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As the interest in probing deep space increases, it is necessary to enhance the autonomous navigation capabilities of the
spacecraft. Since traditional navigation methods rely on ground-based radiometric tracking, the vehicle has a significant
communication delay resulting in no ability to handle unexpected situations on time. Image-based optical navigation allows
interplanetary spacecraft to determine their orbits autonomously. This paper explores how to accurately extract optical
observations from the original images to perform autonomous navigation. First, we introduce a simple and efficient idea to
locate valuable contours of the celestial body based on gradient variations. Then, we establish a rough estimation with
RANSAC to remove the outliers around the edges. Next, we propose a refined estimation based on the hybrid genetic
algorithm to precisely estimate the navigation observations. Lastly, numerous experiments have confirmed that our method
achieves outstanding accuracy and robustness.

1. Introduction

In March 2019, the U.S. released the Artemis program for
returning to the moon. The program is aimed at achieving
a permanent, sustainable human presence in cislunar space
and preparing for crewed missions to Mars. During this
period, the program will land the first woman and the next
man on the moon in 2024. To ensure the security of the
astronauts, crewed missions need to be able to operate inde-
pendently in case of a loss of communication with the
ground. It means the vehicle must perform navigation func-
tions independently of the ground. Therefore, Artemis I,
which is uncrewed, has been designed with an optical navi-
gation (OpNav) system. The OpNav system can execute
fully autonomous navigation, allowing the crew to return
safely to Earth without ground station assistance.

The OpNav system is one of the most important naviga-
tion systems currently available in deep space. It can auton-
omously extract OpNav observations from the images taken
by the onboard camera to determine the spacecraft’s posi-
tion. Many OpNav measurement types are commonly used
for autonomous navigation. These measurements include
the line-of-sight (LOS) vector, star horizon, star occultation,
and apparent diameter. The idea of extracting the LOS vec-
tor is conceptually simple. If the centroid of the celestial
bodies can be calculated correctly in the image, then the
LOS direction from the onboard camera to the celestial bod-
ies is also known. Consequently, the navigation performance
of the OpNav system is directly influenced by the accuracy
of the navigation observations.

Celestial geometry model fitting is one of the fundamen-
tal image processing problems in OpNav systems. In order
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to improve the performance of ellipse fitting, some signifi-
cant works have been released in this domain. The random
sampling consensus method (RANSAC) has attracted the
attention of many scholars due to its simple principle.
Sugaya [1], Xie and Ohya [2], and Mai et al. [3] proposed
their respective two-step RANSAC algorithms: (1) dividing
the edge point pixels into multiple groups, (2) performing
ellipse fitting for each group separately, and finally selecting
the optimal ellipse model. However, these approaches are
very sensitive to noise and computationally inefficient,
wasting onboard computational resources. In order to
improve computational efficiency, Kwon et al. [4] intro-
duced a fast RANSAC ellipse detection method that uses
the geometric properties of three points. The approach uses
normal and differential equations to solve for elliptic
parameters, which require three points based on their loca-
tions and edge angles. The problem is that the edge angle
relationship of the three points is unknown and needs to
be calculated so the algorithm’s computational complexity
is not reduced. Fraga and Dominguez [5] presented a
robust RANSAC fitting method without eliminating out-
liers. The author uses the sum of orthogonal distances
(instead of the sum of the squares of the distances) to
reduce the influence of noise and utilizes differential evolu-
tion to solve the nonlinear problem. Nevertheless, when the
outliers are gathered near the edges of the ellipse, the accu-
racy of the ellipse fitting will be severely degraded. To
decrease the impact of noise, Yu et al. [6] and Shao et al.
[7] proposed their outlier elimination algorithms for
RANSAC ellipse fitting. Based on the algebraic distance
between edge pixel points, they constructed the proximity
matrix to remove outliers. However, the authors only
performed outlier elimination experiments and did not test
the performance of the ellipse fitting. For hardware acceler-
ation, Liu and Yang [8] suggested a real-time ellipse-fitting
approach based on the GPU, which provides an idea for
implementing the RANSAC algorithm in engineering. The
disadvantage is that the performance of the RANSAC
fitting algorithm is very sensitive to noise.

The optimization problem is an old topic, and the solu-
tions include heuristic algorithms and clustering algorithms.
Heuristic algorithms solve the optimal global solution based
on computational experience, including genetic algorithms
[9], ant colony optimization algorithms [10–12], and neural
network algorithms [13]. The essence of the heuristic
algorithm is a greedy strategy, and a stochastic process is
added to avoid falling into a local optimum. The clustering
algorithm is an unsupervised learning method and a com-
mon data analysis technique used in many fields [10–12].
The idea of the clustering algorithm is to gather similar ele-
ments into a class [10–12]. For our application, the model of
a celestial body is equivalent to the individual of the
algorithm, and the points used to compute the model are
equivalent to the individual’s genes. Therefore, the genetic
algorithm is most suitable to be applied to improve the per-
formance of centroid estimation.

To optimize the performance of the OpNav system, we
propose a high-precision centroid estimation algorithm to
compute the optical observations from the original images.

Our approach includes the following innovations: (1) A fast
and efficient idea is proposed to identify valuable contours of
the celestial body based on edge gradient. (2) Rough estima-
tion is executed using the RANSAC to remove the outliers.
(3) The hybrid genetic algorithm conducts refined estima-
tion to improve the accuracy of centroid estimation. The
remainder of this paper is organized as follows. Section 2
introduces the fundamentals of OpNav. Section 3 describes
the methods for estimating navigation observations. Section
4 presents the simulation and analysis. Finally, Section 5
gives our conclusions.

2. Fundamentals of OpNav

2.1. Model of the Observed Object. The mathematical model
of the celestial body is a triaxial ellipsoid. So many works
using the triaxial sphere as the model will have significant
errors [14–16]. In this paper, the navigation object is mod-
eled as a triaxial ellipsoid, forming a two-dimensional ellipse
in the image plane (see Figure 1).

The general representation of the ellipse is [17]:

F x, yð Þ = Ax2 + Bxy + Cy2 +Dx + Ey + F = 0, ð1Þ

where the Fðx, yÞ describes an ellipse if 4AC > B2, and the
ðx, yÞ is the horizon point of the celestial body, and the A,
B, C,D, E, F are the coefficients of the elliptical model. It
can be given in a matrix as

x y 1½ �
A B/2 D/2

B/2 C E/2

D/2 E/2 F

2
664

3
775
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y

1

2
664
3
775 = 0: ð2Þ

It can also be written down as

vTα = 0, ð3Þ

where v = ½x2 xy y2 x y 1� and α = ½A B C D
 E F�. When all points ðxi, yiÞ are on the ellipse, there is
Fðxi, yiÞ = 0. Thus, the problem is converted to

min J = 〠
n

i=1
F xi, yið Þ½ �2 = vTαTαv: ð4Þ

Once the optimal ellipse model is found, we can solve
other essential parameters of the ellipse, such as the center
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coordinates ðx0, y0Þ, semimajor axis a, semiminor axis b, and
orientation ϕ,

x0 =
2CD − BE

B2 − 4AC
,

y0 =
2AE − BD

B2 − 4AC
,

a =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 AE2 + CD2 − BDE + F B2 − 4ACð Þ½ �
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A − Cð Þ2 + B2

q
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,

8>>>>>>>>>><
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ð5Þ

2.2. LOS Vector Model. The optical sensors of the Artemis I
include 2 star trackers and one optical camera. The star
tracker is mainly applied to determine the spacecraft’s atti-
tude and will not be discussed here. This paper focuses on
processing optical observations captured by an optical cam-
era. Four coordinate frames will be used to identify the orbit
information in the OpNav system. The data can be con-
verted between the four coordinate frames by means of rota-
tion matrices. We need to compute the LOS observation
from the original image to perform autonomous navigation.

The imaging principle of a monocular optical camera is
the pinhole model. If f denotes the focal length of the cam-
era, the relationship between the point PðXk, Yk, ZkÞ in the
camera frame Oc − XcYcZc and the point pðxk, ykÞ in the
imaging plane O − xy is given by

xk = f
Xk

Zk
,

yk = f
Yk

Zk
,

ð6Þ

The LOS observation from the camera to the raw image
can provide critical orientation information for the OpNav
system, as shown in Figure 2. If the optical axis of the camera
is aligned with the origin of the image plane, the LOS direc-
tion can be expressed by [18]

eCk =
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2k + y2k + f 2
q

−xk
−yk
f

2
664

3
775, ð7Þ

where eCk is the LOS vector in the camera frame Oc − XcYcZc.
Then, according to the rotation relation, we can easily access
the LOS direction in the inertial frame OW − XWYWZW :

eIk = TI
BT

B
Ce

C
k , ð8Þ

where TB
C is the conversion matrix from the camera frame to

the body frame, and TI
B is the conversion matrix from the

body frame to the inertial frame.
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Figure 1: Optical imaging process and elliptical model in the image plane. (a) Understanding the imaging process from an inertial
perspective. (b) Learning the imaging process from the camera’s viewpoint.

3International Journal of Aerospace Engineering



(a) (b) (c)

Figure 4: Output of binarization action under different scenarios.
(a) The half moon is close to the Earth and bright. (b) The full
moon is far from Earth and relatively dark. (c) The full moon is
close to the Earth and very dim.

(a) (b) (c)

Figure 5: Output of open and close operations under different
scenarios. The two thresholds are τ2 = I4×4 and τ3 = I8×8. (a) The
moon’s edge is not affected. (b) The contours of stars and
irregular textures are removed. (c) Relatively small false contours
are canceled.

(a) (b) (c)

Figure 6: Output of the edge detection algorithm. (a, b) The
moon’s contours are accurately detected. (c) The moon’s contour
is accurately identified, and the false contour is discarded.

p1

p2

d2

d1

Figure 7: Schematic illustration for identifying the moon’s outer
contour. We set k = 2, implying the moon’s contour is divided
into orange and blue curves. The blue arc is the valuable edge
that we are looking for.
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Figure 2: LOS observation model. The camera’s optical axis does not point to the center of the celestial body.

Figure 3: The complete procedure of the refined estimation. Input
and output are marked with orange and green arrows, respectively.
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3. Methods for Estimating
Navigation Observations

In estimating the models of the celestial bodies, the RAN-
SAC method tends to fall into local optima and is very sen-
sitive to anomalous data. The genetic algorithm is suitable
for such nonlinear problems, so we propose a hybrid genetic
algorithm to improve the performance of centroid estima-
tion. The following section first describes the improvement
of the estimation method using a hybrid genetic algorithm.

3.1. Improved Estimation Method Based on Hybrid Genetic
Algorithm. In the initialization process, n models MðSiÞ are
considered as the initial population MðSiÞ ∈M and i = 1, 2,
⋯, n. The Si is the set of m edge points randomly selected
from the sample space S, which is used to calculate the
model of the celestial body. For simplicity, MðSiÞ is abbrevi-
ated as Mi. The number of inliers N inðMiÞ included in the
model Mi can indicate the performance of the estimation.
It means that the precision of an ellipse model Mi can be
evaluated in terms of the number of inliers N inðMiÞ. Hence,
we define the fitness evaluation function F as follows:

F =w ∗ h =
N in Mið Þ − 1/n∑j≤nN in Mj

À Á�� ��
Sj j exp −

1
2

D Mi, Sð Þ
τ4

� �2 !
,

ð9Þ

where w is the reward function to evaluate the number of
inliers, and h is the distance scale function to assess the dis-
tribution of outliers around the model. In the distance scale

function, DðMi, SÞ is the total distance error of the model
Mi deviation from each point in the sample space S, where
the minimum value is 0 and the inflection point is set to τ4.
If DðMi, SÞ = 0, it is evident that the current model Mi is the
best solution. When the proportion of inliers contained in
the modelMi in the total sample is ninety-six percent, we con-
sider the modelMi to be very close to the celestial bodymodel.
Hence, the termination conditionF∗ of the genetic algorithm
can be obtained by calculating the corresponding w and h.

In the selection operation, we set the probability of an
individual being selected to be proportional to their fitness.
This strategy can automatically identify the better individ-
uals and does not discard any individuals in the population.
In this application, the probability P of an individual is set as
follows:

P =
k1Fw + k2Fhj j

∑n
i=1 k1F

i
w + k2F

i
h

�� �� , ð10Þ

where k1 and k2 denote the factors of the reward function
and the distance scale function, respectively. The Fw and
Fh denote the values of the reward function and the distance
scale function, respectively. We can control the properties of
the selection operation by adjusting two function factors.

The crossover of two chromosomes is manipulated to
evolve better individuals. Parental chromosomes are mated
to produce two offspring chromosomes randomly. We place
a crossover factor α to control the crossover node of genes
and its range to be α ∈ ð0, 1Þ. In each rendezvous, the paren-
tal chromosomes mate only once.
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Figure 8: Results of outlier elimination under different thresholds Θ (Θ ∈ ½1, 6�).
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To prevent the algorithm from converging to a local
optimum, we introduce the annealing mutation operator, a
two-way and probabilistic operation. The factor β is set to
control the probability of performing the mutation opera-
tion, and its range is β ∈ ð0, 1Þ. If a mutation is executed,
we will evaluate the outcome according to the improved
Metropolis criterion. When F i+1 <F i, we will count the
reception probability based on the reward function. Based
on the characteristics of the task, we improve the Metropolis
criterion as follows:

improvedMetropolis≔

1, F i+1 ≥F i:

exp −
1
2

F i+1
w

F i
w

� �2 !
, F i+1 <F i:

8>><
>>:

ð11Þ

After the annealing mutation operation, the algorithm
can effectively avoid convergence to a local optimum.

The above are the critical steps of the hybrid genetic
algorithm, and the complete procedure is shown in
Figure 3. The threshold α and β tests are shown in Section
4.1. The following section presents the complete image pro-
cessing pipeline to extract navigation observations, which
includes our improved hybrid genetic algorithm.

3.2. Image Processing Pipeline for Extracting Navigation
Observations. This section describes an image processing
pipeline for estimating the centroids of the celestial bodies
from single-channel grayscale images. In this application,
the moon’s images are considered processing targets cap-
tured by the onboard optical camera.

In the first step, we set an adaptive threshold τ1 to binar-
ize the images. Since the background (deep space) is much
darker than the moon, the grayscale distribution of the
foreground (the moon) can be easily calculated. We deter-
mine the adaptive threshold τ1 by computing the maximum
variance of the background and foreground. As shown in

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 9: Complete image processing routines. (a) The full moon is close to the Earth and very dim. (b) Binarizing the image by an adaptive
threshold τ; (c) Open (○) and close (●) operations for removing interference areas. (d) Detecting all edges and identifying the moon’s
contour. (e) Searching for the valuable moon’s contour (blue arc) based on gradient and distance information. (f) Rough estimation
using RANSAC for removing outliers (red points). (g) Refined estimation with the hybrid genetic algorithm.
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Figure 4, our method is not easily affected by brightness
and contrast.

In the second step, we propose open (○) and close (●)
operations to exclude interference objects generated by high
contrast, such as background stars, inconsistent lighting
conditions, and irregular textures. This procedure helps the
algorithm to find the target quickly to reduce the computa-
tional effort. Different thresholds have a severe impact on
the performance of the operation. It is worth noting that
the threshold τ2 mainly affects the performance of removing
stars’ contours, and the threshold τ3 chiefly controls the

operation of removing irregular textures from the lunar sur-
face. After many tests (tests will be presented in Section 4.2),
the two thresholds of τ2 = I4×4 and τ3 = I8×8 are set to cancel
the interference areas (see Figure 5). It can be seen that the
operation effectively suppresses the false contours and does
not distort the lunar outlines. The next step will remove
the remaining false contour, which is larger.

In the third step, we locate all the edges in the grayscale
image and find the outer contour of the observed object.
Based on the grayscale distribution, the Canny algorithm is
applied to calculate the gradient (magnitude and direction)
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Figure 10: Output of relative goodness L . (a) The value is L = 0:3824 after 15 iterations. (b) The maximum value is Lmax = 0:6384 after
numerous iterations.
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to detect the lunar margins. Assuming the optical camera is
aimed at the moon, we can identify the planetary contours
by calculating the area. The performance of the edge detec-
tion operation is shown in Figure 6.

In the fourth step, we divide the moon’s contour into k
feature curves to identify valuable profiles. As the light con-
ditions of the observed object, we locate the valuable arc by
setting k = 2, as shown in Figure 7 for the blue and red
curves. To discover the valuable edges (blue curve), we
develop a quick and efficient way: (1) Finding the edge with
the steepest gradient variation on both sides (p1 and p2) and
p1p2 with maximum distance. (2) Splitting the moon’s con-
tour into two parts (blue and red arcs). (3) Calculating mul-

tiple sets of distances (d1 and d2) to determine the valuable
margins. Finally, we output the ðx, yÞ image coordinates of
the blue arc employed to estimate the ellipse model. Com-
pared with other author’s method of cutting area [15], our
method has lower computational complexity and higher
accuracy.

The fifth step performs rough estimation using the
RANSAC method to remove the outliers. In OpNav tasks,
the raw image can easily introduce various noises in some
cases, such as platform vibrations or signal interference.
Noise near the celestial limbs cannot be eliminated by using
edge detection algorithms alone. Therefore, we propose a
rough estimation using RANSAC to eliminate the spurious

(a) (b)

Figure 11: (a, b) Two lunar images in the dataset.

(a-1) 𝜏2 = I2×2 (a-2) 𝜏2 = I4×4 (a-3) 𝜏2 = I6×6(a) Binarized image

(a)

(b-1) 𝜏2 = I2×2 (b-2) 𝜏2 = I4×4 (b-3) 𝜏2 = I6×6(b) Binarized image

(b)

Figure 12: Experiments based on binarized images (a) and (b) to identify the optimal threshold τ2. Three thresholds τ2 = I2×2, τ2 = I4×4, and
τ2 = I6×6 are set to discard the stellar contours.
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edges. Based on the ðx, yÞ image coordinates, we estimate
the ellipse model by RANSAC for a rough estimation.
Then, we set a threshold Θ to control the performance
of removing outliers.

For a smaller Θ, the sample tends to form strong
connections, and the outliers are easily ignored; for a larger
Θ, the inliers are easily misjudged as outliers. Hence, we
perform six comparison trials to find the optimal value Θ∗

(see Figure 8). In the tests, we vary the threshold value Θ
and keep other experimental conditions constant. It can be
found that the best performance of the outlier rejection is
achieved when Θ∗ = 3.

In the sixth step, we perform refined estimation using
the improved hybrid genetic algorithm to extract the moon’s
centroid. The maximum number of iterations is set to

m =
log 1 − pð Þ
log 1 − ωnð Þ , ð12Þ

where p is the probability that the model meets the require-
ments and ω is the probability that the inliers are selected
from the sample. After many iterations, we can use Equation
(7) to calculate the LOS observation for optical navigation
based on the solved optimal model and the navigation cam-
era’s parameters.

To exhibit the performance of the image processing
pipeline, the complete flow of our method takes a very dark
moon as the scene, as shown in Figure 9.

4. Simulation and Analysis

4.1. α, β Test. Since the parameters α and β have significant
effects on crossover and annealing mutation operations,
respectively, we perform this test to determine the optimal

α and β. First, the inlier function G calculated under param-
eters α, β is set as

Gt α, βð Þ≔Nt
in Mα,β
À Á

, ð13Þ

where Mα,β denotes the model computed under parameters
α and β, Nt

inðMα,βÞ represents the number of inliers of the
model, and t is the number of iterations. Then, the average
performance curve L is defined as

Lt α, βð Þ≔ Gt α, βð Þ
n

=
1
n
〠
n

i=1
Nt

in Mn
α,β

� �
, ð14Þ

where n is the size of the population, representing n models
during each iteration. The function Ltðα, βÞ denotes the
average performance of the n models in each iteration. We
need to consider the impact of both parameters because they
are coupled. Finally, the relative goodness curveL is defined
to express the performance graph

L t α, βð Þ≔
Lt α, βð Þ − min

∀α′ ,β′
G α′, β′
� �

max
∀α′ ,β′

G α′, β′
� �

− min
∀α′ ,β′

G α′, β′
� � , ð15Þ

where min
∀α′ ,β′

Gðα′, β′Þ represents the minimum value of the

number of inliers during the historical iterations, and max
∀α′ ,β′

Gðα′, β′Þ means the maximum value of the number of
inliers during the historical iterations. In the test, we set
the parameter range as α, β ∈ ð0, 0:95�. As shown in
Figure 10, the value of L rises from 0.3824 in the 15th

(a-1) 𝜏3 = I6×6 (a-2) 𝜏3 = I8×8 (a-3) 𝜏3 = I16×16

(a)

(b-1) 𝜏3 = I6×6 (b-2) 𝜏3 = I8×8 (b-3) 𝜏3 = I16×16

(b)

Figure 13: Tests for defining the optimal threshold τ3. Three thresholds τ3 = I6×6, τ3 = I8×8, and τ3 = I16×16 are placed to eliminate irregular
textures from the lunar surface.
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iteration to the maximum value of 0.6384. Consequently, the
optimal parameters are found to be α = 0:55 and β = 0:15. In
this case, the hybrid genetic algorithm prefers to evolve out-
standing individuals.

4.2. τ2, τ3 Test. In open and close operations, appropriate
thresholds τ2 and τ3 can effectively remove the interference
contours without destroying the celestial limbs. Therefore,

we build a dataset of 30 lunar images to test the optimal
threshold. The dataset contains various scenarios, such as
lunar images with irregular textures on their surfaces and
many stars in the field of view. It is worth noting that the
threshold τ2 mainly affects the performance of removing
stars, and the threshold τ3 chiefly controls the operation of
eliminating irregular textures from the lunar surface. As a
result, we need to perform two experiments to determine

(a) (b)

(c) (d)

(e)

Figure 14: Samples of the dataset. (a) Distant half moon. (b) Crescent moon. (c) Partial outline masking. (d) Approaching full moon.
(e) Very dim illumination.

(174.511, 113.191), 66.652, 62.941

(a)

(41.194, 98.287), 61.844, 60.129

(b)

(116.233, 93.441), 60.215, 59.408

(c)

(163.645, 137.848), 62.939, 61.756

(d)

(96.887, 92.133), 79.738, 79.093

(e)

Figure 15: Estimation for samples in the dataset, including the centroid coordinates, semimajor axis, and semiminor axis.
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the best performance for open and close operations.
Figure 11 shows two lunar images randomly selected from
the dataset for testing.

First, experiments are conducted to determine the opti-
mal threshold τ2. The stars are very far from the spacecraft,
resulting in the small sizes of the stars in the images. Thus,
we take three relatively small thresholds of τ2 = I2×2, τ2 =
I4×4, and τ2 = I6×6 to remove the stellar contours. The results
are shown in Figure 12. When the threshold τ2 is small, the
operation cannot eliminate all the stellar contours. But when
the threshold τ2 is large, the operation would damage the
moon’s limbs. So, the optimal threshold is τ2 = I4×4 allowing
the algorithm to efficiently cancel the stellar contours from
the field of view without disrupting the moon’s limbs.

Next, we carry out tests to identify the optimal threshold
τ3. Since the relative motion between the camera and the
moon, the irregular textures of the lunar surface in the
images are not regular. We need to predict the proper
threshold τ3 depending on the size of craters on the lunar
surface. In this application, the thresholds are set to τ3 =
I6×6, τ3 = I8×8, and τ3 = I16×16 to verify the performance of
the operation (see Figure 13). After many trials, it is undesir-

able to sharply increase τ3 to eliminate irregular textures, as
the moon’s limbs would be destroyed. To protect the limbs
of the navigation object, we assign the optimal threshold to
be τ3 = I8×8.

4.3. Centroid Estimation Test. To test our method, we con-
duct a series of experiments on a dataset produced by the
software Celestia v1.5.3, the authoritative astronomical
software developed by NASA. The dataset consists of 100
synthetic 784 × 541 grayscale lunar images. The camera’s
distance from the observed object varies from 20,000 km to
330,000 km. And considering different lighting conditions
and observation locations, the dataset contains various
experimental scenarios, such as a bright full moon and a
dim partial moon (see Figure 14).

Our method estimates 100 lunar images in the dataset to
calculate the accuracy of the centroid extraction. For each
image, we repeatedly compute 100 times to gather the mean
error and standard variance of the centroid estimation. The
qualitative results of some samples are shown in Figure 15.
However, the pixel error of centroid extraction cannot
directly express the accuracy of optical navigation. We need

Table 1: The mean error and standard variance of the centroid extraction for samples in the dataset and the corresponding LOS direction
errors.

File ID
Errors of RANSAC method (pixel) Errors of our method (pixel) Our method’s LOS direction

error (10−4 rad)x0 y0 x0 y0
002 0:738 ± 0:330 0:249 ± 0:045 0:118 ± 0:046 0:076 ± 0:042 0.093832

015 0:594 ± 0:031 0:166 ± 0:187 0:189 ± 0:032 0:068 ± 0:020 0.130551

031 1:274 ± 0:361 0:649 ± 0:160 0:214 ± 0:107 0:089 ± 0:045 0.151442

055 0:493 ± 0:207 0:206 ± 0:154 0:114 ± 0:062 0:132 ± 0:105 0.121499

065 0:336 ± 0:102 0:370 ± 0:216 0:097 ± 0:084 0:107 ± 0:052 0.100267

077 0:219 ± 0:025 0:101 ± 0:071 0:064 ± 0:055 0:253 ± 0:061 0.190991

085 1:469 ± 0:025 0:531 ± 0:138 0:128 ± 0:054 0:109 ± 0:067 0.114566

094 0:880 ± 0:317 0:224 ± 0:160 0:203 ± 0:170 0:087 ± 0:049 0.144490

100 0:776 ± 0:190 0:403 ± 0:161 0:134 ± 0:098 0:108 ± 0:074 0.116819

(a) (b) (c)

Figure 16: Experiments on lunar images taken from the ISS. (a) Full-moon image was captured from ISS on March 8, 2015. (b) Half-moon
image was captured from ISS on January 29, 2019. (c) Crescent image was captured from ISS on January 2, 2020.
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to compute the LOS direction used for OpNav according to
Equation (7). In this application, we suppose that the camera
parameters are the focal length f = 200 mm, the field of
view ϑ = 20°, and the scale factor dx = 78:4 pixel/mm and
dy = 67:8 pixel/mm. The quantitative statistics of some
samples are given in Table 1. LOS pointing accuracy indi-
cates that our method can meet the needs of optical nav-
igation in deep space.

This section tests the image processing performance of
the proposed method on real image data. In the test, lunar
images are regarded as experimental objects taken from the
International Space Station (ISS) at 420 km from the Earth.
It should be noted that the presented approach can be
applied to other ellipsoidal celestial bodies since the algo-
rithm proposed in this paper considers the ellipsoid as a
mathematical model. To enrich the diversity of the sample,
the experiment is executed on three types of lunar images:
full moon, half moon, and crescent (Figure 16). The method
in this paper can still estimate lunar models accurately on
real data.

To test our method’s accuracy and robustness, we add
disturbances to the original images, including Gaussian
noise, transmission interference, and motion blur (see
Figure 17). These disturbances are designed to reproduce
realistic scenarios that spacecraft may encounter in deep
space, such as cosmic rays, channel noise, and geometric dis-
tortion. Our method is executed on these noisy images to
estimate the lunar model, as shown in Figure 18.

In this section, we compare the performance of our
method and the least squares method for estimating the
models of the navigation object. The two methods perform
three experiments with the noisy dataset, respectively. For
each noisy image, the two methods are repeatedly performed
50 times to collect the centroid estimation’s mean error and
standard variance (see Figures 19–21). When the noise
intensity of the transmission interference is low, the two
methods perform similarly. However, with increasing noise
intensity, our method exhibits better robustness than the
LS method. Motion blur noise can seriously undermine the
performance of two methods among the three disturbances.

Motion blur 5 (px)

Motion blur 10 (px)

Standard deviation 0.5

Standard deviation 1

Transmission interference (%) 0.4

Transmission interference (%) 1

Figure 17: Planetary image affected by various noises.

Gaussian noise Transmission interference Motion blur

(389.682, 269.411),193.924, 192.787 (390.763, 270.395),193.872, 192.921 (388.805, 268.263),193.794, 192.676

Figure 18: Output model for lunar images disturbed by various noises.
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It prompts us to prevent motion blur noise in deep space
missions, such as platform vibration and camera shutter
speed. In short, the comparison experiments indicate that
our method generally has better centroid estimation accu-
racy and robustness than the LS method.

The Gaussian noise is introduced to mimic disturbances
in the image collection process, such as channel noise and
camera noise. We control the Gaussian noise intensity by
varying the standard variance from 0 to 1. Figure 19 displays
the results of the methods performed on noisy images.

(391.141, 270.071),227.012, 226.985 (390.441, 270.031),226.564, 227.109

(391.050, 269.540),226.564, 226.879 (387.591, 268.320),230.143, 227.625

Standard deviation 0.2 Standard deviation 0.4

Standard deviation 0.6 Standard deviation 1
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Figure 19: (a) Output estimation for lunar image disturbed by additive Gaussian noise. Our estimation is in red and LS estimation is in
cyan. (b) Estimation errors for the increased standard deviation of the Gaussian noise.
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There are many cosmic rays in deep space, which are
electromagnetic radiation from the depths of the universe
and have a high energy level. We simulate the effect of cos-
mic ray interference by artificially corrupting the image.

We present different levels of interference textures in the
image to simulate the effects of cosmic rays (see Figure 20).

During the maneuvering process, geometric distortion
can seriously degrade the imaging quality of the optical

(390.501, 270.005),226.741, 226.315 (390.207, 269.983),227.186, 226.994
Transmission interference (%) 0.2 Transmission interference (%) 0.4

(390.220, 269.217),227.008, 226.619 (389.933, 269.175),227.087, 227.112
Transmission interference (%) 0.6 Transmission interference (%) 0.9
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Figure 20: (a) Output estimation for lunar image disturbed by data transmission noise. Our estimation is in red and LS estimation is in
cyan. (b) Estimation errors for an increasing percentage of transmission interference.
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system. Geometric distortion can be caused by various cir-
cumstances, such as platform vibration and the speed of
the camera shutter. Therefore, we introduced motion blur
ranging from 1 to 10 pixels to simulate the effects of geomet-
ric deformations. The estimation is shown in Figure 21.

This section quantifies the time spent on the critical
steps of our approach. The experiments are conducted on
a Windows system platform with a six-core processor and
8G RAM. After 50 experiments, it can be seen from
Table 2 that the most time-consuming step is the refined

(389.704, 269.415),228.103, 227.095 (388.417, 268.406),230.022, 226.862
Motion blur 2 (px) Motion blur 5 (px)

(386.657, 268.933),229.811, 227.590 (386.140, 269.038),228.956, 226.997
Motion blur 7 (px) Motion blur 9 (px)
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Figure 21: (a) Output estimation for lunar image disturbed by motion blur noise. Our estimation is in red and LS estimation is in cyan. (b)
Estimation errors for increasing pixels of motion blur.
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estimation which accounts for almost 56.81% of the total time
(753:48 ± 45:32ms). Specifically, the rough estimation opera-
tion takes about 216.55ms, and the refined estimation
operation costs about 428.05ms. The algorithm will be more
efficient if the performance of the hardware device is improved.

5. Conclusions

In this paper, we propose a robust image-processing pipeline
to estimate the models of celestial bodies. We improve the
accuracy of centroid extraction through rough and refined
estimation operations. After performing many trials repeat-
edly, we analyse the accuracy of pixel-level centroid extraction
and LOS direction under different conditions. In addition, we
assess the robustness of our method to various perturbations
and display the outcomes of processing numerous noisy
images with Gaussian noise, data corruption, andmotion blur.
We conclude that a simple and efficient optical observation
extraction method has been discovered.
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