
Research Article
Analysis of Single-Pilot Intention Modeling in
Commercial Aviation

Lei Dong ,1,2 Hongbing Chen ,2 Changxiao Zhao ,1,2 and Peng Wang 1,2

1Key Laboratory of Civil Aircraft Airworthiness Technology, Civil Aviation University of China, Tianjin 300300, China
2College of Safety Science and Engineering, Civil Aviation University of China, Tianjin 300300, China

Correspondence should be addressed to Changxiao Zhao; cxzhao@cauc.edu.cn

Received 20 November 2022; Revised 15 March 2023; Accepted 21 March 2023; Published 10 April 2023

Academic Editor: Binbin Yan

Copyright © 2023 Lei Dong et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the continual enhancement of the onboard avionics, the minimum flight crew has been downsized from five to two-person
crew mode, and reduced crew operation has drawn extensive attention from aviation experts. Single-pilot operation (SPO) mode
warrants careful account and research. This study investigated the intention modeling of commercial aviation single pilot based on
the bidirectional long short-term memory (BiLSTM), mining the intention tendency of pilots’ behavior through artificial
intelligence technology. This was done to avoid safety hazards caused by different intents and inconsistent operations of the
single pilot and the cockpit automation system. The classification task of a single pilot’s behavior is the core of intention
recognition. Various operation items contribute differently to the classification. To construct the interaction dataset and encode
it into time series features, a single-pilot experiment is specifically performed, wherein the experience of an expert is
summarized into single-pilot intent labels. The deep information in the feature vector of a single-pilot operation item is
captured by the BiLSTM network, and the neural weight is adaptively assigned by the training mechanism. The operation
sequence with the feature data is finally loaded into the softmax layer for intention classification. The proposed method is
evaluated against long short-term memory (LSTM), term frequency-inverse document frequency (TF-IDF), convolutional
neural network (CNN), Naive Bayesian (NB), and distributed representation’s intention modeling techniques. Because the
proposed methods have higher F1 scores, the model can effectively share real-time information about the single-pilot intention
with the cockpit automation system.

1. Introduction

Single-pilot operation (SPO) is a key research concept for
next-generation aviation technology [1]. For the SPO mode
to be as effective and of high quality as the dual-pilot oper-
ating mode, the capabilities of the avionics system must be
enhanced [2]. With the continuous development of the com-
mercial SPO concept, the collaborative flight organization
structure with automation at its core inevitably increases
the overall complexity [3], which increases safety risks.

The National Aeronautics and Space Administration
(NASA) is studying the relevant aspects of SPO [4], which
relies on developing and integrating a higher level of auto-
mation than the two-person crew mode of the past.
Recently, a decline in crew numbers in the cockpit of com-
mercial aircraft and an increase in air traffic density have

decreased aviation accident rates [5]. Automation is the
main factor addressing these challenges [6]. Despite all
stakeholders agreeing on the effectiveness of high automa-
tion on safety enhancement, they are also concerned that
extreme automation may cause profound changes in
human-machine cooperation or introduce new human
errors [7]. Automation has particularly shown many forms
of bad behavior, like automation bias [8], automation
surprise, mode confusion [9], unexplained decisions, and
decision errors [10], that have intensified stakeholders’ con-
cerns. Since SPO will necessitate increasingly autonomous
systems to carry out missions previously performed by the
copilot [11], aircraft automation is defined as a cooperator
that would act with intention. A key discovery is that con-
flicting intentions may arise from insufficient support of
partnerships between the pilot crew and aircraft automation
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[12]. The transfer and execution of control rights between
the single pilot and the cockpit automation systems will
inevitably conflict when their intended goals diverge [13].
Consequently, automation must be user-centered [14] and
adapt to the single-pilot intentions, which must establish
passive or implicit perception capabilities to encourage
pilot-automation partnership.

Human factor research has shown that because of one
flight control operator under the SPO mode, the piloting
skills and physical condition of the sole pilot directly affect
the safety of the flight. With the evolution of SPO mode
technology, automation pushes single pilots into the role of
a supervisor rather than detaching them out of control. Gen-
erally, human pilots are required to monitor the automation
partner to ensure its efficient assistance during airplane
flights. However, bidirectional monitoring forms a crucial
constituent of team collaboration, which enables the pilot
and automation partner to examine each other, similar to
interpersonal cooperation. In particular, SPO human-
machine interaction can be facilitated when real-time mon-
itoring objects are dynamically migrated between a single
pilot and an automation partner. The overall objective of
the European commission-funded project A-PiMod (apply-
ing pilot models for safer aircraft) [15] is to develop a pilot
model that enables the advanced cockpit assistance system
to learn about the single-pilot cognitive state. The critical
function performed by the automation system in charge of
supervision behaviors continues to provide feedback regard-
ing pilot cognition or intention. The automation system
must find the implicit intention data from the behavior char-
acteristics of a single pilot with time series changes, which
enables active recognition and complete understanding of
the single-pilot intention. This will support free flight ori-
ented toward the single-pilot intention.

The intention recognition process directly drives the
generation of situation awareness. Situational unawareness
may be the result of poor intention recognition. Statistics
show that human error accounts for about 70% of aviation
accidents [16]. How to avoid the potential threat caused
by action errors and perceive the unsafe decision intention
or manipulation behavior of a single pilot has hence
become one of the research goals of developing SPO mode
technology [17].

For the pilot intention modeling, the disquisition differ-
ence of relevant technical basis primarily exists in the selec-
tion of data type and study approach. Mcruer [18] examined
the pilot transfer function model based on classical and
modern control theories. The model was used to describe
actual patterns of pilot behavior. The pilot intent and error
recognition (PIER) module of the crew assistant military air-
craft (CAMA) is another method described in [19]. The
method was based on fuzzy logic algorithms, and intent rec-
ognition was first defined as classification problems. Hayashi
[20] used instrument scanning to simulate the aircraft pilot’s
attention switching behavior. To analyze the pilots’ eye-
movement statistical data, the researcher employed a hidden
Markov model (HMM). However, our focus was on the
physical interactions rather than the scanning behavior. In
[21], NASA launched a human performance modeling pro-

ject, analyzing pilot performance using five cognitive model-
ing tools. The project supports the prediction of pilot errors
and behavior. The cognitive architecture for safety critical
task simulation (CASCaS) was proposed in [22]. CASCaS
was defined as an operator model that perceives associated
intentions through discrete action sequences rather than
classifying intentions with probability. The A-PiMod pro-
ject designed a pilot model based on the adaptive automa-
tion concept in [15]. The A-PiMod assessed the pilot state
through multimodal interactions between pilots and the
cockpit. The literature suggests that to model single-pilot
behavior, a fully adaptive automated approach is required.
The HMM-based intent recognition module described in
[12] could be viewed as a knowledge engineering method
based on rules. Annotated interaction data were used to
learn the HMM parameters. The module only inferred
eight basic flight tasks, including “set flaps,” “set approach,”
and “change heading,” owing to the model’s performance
limitations.

According to a domestic and foreign research foun-
dation, the current research on pilot intention modeling
primarily focuses on system modeling and analysis veri-
fication based on classical algorithms, while there are
few studies on pilot intent recognition based on intelligent
system. The single-pilot intention is implemented through
a series of pilot manipulation behaviors that exhibit the
typical characteristics of the time sequence change. Never-
theless, the majority of the above approaches are employed
to recognize static characteristics; consequently, there is no
apparent superiority in handling process events with timing
features like aircraft piloting. With the rapid advancement
of deep learning, this study proposes an intention modeling
method for commercial aviation single pilots based on bidi-
rectional long short-term memory (BiLSTM), which treats
intention recognition as a timing classification problem.
The proposed methods, whether from the evaluation of
human-machine interaction design or the model capability,
can handle the increasingly complex challenges of aircraft
pilot intent recognition.

This study is structured as follows: Section 2 describes
the relevant theoretical basis; Section 3 provides an overview
of a single-pilot intention model; Section 4 defines the inten-
tion space and characteristics and designs the SPO test; Sec-
tion 5 details the single-pilot intention modeling method
based on the BiLSTM network; a case study is conducted
in Section 6 to demonstrate the interaction dataset and per-
form model evaluation and comparative analysis; and
finally, discussion and summary are made.

2. Preliminaries

The classification task of time series information is the core
of single-pilot intent recognition. Different data preprocess-
ing and feature capture techniques contribute differently to
the classification. Learning a vector representation for an
operation item is crucial. The one-hot vectors created using
one-hot encoding are the most used representation. Deep
learning’s BiLSTM is used to better capture the sequence
information because of the vector’s sparse feature.
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2.1. Long Short-Term Memory (LSTM). The traditional neu-
ral network model is inefficient in processing sequence
learning because it cannot explain the correlation between
the front and back of the sequence [23]. Recurrent neural
networks (RNNs) are a type of sequence learning model that
can dynamically learn sequence features. However, owing to
the gradient disappearance or the explosion problem [24],
traditional RNNs are difficult to train. In 1997, Hochreiter
and Schmidhuber proposed LSTM [25], which introduced
a gating structure and solved the aforementioned problems.
The LSTM unit diagram is shown in Figure 1.

The cell state at the time step t contains the data
that the LSTM unit learned from the previous time
steps, and the hidden state at the time step t contains
the output of the LSTM unit for the time step. The gate
structure, which does not provide information but is used
to limit the amount of information, must control the infor-
mation update of the cell state. The gate structure is a type
of multilevel feature selection technique.

The input gate it regulates the frequency of cell state
update. The forget gate f t regulates the frequency of cell
state forget. The output gate ot manages the frequency of
adding cell state to the hidden state. The cell candidate gt
is responsible for adding information to the cell state. The
formulas are as follows:

it = σg W ixt + Riht−1 + bið Þ,
f t = σg W fxt + Rfht−1 + bfð Þ,
ot = σg Woxt + Roht−1 + boð Þ,
gt = σc Wgxt + Rght−1 + bg

À Á
:

ð1Þ

In above formulas, xt is the input of the time step t. W i,
W f , Wo, and Wg are the components of the input weights
W. Ri, Rf , Ro, and Rg are the components of the recurrent
weights R. bi, bf , bo, and bg are the components of the bias
b. The σg denotes the sigmoid function, and σc denotes the
hyperbolic tangent function.

At the time step t, the cell state ct and the hidden state ht
are given by

ct = ft ⊙ ct−1 + it ⊙ gt ,
ht = ot ⊙ σc ctð Þ,

ð2Þ

where ⊙ denotes the Hadamard product.

2.2. Bidirectional Long Short-Term Memory (BiLSTM). In
the traditional RNN and LSTM model, information can only
be propagated forward, causing the state of the time step t to
depend only on the data before the time step t [23]. The
BiLSTM network is proposed to make each instant include
the data of the upper and lower time steps.

The BiLSTM network uses both forward and backward
observations to enhance performance. Thus, the BiLSTM
network concatenates the forward and backward hidden
states before passing them to the next network layer [26].
The following equation defines the corresponding calcula-

tion formulas [27] and represents the forward and backward
processes, respectively.
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When the input is ½x1, x2,⋯,xn�, the output of the for-

ward hidden state of the BiLSTM network is defined as ½h1
!,

h2
!,⋯,hn

!�, and the output of the backward hidden state of

Figure 1: The diagram of LSTM unit structure.
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the BiLSTM network is defined as ½h1
 , h2
 ,⋯,hn

 �; then, the
formula of the hidden state matrix H is

H = h1
!, h2
!,⋯,hn

! ; h1
 , h2
 ,⋯,hn

 h i
: ð4Þ

A graphical illustration of the BiLSTM network is shown
in Figure 2.

2.3. One-Hot Encoding. One-hot encoding [28] encodes N
states using N-digit status register, and the result is an
N-dimension binary vector.

Assuming that the state number of the status register is k,
the positive integer is j ∈ f1,⋯,kg, and the one-hot vector χðjÞ
is defined as a k-dimensional real column vector; there is

χ jð Þl =
1, l = j,

0, l ≠ j,

(
ð5Þ

where χðjÞl is the l-th element of the vector χðjÞ.

3. Single-Pilot Intention Model

The theoretical foundation for addressing thinking deviation
and intention inconsistency in the collaborative process
between a single pilot and cockpit automation system is the
effective modeling of single-pilot intent. To enhance the
single-pilot-automation partnership, this model was devel-
oped with reference to the European project A-PiMod.
Figure 3 shows the technical scheme block diagram for
single-pilot intention model. The human-machine multi-
modal interface (HMMI) collects real-time data on interac-
tions with the test cockpit systems. The intention inference
module provides the cockpit automation system with an ade-
quate understanding of the flight intents that the single pilot is
performing. The situation awareness assessment can detect
unsafe operation actions and develop explanatory mecha-
nisms for observed and perceived single-pilot behavior. The
cockpit risk assessment continuously provides information
about the risk for all currently single-pilot behavior. The

results of these two assessments will impact the use of a proac-
tive risk or safety tool, supporting many functions such as
cross-check of safety critical tasks, decision assistance, and
dynamic assignment of flight tasks. By applying the intention
recognition results to the assistance tool of airplane driving,
the cockpit automation system could properly alert the single
pilot in a risk status in the light of a certain flight intent to assure
that the aviator is able to precisely maneuver the airplane.

4. Single-Pilot Operation Experiment

4.1. Airworthiness Certification Requirements. According to
the in-depth analysis of the airworthiness requirements of
FAR 25.1523 “minimum flight crew,” when approving the
minimum flight crew, the airworthiness authority shall con-
sider the operational complexity and corresponding work-
load level of a single pilot under the architecture in
Figure 3. FAA TC-13/44 (flight deck controls and displays),
CAAP 5.59-1(0) (single-pilot human factors), and CAP 737
(flight crew human factors) consider the problem of human
factors in the cockpit from the aspects of human-machine
interface design and multimodal input equipment. Accord-
ing to AC25.1523, the airworthiness authority must pay spe-
cial attention when one pilot is incapacitated to work for
some reason, while the other pilot must continue to safely
fly and land the plane. The situation has implicitly adapted
to the SPO. Additionally, it is known from the flight manual
of a particular commercial aircraft that the authority and
manufacturer have established standard operating for vari-
ous flight tasks in the two-person crew operation. Flight mon-
itoring, inspection, navigation, communication, and other
functions related to the copilot in the standard operating pro-
cedures are appropriately simplified and assigned to the main
pilot for execution, and a flight simulation system is used to
conduct the SPO test. According to AC25.1523, although the
task allocation method of the SPO test will increase the work-
load of the single pilot, it can still ensure safety.

4.2. Single-Pilot Operation Test. To gather the required data
to train and validate the single-pilot intention model, we con-
ducted SPO tests in the digital experimental cockpit (DECO)
of the Civil Aviation University of China in Tianjin. The
DECO is a modular flight simulation system that can simulate
the most advanced cockpits that aircraft manufacturers are
currently producing. Figure 4 shows an image of the DECO.
DECO can fulfill the collection needs of the SPO test interac-
tive data stream after secondary development. We invited
three cadet pilots to fly simulations in the DECO. All these
participants were experienced in flying a B737-800. A series
of experimental flight scenarios have been chosen to evaluate
the single-pilot intention modeling concept. The scenarios
integrated a “theatre approach” and incorporated a variety of
task elements. Each participant flew multiple times in each
flight scenario and completed the given flight task. Each sce-
nario lasted approximately one hour, commencing with the
cockpit preparation phase and ending with the landing phase.
Before each SPO test, the participant was randomly assigned a
flight plan and required to perform several mission events
(take-off, climb, descent, etc.) in order. During the test, the

Figure 2: The net structure of BiLSTM.
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participant received random emergency alerts and was
expected to execute emergency operating procedures in
response. Both the flight path and each mission event of the
single-pilot test are indicated in Figure 5.

4.3. Single-Pilot Intention Space. The single-pilot intention
space varies with application scenarios and mission forms.
It needs to be defined together with a unique safety require-
ment of the SPO mode. For the normal or emergency oper-
ation process of the SPO mode, this study established a
single-pilot intention space including 11 types of flight
intent labels. As shown in Figure 5, these labels include
engine starting on the ground, take-off and climb, descend
approach and land, go-around, cabin altitude high and make
an emergency descent, make a forced landing, engine fire
extinguishing, engine starting in the air, pitch trim fault

recovery, aircraft hijacking, and single-pilot incapacitation.
The issue of inferring the single-pilot intentions must be
modeled and resolved in conjunction with the aforemen-
tioned flight intent labels. The aforementioned flight intent
labels can be modified to fit a particular situation, and their
quantity can be increased to meet specific requirements.
Given that in the current modeling, even if the pilot operates
according to an intention unlisted here, the model will esti-
mate either of the 11 flight intents, which is incorrect. To
enable a single-pilot intention model to reject examples from
unknown intentions while performing N-class classification
tasks [29], class (N + 1) is defined as the unknown intent
label. Despite the lack of prior knowledge about the
unknown intention, we can still use the known flight intent
labels to detect the unknown [30]. The uncertainty threshold
is defined based on the probability distribution of the

Figure 3: The technical scheme block diagram for single-pilot intention model.

Figure 4: DECO flight simulator used for dynamic interaction data acquisition.
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Figure 5: Flight diagram of commercial aircraft traffic pattern.
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softmax layer output, which further simplifies the issue of
unknown intention recognition.

4.4. Single-Pilot Intention Recognition Feature. Reviewing a
single-pilot intention necessitates using a function that enables
automation to continuously perform surveillance actions with
low costs but high benefits. This includes whether the infor-
mation source is accessible or difficult to locate, whether the
information provided is easy or hard to understand, and
whether the sampled information source is current or not
[31]. DECO’s main goal is to provide data collectors withmax-
imum flexibility, to meet the aforementioned specifications.

To control the flight of the aircraft, the sole pilot must
display a specific behavior, and the cockpit must support
the operation of the flight crew. A single pilot must interact
with the flight simulation system in certain ways, such as
“start right engine,” “autothrottle off,” “select course,” “press
TOGA,” and “landing gear DN.” These interactions are
called operation items. This study focused on 92 of these
interactions because they are essential for triggering flight
mission events and are therefore closely related to task intent
data. The operation items collected during the SPO test will
form an operation sequence that can accurately reflect the
single pilot’s decision-making intent as Y = ½yi1 yi2 ⋯ yis�,
where s is the length of the sequence.

5. Single-Pilot Intention Modeling Method
Based on BiLSTM

5.1. Vectorization of Single-Pilot Operation Item. Vectorizing
the single-pilot operation items, that is, preprocessing these
data into a format that the BiLSTM layer can directly accept
and understand, is the first step of single-pilot intentionmodel-
ing. One-hot encoding is a classical vectorization technique.

Let bðyiÞ be a positive integer index of the operation item
yi with bðyiÞ = i, i ∈ f1,⋯,92g. Suppose there is a one-hot
vector χðbðyiÞÞ, according to formula (5), there is

χ b yið Þð Þl =
1, l = b yið Þ,
0, l ≠ b yið Þ:

(
ð6Þ

According to the order of operation item yi in the oper-
ation sequence, combined χðbðyiÞÞ to generate the one-hot
matrix M, there is

M = χ b yi1ð Þð Þ χ b yi2ð Þð Þ⋯ χ b yisð Þð Þ½ �92×s: ð7Þ

Natural language processing (NLP) theory states that the
correlation increases as the Euclidean distance of a word
vector decreases and decreases as the Euclidean distance
increases. Therefore, the one-hot vector of the single-pilot
operation item also includes an implicit semantic correla-
tion. Given that the Euclidean distances between two differ-
ent one-hot vectors are always equal, there is

χ b yp
� �� �

− χ b yq
� �� � 

2
= χ b ymð Þð Þ − χ b ynð Þð Þk k2, ð8Þ

where p ≠ q,m ≠ n.

The semantic correlation between one-hot encoded single-
pilot operation items is the same. This means that the one-hot
encoding actively ignores the semantic data while primarily
preserving the time series relationship. Compared with the
distributed representation method [32], the one-hot encoding
results in a more concise expression of the operation item and
effectively creates a one-hot matrix with high representative-
ness with the operation sequence, which is more conducive
to feature capture. Figure 6 shows the visualization outcomes
of 92 single-pilot operation item vectors in low-dimensional
space using T-distributed stochastic neighbor embedding (T-
SNE). Based on the one-hot encoding technique, the distance
from the circle’s center to each single-pilot operation item is
the same, specifically as shown in Figure 6(a).

5.2. Single-Pilot Intention Model Based on BiLSTM. As a cru-
cial way in understanding a single pilot’s behavior, intention
recognition can be abstracted as intention classification. This
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Figure 6: Spatial visualization of single-pilot operation item
vectors. (a) Based on the one-hot encoding method. (b) Based on
distributed representation method.
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study uses the sequence input layer, the BiLSTM layer, the
fully connected layer, the softmax layer, and the classifica-
tion output layer to build the BiLSTM network architecture
as a classifier.

The application flow of the BiLSTM network architec-
ture is as follows: first input the one-hot matrix M using
the sequence input layer; the BiLSTM layer is then used to
capture the one-hot matrix’s timing properties in both direc-
tions and obtain a hidden state matrix H with bidirectional
long-term dependencies between operation sequence time
steps; map H to all 11 neurons in the fully connected layer,
with each neuron corresponding to a flight intent label; the
softmax layer applies the normalized exponential to calcu-
late the normalized probability scores for the 11 flight intent
labels; finally, the classification output layer outputs the clas-
sification outcome of the operation sequence’s flight intent
label. Figure 7 shows the single-pilot intention model’s
BiLSTM network architecture diagram, and Table 1 presents
an analysis of the network architecture.

The model training algorithm is shown in Algorithm 1.

6. Case Analysis

6.1. Simulation Environment. Intel Xeon Silver 4214R pro-
cessor (2.4 GHz) and 64 G of RAM serve as the experimental
hardware platform. Windows 10 operating system is the
experimental software platform, while the MATLAB R2022a
programming language is the development environment.

6.2. Dataset of Single-Pilot Intention Modeling. A data sam-
ple is obtained by the DECO interactive sensor for every
action and entered into the database. Specific time steps
can effectively present the trend of the intentions underlying
the pilot’s driving behaviors. Therefore, for every U time
step, one operation sequence sample is annotated from the
acquired time series data based on the experience of experts.
The following three principles that guided data annotation
are discussed: (1) interviewing field experts and noting oper-
ation sequences that might trigger flight intents. (2) To
determine the flight intent label of the operation sequence,
the field experts select the standard operating procedures

Figure 7: BiLSTM network architecture diagram of the single-pilot intention model.

Table 1: Analysis of the network architecture of the single-pilot intention model.

S/N Name Type Activations Learnables Description

1
sequenceInputLayer

(sequence input with 92
dimensions)

Sequence
input

92 — Input sequence data into the network.

2
bilstmLayer (BiLSTM with

32 hidden units)
BiLSTM 64

InputWeights 256 × 92
RecurrentWeights 256 × 32

Bias 256 × 1
Learn bidirectional long-term dependencies
between operation sequence time steps.

3 fullyConnectedLayer
Fully

connected
11

Weights 11 × 64
Bias 11 × 1

Create a fully connected layer with 11
neurons for the 11 flight intent labels.

4 softmaxLayer Softmax 11 —
Applies the softmax function to calculate the
probability scores for each flight intent label.

5 classificationLayer
Classification

output
11 —

Output the classification outcome according
to the probability scores.
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written by CAAC or the manufacturer. (3) Multiexpert
cross-check is used to reduce the impact of errors.

To implicitly establish the mapping relationship between
the single-pilot operation sequence and the single-pilot
intention space, this study trains the BiLSTM-based single-
pilot intention model using the interactive dataset that
DECO recorded. First, the intent label of the operation
sequence is calibrated using the knowledge engineering
method to obtain the entire dataset. The preprocessed data-
set is then input into the BiLSTM network architecture for
training to obtain the mapping relationship. In real time,
the sensor integrates one sequence sample from the gathered
single-pilot operation items every continuous T time step,
encoding the collected sequence into the trained single-
pilot intention model. The outcome of the single-pilot inten-
tion recognition is finally obtained.

The dataset contains 173 operation sequences, of which
61 are training sets, 94 are test sets, and 18 are validation
sets. The training set was used to fit the data features, the test
set was used to assess the model performance, and the vali-
dation set was used to assess overfitting [33]. An example
of the dataset is shown in Table 2.

6.3. Evaluation Indicators of Single-Pilot Intent Model
Performance. It is essential to define the evaluation indica-
tors to assess the generalization performance of this model.
Precision, recall, and F1 are the three selected evaluation
indicators.

precision = TP
TP + FP

,

recall =
TP

TP + FN
,

F1 =
2 × precision × recall
precision + recall

:

ð9Þ

TP presents the quantity of true positive examples, FP
presents the quantity of false positive examples, and FN pre-
sents the quantity of false negative examples.

6.4. Hyperparameter Setting of Single-Pilot Intent Model. By
controlling variables, the model’s hyperparameter setting
obtains the most appropriate parameter values to obtain
the best effect of a single-pilot intent classification: MaxE-
pochs, learning rate, MiniBatchSize, NumHiddenUnits,
optimization function, and loss function are the hyperpara-
meters that must be set.

6.4.1. MaxEpochs. MaxEpochs denotes the maximum num-
ber of training epochs. The generalization performance of
the model gradually improves, as the epochs increase. How-
ever, if the number of epochs is too large, it may cause an
overfitting issue. Figure 8 shows the corresponding F1 at
various MaxEpochs. According to the figure, the classifica-
tion performance F1 gradually improves as MaxEpochs
increases. F1 is relatively stable when MaxEpochs is above
25 and reaches its maximum value when MaxEpochs equals
35. Hence, the MaxEpochs is set to 35.

6.4.2. Learning Rate. The learning rate is a key parameter
that affects the speed at which the training algorithm
updates the weight. If the learning rate is too high, training
will only produce suboptimal results or diverge; if it is too
low, training time will be long. Figure 9 shows the corre-
sponding F1 at various learning rates. According to this fig-
ure, 0.002 is the best learning rate.

6.4.3. MiniBatchSize. MiniBatchSize represents the mini-
batch size. Setting MiniBatchSize determines how the
sequence data will be padded and how the F1 will be
impacted. Figure 10 shows the corresponding F1 at various
MiniBatchSizes. Figure 10 demonstrates that eight is the best
MiniBatchSize.

Input: Dataset: dataset
Output: BiLSTM Model: bilstm_model

flight_intent_labels, operation_sequences ← load dataset
intent_dictionary ← operation_sequences
for operation_sequence in operation_sequences : do

X ← wordEmbedding(intent_dictionary, operation_sequence)
y ← categorical(flight_intent_label)

end for
bilstm_model ← build_bilstm(MiniBatchSize, NumHiddenUnits, layer_size)
loss, out ← build_output(bilstm_output, in_size, out_size)
solver ← AdamOptimizer(loss, LearnRate)
for epoch in epochs: do

for MiniBatch_X, MiniBatch_y in get_MiniBatch(X, y, MiniBatchSize)
do
bilstm_model.run(loss, feed=input: MiniBatch_X, target: MiniBatch_y)
bilstm_model.run(solver, feed=input: MiniBatch_X, target: MiniBatch_y)

end for
end for
return bilstm_model

Algorithm 1: The training of the single-pilot intention model based on BiLSTM.
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6.4.4. NumHiddenUnits. NumHiddenUnits represent the
number of hidden units. NumHiddenUnits correspond to
the amount of data remembered from the sequence and
directly affect the classification performance F1. If NumHid-
denUnits are too small, the network’s learning ability will be
impaired; if NumHiddenUnits are too large, the layer is
prone to overfitting the training data. The corresponding
F1 at various NumHiddenUnits is shown in Figure 11. From
the figure, 32 is the ideal number of NumHiddenUnits.

Cross entropy is chosen as the loss function in this
model. Cross entropy, a common loss function for assessing
classification performance, lowers the risk of gradient disap-
pearance during stochastic gradient descent [34], which is
often better than the classification error rate or the mean
square error. To optimize the loss function, the Adam opti-
mizer is also selected in this model.

The optimal hyperparameter combinations are shown in
Table 3.

6.5. Simulation Results and Model Evaluation. Generally,
maneuvering-behavior changes occur in real time and are
discrete during the operation of commercial aircraft. The

one-hot encoding technique is used to preprocess the opera-
tion sequences before probabilistic classification, which is a
prerequisite for single-pilot intention prediction. Figure 12
presents the visualization result of one-hot encoding for
the second operation sequence listed in Table 2.

The BiLSTM-based single-pilot intention model is
trained for 35 epochs, and we obtain an accuracy of 96.5%
on the training sets and 94.4% on the validation sets. The
training progress diagram is shown in Figure 13. According
to the simulation results, the F1 score of the proposed model
in this study is 95.60% on the test set. A confusion matrix

Figure 8: Relationship between MaxEpochs and F1.
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Figure 9: Relationship between learning rate and F1.

Figure 10: Relationship between MiniBatchSize and F1.

Figure 11: Relationship between NumHiddenUnits and F1.

Table 3: Optimal hyperparameter combination.

S/N Hyperparameter Value

1 MaxEpochs 35

2 Learning rate 0.002

3 MiniBatchSize 8

4 NumHiddenUnits 32

5 Loss function Cross entropy

6 Optimization function Adam
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with the diagonal line representing the number of correctly
identified samples was made to further observe the relation-
ship between various intentions, as shown in Figure 14.

Based on the proposed single-pilot intent model’s net-
work architecture, deep learning training is conducted in
a sequence-to-sequence manner. The flight intent labels
of each time step of the interaction data are determined
using the newly trained model. All inputs are required in
advance to determine the flight intents at each time step
because BiLSTM also uses the input from the future to
the past. To avoid the real-time application issue, the inter-
action data are forcibly cut; specifically, each T (T = 5)
operation item sampled constitutes an entire operation
sequence and is identified, which significantly reduces the
waiting time for sampling subsequent operation items.
For comparison, a stairstep graph is drawn, as shown in
Figure 15. Calculations show that the model has a good
classification effect because the classification performance
F1 is 90.79%.

Figures 14 and 15 demonstrate that the model effectively
expresses the data, owing to the high relevance between the
current flight intent and interaction data. This corresponds
with the real situation. Figure 16 shows the label meanings
of the numbers in Figures 14 and 15.

1 2 3 4 5 6 7 8 9
0.0

0.5

1.0

Time step

Feature 16
Feature 17
Feature 18
Feature 19
Feature 20

Feature 21
Feature 22
Feature 23
Feature 24

Figure 12: Time series visualization result.

Figure 13: Accuracy and loss during training.

1 2 3 4 5 6 7 8 9 10 11 12
Predicted

1
2
3

4
5

6
7

8
9

10

11
12

Ac
tu

al

1

4
1

4

1

1

4
8

2
6

4

11
12

11
12

10

Figure 14: Confusion matrix of labels predicted by BiLSTM model
and actual labels as marked in the data.
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6.6. Analysis and Comparison of the Different Modeling
Methods on Single-Pilot Intent. The long short-term memory
(LSTM), term frequency-inverse document frequency (TF-
IDF), convolutional neural network (CNN), Naive Bayesian
(NB), and distributed representation intent modeling tech-
niques were compared with the proposed modeling tech-
nique to demonstrate its superiority. The hyperparameters
of LSTM are shown in Table 3. TF-IDF refers to the
weighted distributed word vectors with TF-IDF, which
embodies the contribution of various single-pilot operation
items to the classification task [23]. The CNN technique
employs five-sized three sliding convolution filters. Based
on known prior probabilities, Naive Bayesian methods use
Bayesian formulas to calculate posterior probabilities. The
VEC refers to the distributed vector representation created
by word2vec, which converts a single-pilot operation item
into a 9-dimensional real vector.

Figure 17 shows the F1 scores from 10 repeated simula-
tions using various modeling techniques. The F1 scores of
each method are relatively stable in multiple simulations.
The CNN, Naive Bayesian, and VEC have poor classification
performance, with F1 scoring below 65%. The F1 score

increases above 90%, under BiLSTM or LSTM, which is suit-
able for sequence modeling.

Figure 18 shows the average results of precision, recall,
and F1 of 10 repeated simulations with various modeling
techniques. The proposed method has a precision of
95.82%, a recall of 95.28%, and a F1 of 95.55%. Additionally,
the F1 scores of BiLSTM and LSTM are superior to those of
TF-IDF, Naive Bayesian, and CNN. VEC showed the worst
classification performance. A specific analysis is as follows:
(1) The LSTM model, which is marginally worse than the
BiLSTM model, can only transmit information from front
to back and cannot capture bidirectional information of
the operation sequence. (2) TF-IDF performs worse than
the LSTM model because it can only learn the features of
term frequency and inverse document frequency in the oper-
ation sequences but has no ability to learn the time series fea-
tures. (3) The one-hot matrix is a two-dimensional matrix

Figure 15: Flight intent labels detected by BiLSTM model and
actual labels as marked in the data.

1-cabin altitude high and make an emergency descent
2-descend approach and land
3-engine fire extinguishing
4-engine starting in the air
5-engine starting on the ground
6-go-around
7-make a forced landing
8-pitch trim fault recovery
9-take-off and climb
10-aircraft hijacking
11-single pilot incapacitation
12-unknown intention

Figure 16: Label meanings of the numbers in Figures 14 and 15.

1 2 3 4 5 6 7 8 9 10
0

10
20
30
40
50
60
70
80
90

100

F1
 (%

)

Run

BiLSTM

LSTM
TF-IDFCNN
NB

VEC

Figure 17: F1 scores of ten simulations for various intention
modeling methods.
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Figure 18: Comparison of simulation results between the proposed
method and other intention modeling methods.
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stacked by 0 and 1, and CNN can be used to automatically
extract features from it. The classification performance of
CNN is lower than LSTM because CNN can only extract
local information, which cannot meet the requirements of
learning presequence and postsequence association informa-
tion. (4) The Bayes formula is used in Naive Bayesian to cal-
culate the posterior probability based on the known prior
probability of the research object. The method’s classification
performance is poor because the dataset does not adhere to
the premise of the independence hypothesis. (5) Word2vec
converts an operation item into a low-dimensional real vec-
tor. Although the VEC can avoid the dimensionality curse
caused by the input of a high-dimensional one-hot vector,
it primarily contains the semantic information of operation
items and cannot contain the behavior information. There-
fore, this method is completely unsuitable for modeling flight
intent.

7. Discussion of Single-Pilot
Intention Modeling

The proposed intention modeling concept can support a
single-pilot operation. A fully adaptive approach of human-
machine coordination requires robust modeling and detailed
analysis of a single-pilot intention. The single-pilot cognitive
status confirmation may require integration between the flight
simulation system DECO and crew monitoring. This model’s
simulation output enables a thorough examination of single-
pilot task intents. Analysis of task intents demonstrates
differences in task complexity and automation assistance
requirements under different scenarios. Thus, the results of
intention recognition could serve as the basis for a cockpit
automation system to optimize human-machine coordination
and enhance cooperation based on the pilot’s intention, partic-
ularly when a single pilot’s behavior or intention is abnormal.
However, the real scenario of single-pilot intent modeling is
often more complex than the ideal one, and the impact of
real-time model performance and multimodal input on sys-
tem development remains to be discussed. The real-time
dynamic recognition of the single pilot’s intent is instructive
for aviator error action prediction and calibration. The cockpit
automation system must stand ready to offer additional safety
recommendations with reference to risks/hazards and effective
action plan. Because of the time delay of entire sequence sam-
pling, the real-time intention perception of the BiLSTMmodel
lags slightly behind the single-pilot action/sequence change.
Nonetheless, even in certain emergency operating procedures
or under difficult operating conditions, a minor delay in inten-
tion information does not typically cause severe consequences.
Thus, the proposed model can still be applied to rapidly check
and refresh the potential intents, thereby satisfying the real-
time and effective requirements of intent recognition. Further,
careful attention must be given to the techniques and mea-
sures applicable to identifying interaction. This involves
assessing the crew cognitive status via multimodal input,
such as touch, gesture, voice, and eye-tracking. The action
of gazing can directly reflect the pilot’s attention allocation
and plays a vital role in optimizing the intention inference
capacity. In the future, we plan to append eye-tracker data

as operation sequence input, which may contribute to a clas-
sification rate increase and will require extra development.

8. Conclusion

This study proposes a method for modeling a single pilot’s
intention in commercial aviation based on BiLSTM. To
identify the single-pilot intentions, we design a quantity of
experiments to extract the single-pilot operation sequence
from the flight simulation system DECO records. More
unsafe decision intentions or manipulation behaviors could
be discovered through the mining and analysis of these
single-pilot behavior data, which is significant for enhancing
the pilot-automation partnership. Additionally, the BiLSTM
model considers the time-dependent data and can determine
the classification of intentions using a feedforward neural
network and softmax linear variation. The above research
findings expose the correlation mechanism of a single pilot’s
behavior and intention coupling to a limited degree. Com-
pared with the other five single-pilot intention modeling
methods, the proposed model achieves a better effect of
single-pilot intention identification. However, theoretically,
the flight intents can also proceed in a manner with alternat-
ing actions, which involve the single pilot interrupting one
flight intent, executing another, and next resuming the pre-
viously performed flight intent. When the intent within the
operation sequence migrates, it will not only affect the rea-
soning logic of the model itself but also cause identification
confusion. These will be the upcoming significant works.
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