esti-
mator applied to UAV,” Chingiz Longitudinal Dynamics,
vol. 4, no. 1, article 28381, p. 6, 2013.

18 International Journal of Aerospace Engineering

https://dev.px4.io/v1.8.0/en/setup/dev_env_windows_cygwin.html#windows-cygwin-toolchain
https://dev.px4.io/v1.8.0/en/setup/dev_env_windows_cygwin.html#windows-cygwin-toolchain
https://dev.px4.io/v1.8.0/en/setup/dev_env_windows_cygwin.html#windows-cygwin-toolchain


[28] M. Grewal and A. Andrews, Kalman Filtering Theory and
Practice Using MATLAB, John Wiley & Sons, Inc., New York,
NY USA, 2 edition, 2001.

[29] D. Megyesi, R. Bréda, and M. Schrötter, “Adaptive control and
estimation of the condition of a small unmanned aircraft using
a Kalman filter,” Energies, vol. 14, no. 8, p. 2292, 2021.

[30] A. M. Kamal, A. A. Bayoumy, and A. Elshabka, “Modeling,
analysis and validation of a small airplane flight dynamics,”
in AIAA Modeling and Simulation Technologies Conference,
Kissimmee, Florida, January 2015.

[31] J. Llobera Capllonch, Longitudinal Stability Control System
Design for the UAV Ultra Stick 25e, Universitas Politècnica
de Catalunya, 2015.

19International Journal of Aerospace Engineering


	Reduction of the Influence of Interfering Signals on the Longitudinal Control of UAVs with Fixed Wing
	1. Introduction
	2. Materials and Methods
	2.1. Dynamic Modelling of UAV Flight
	2.2. Modelling the Noise of UAV Sensors
	2.3. Atmospheric Disturbances Affecting UAVs
	2.4. Design and Implementation of Kalman Filter

	3. Results and Discussion
	4. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments



