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Target tracking is an important application of unmanned aerial vehicles (UAVs). The template is the identity of the target and has a
great impact on the performance of target tracking. Most methods only keep the latest template of the target, which is intuitive and
convenient but has poor ability to resist the change of target appearance, especially to reidentify a target that has disappeared for a
long time. In this paper, we propose a practical multiobject tracking (MOT) method, which uses historical information of targets
for better adapting to appearance variations during tracking. To preserve the spatial-temporal information of the target, we
introduce a memory pool to store masked feature maps at different moments, and precise masks are generated by a segmentation
network. Meanwhile, we fuse the feature maps at different moments by calculating the pixel-level similarity between the current
feature map and the masked historical feature maps. Benefiting from the powerful segmentation features and the utilization of
historical information, our method can generate more accurate bounding boxes of the targets. Extensive experiments and
comparisons with many trackers on MOTS, MOT17, and MOT20 demonstrate that our method is competitive. The ablation study
showed that the introduction of memory improves the multiobject tracking accuracy (MOTA) by 2.1.

1. Introduction

The unmanned aerial vehicle is one of the most interesting
research directions at present and has a wide range of appli-
cations, such as monitoring disasters, long-range telecom-
munications, relays, Internet network services, and aerial
surveillance. Multiple object tracking (MOT) is a key tech-
nology in the field of video surveillance. The task of MOT
is largely divided into locating multiple objects, maintaining
their identities, and yielding their individual trajectories.
Depending on how the target is initialized, MOT methods
can be categorized into two types: model-free tracking
(MFT) and tracking-by-detection (TBD). The MFT frame-
work requires manually initializing a certain number of tar-
gets and then tracking them. An obvious disadvantage of the
MFT framework is that it cannot handle the case when new
objects appear. The TBD framework detects targets at each
frame and then matches the detected objects with existing
trajectories. If a target matches a trajectory, the target is a

known target. If a target fails to match any trajectory, the
target is a new target and a new trajectory needs to be initial-
ized. If a trajectory fails to match any target, the target rep-
resented by that trajectory is lost. The TBD framework is
becoming increasingly popular because it is more flexible
and accurate. We are also researching in the direction of
TBD. Our method follows the TBD framework and gives
deep insight into the multiobject tracking problems such as
deformation, scale variation, and object occlusion.

Tracking performance of the TBD method is greatly
influenced by the template, which separates the target from
the background and other objects. Most tracking research
works only keep an up-to-date template. But, the disadvan-
tage of a single template is that it has a poor ability to cap-
ture the fast shape change of the target. If the appearance
of the target has changed significantly, the current template
would fail to match the previous one. Motivated by
STMTrack [1], we extend this single-object tracking method
to multiple objects by using robust deep network features for
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the tracking targets to improve tracking performance. We also
design a memory reading and writing strategy to dynamically
model the moving target, and the dynamic model can capture
long variation features about the moving target’s appearance.
Our goal is to design a simple and practical MOT method
based on multiple templates. There are two core problems to
be solved when introducing multiple templates: what to save
in memory and how to read and write memory.

The first problem is what kind of features will be saved in
memory to model the target. Previous research works use
the deep features [2, 3], the residual map [4], and the origi-
nal raw pixels [1] of the target. These features are suitable for
SOT, because SOT only needs to separate the target from the
background and does not pay much attention to spatial posi-
tion changes. Mutual interference between targets in MOT is
frequent, so it is necessary to consider the targets’ spatial
information. We use the global feature map of the complete
image while suppressing the background features and high-
lighting the target features by adding a mask. It should be
pointed out that our method is different from STMTrack.
STMTrack is a SOT method, while ours is an MOT method
which is more challenging. STMTrack stores the original
image and the mask of the target. The features extracted by
the detection network are nonreusable, so the tracker wastes
time calculating the feature maps of the historical frame at
each moment. We save masked feature maps in memory to
avoid double deep neural network calculation. STMTrack
uses a detection network to get a rectangle mask. We use a
segmented network, so we can additionally get a segmenta-
tion mask and a minimum rectangle mask.

The second problem is how to model fast-moving tar-
gets. We design a dynamic model that can be updated by a
reading and writing memory strategy. Yang and Chan [4]
and Deng and Zheng [5] use long short-term memory net-
work (LSTM) as a memory controller. But the overall perfor-
mance of these trackers is greatly affected by the quality of
the LSTM controller. The memory reading process is to fuse
multiple templates into one template, and the key is to calcu-
late the fusion weights of each template. Inspired by the
work [1, 3], we calculate the pixel-level similarity between
the feature map of the current frame and the historical
frames as fusion weights. We use masked feature maps,
instead of extracting the feature maps after masking the orig-
inal image. Researches [6, 7] show that the target information
from the first frame and the previous frame plays a significant
role in the target location of the current frame.More templates
mean more computation, so we limit the memory length.
Additionally, we design a writing criterion so that only feature
maps satisfying this criterion would be written intomemory. It
means that the length of memory is flexible.

In summary, the main contributions of the proposed
method are as follows:

(1) We extend the STMTrack method from single-object
to multiobject tracking which uses global deep
feature maps with masks to highlight targets’ posi-
tions. This strategy greatly enhances MOT tracking
performance with only a single deep neural network
computation

(2) We design a memory reading and writing strategy to
keep the dynamic template model for moving tar-
gets. This dynamic model can represent moving
objects with big appearance variations for a long
time. And, this feature makes our multiobject track-
ing method more robust and flexible for occlusion
and fast deformation

2. Related Work

2.1. Multiple Object Tracking. Multiple object trackers focus
on tracking an unknown number of objects from a fixed set
of categories. Thanks to the powerful detection capability of
the object detector, the TBD framework has become the
standard paradigm for most state-of-the-art multiple object
trackers. It firstly uses detectors (i.e., such as Faster RCNN
[8], SDP [9], and DPM [10]) to localize all objects in the
video frames and then associates these objects together to
form trajectories [11, 12]. Due to the fact that detector per-
formance can significantly influence tracking results, some
MOT datasets, such as MOT Challenge [13–15], provide a
standard set of detections [8–10] to allow the performance
of different trackers to be fairly compared. For this reason,
the majority of MOT methods have been focusing on
improving association. The Hungarian method [16] assigns
the identity label to each detection in every frame. Due to
its high speed, it has been widely used in the past decade
[17]. Hungarian is, however, a local optimal method, and
its accuracy is not excellent. Some researchers have tried to
improve the association process with deep learning models,
such as RNN [18, 19], deep multilayer perceptron [20],
and deep reinforcement learning agents [21, 22]. Milan
et al. [14] used an RNN to predict the probability of the exis-
tence of a track in each frame. This helped with the decision
of when to initiate or terminate the track. Kieritz et al. [20]
took the track score at the previous step and various kinds
of information (like association score and detection confi-
dence) about the last associated detection as inputs to an
MLP with two hidden layers, and the output track confi-
dence score was then utilized to manage the termination of
tracks. Rosello and Kochenderfer [21] used multiple deep
RL agents to manage the various tracked targets, deciding
when to start and stop tracks and influencing the operation
of the Kalman filter. Training a detection network and an
association network separately is very computationally inten-
sive and slow in inference, so some works [23–25] try to build
a unified multitarget tracking framework. It is becoming
increasingly popular to use transformer architecture [25] for
visual object tracking [26–28]. To achieve this, an encoder
with self-attention is first adopted, and then, a decoder with
cross-attention replaces the learnable query features with the
previously detected object features. Although it has proven
to be powerful and inspiring, the transformer-based approach
falls far short of real-time requirements.

2.2. Memory Networks. Because many tasks in natural lan-
guage processing (NLP) are very concerned with continuity,
memory networks were first proposed in the NLP field, such
as question answering [29], dialogue systems [30], and text
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generation [31]. They are composed of common neural net-
works and memory components that store historical informa-
tion. Subsequently, memory networks were introduced to
other fields with success, such as shot learning [32, 33], video
object segmentation [7, 32], and action recognition [34, 35].

Recently, some tracking methods also use memory net-
works to enhance the representation ability of objects. Mem-
Track [13] reads a residual template from the memory
network and combines it with the initial template to yield
a synthetic template as an updated representation of the
target. Later, an improved version was proposed [36]. A
negative memory unit is used that stores distractor templates
to cancel out wrong responses from the object template, and
an auxiliary classification loss is designed to facilitate the
tracker’s robustness to appearance changes. The reading
operation is controlled by an LSTM controller, so the quality
of the LSTM will greatly affect overall performance.
STMTrack [1] retrieves historical information with the guid-
ance of the current frame and adaptively gets all it needs.
SAMN [2] exploits an appearance memory network to cap-
ture stable appearance information and a spatial memory
network to extract position information. These works focus
on single-object tracking (SOT), and the following multiob-
ject tracking (MOT) methods are also worthy of attention.
MeMOT [37] refers to the encoder and decoder structures
of the transformer. The encoder extracts the core informa-
tion from the memory for each tracked object. The decoder
solves the object detection and data association tasks. MeToS
[3] first creates tracklets using instance segmentation and
optical flow and then associates the tracklets with a space-
time memory network. Inspired by STMTrack [1], our
method stores masked feature maps in memory and calcu-
lates the pixel-level similarity between the feature maps
between the current frame and historical frames. We do
not simply transfer this SOT method to the MOT method
but improve the utilization of the target’s features. Firstly,
we save the feature maps instead of the original images. Sec-
ondly, we use the mask generated by segmentation instead of
the rectangular box. Finally, we directly calculate the similar-
ity between feature maps, instead of extracting the features
of each target and then calculating the similarity, which
maximizes the exploit of the feature extraction network.

2.3. Instance Segmentation and Tracking. Instance segmenta-
tion is closely related to object detection. A classical frame-
work is adding a parallel branch for predicting object
masks with bounding boxes to the detection branch. Because
it usually provides a more accurate representation of the tar-
get, segmentation-based tracking has become increasingly
popular. Many multiobject tracking methods adopt the
MOTS paradigm, which creates tracklets from segmentation
masks and then builds long-term tracks by merging the
tracklets [38]. As a result of all their observations and hierar-
chical clustering, ReMOTS [38] associates tracklets with
those that are temporally close and have similar appearance
features without any temporal overlap. Choudhuri et al. [39]
compute the top-k detection assignments between the con-
secutive frame pairs using the Hungarian-Murty algorithm
[40], then use dynamic programming to obtain a globally

optimal minimum-cost path, and finally uncover long-
range assignments in a postprocessing step via an assign-
ment formulation over the space of the track. TrackRCNN
[23] extends Mask R-CNN by an association head to return
an embedding for each detection. MOTSNet [41] proposes a
mask pooling layer to Mask R-CNN [42] to improve object
association over time. MeNToS [3] associates temporally
close segmentation masks between consecutive frames by
computing the optical flow; then, an appearance similarity
is computed by a memory network. Finally, the tracklets
are gradually merged starting with the pair having the high-
est similarity while respecting the updated constraints. Mask
R-CNN [42] is the most used instance segmentation method
in MOTS [38, 43]. Some trackers [23, 41] have been
improved to make them more suitable for tracking tasks.
TrackRCNN [23] extends Mask R-CNN with 3D convolu-
tions to incorporate temporal information and extracts
instance embeddings for tracking by ROIAlign. MOTSNet
[41] adds a tracking head (TH) that runs in parallel with
the region segmentation head (RSH). Other segmentation
methods are also used. GridShift [44] presents an extended
variant of mean shift, which speeds up by employing a
grid-based approach to neighbor search and moving the
active grid cells in place of data points toward higher density.
D3S2 [45] applies two target models with complementary
geometric properties, one invariant to a broad range of
transformations, including nonrigid deformations, and the
other assuming a rigid object, to simultaneously achieve
robust online target segmentation. Our work adopts the
TBD paradigm, focusing on how to make full use of segmen-
tation features. To retain location information, we do not
use the binary classification features in the segmentation
branch, but the features output from the backbone network.

3. Proposed Method

We present a practical multiobject tracking approach
equipped with a memory network. In this section, we first
give an overall introduction to our algorithm based on the
architecture graph (Figure 1) and then describe each module
in detail.

3.1. Architecture. Given a sequence of video frames, the goal
of MOT is to localize a set of objects while following their
trajectories. Our tracking framework is based on the TBD
paradigm, in which objects are first detected in each frame
and then associated over time to form trajectories. In actual
processing, we generally predict the targets P = P1, P2,⋯,
PM in the current frame and then match the predicted tar-
gets with the detected targets D = D1,D2,⋯,DN .M and N
do not exceed a set threshold. The essence of this problem is
M ×N bipartite graph matching. Different from most exist-
ing methods that use a fixed template or the latest template
to predict the current state of objects, we use multiple feature
maps of each target in the memory pool. Now, our issue is
extended to a more complex M × L ×N graph matching
problem, where L is the memory length. For simplicity, we
fuse multiple templates of each target into a synthesized
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template, which is also a common practice of object trackers
with memory networks.

Specifically, as shown in Figure 1, the architecture con-
sists of five components: (1) a memory module maintains a
flexible number of masked feature maps for each target. (2)
An object detection module detects objects in the current
frame with a segmentation network and provides their fea-
ture maps, masks, and bounding boxes. Notice that the fea-
ture map is the multichannel feature of the whole image
rather than the feature of each target, and the mask is a
binary map for each target. (3) A feature fusion module fuses
multiple masked feature maps of every target into one fea-
ture map according to the feature map of the current frame.
This part is the key point that distinguishes our method
from single template methods. Detailed process will be
described in Section 3.2. (4) A data association module
matches the existing objects with the detected objects.
(5) A visualization module shows tracking results with the
type of segmentation, vertical bounding boxes, or tilted
bounding boxes.

3.2. Segmentation-Based Detection. We use Mask R-CNN
[42] with a feature pyramid network (FPN) [46] backbone
as the segmentation network, shown in Figure 2. Firstly,
the FPN extracts multiple feature maps of the same size from
the original image. Then, the region proposal network
(RPN) takes the feature maps as input and outputs a set of
rectangular object proposals. Next, the ROIAlign layer
ensures alignment between the RoI and extracted features.
Finally, a mask branch network calculates the mask of each
target, and the predicted branch network calculates the
bounding box and category. The network outputs three
results: the feature maps of the input image, the mask, and
the bounding box coordinates of each target. To preserve
spatial location information, we use the feature maps of
the whole map, rather than the feature maps of the ROI
region. Meanwhile, different masks are used on the feature
maps to discriminate each target from its surroundings.

3.3. Feature Fusion. As mentioned in Section 3.1, we need to
fuse the historical feature maps with the same size as the fea-
ture maps of the current frame. The usual way is to calculate
the weight at different moments, the weight of different
channels, or the weight at different pixels. Since we use
high-precision segmentation features, we chose the last
approach to fully utilize them. Figure 3 illustrates the feature
fusion process of a target. The historical feature maps are
denoted as f ∈ RTHW×C, where T is the number of memory
frames, C is the number of channels, and H and W represent
the height and width of the feature map, respectively. The fea-
ture maps of the current frame are denoted as q ∈ RC×HW . For
the convenience of matrix multiplication in math, we reshape
f from T × C ×H ×W to THW × C and reshape q from
C ×H ×W to C ×HW; thus, here, THW = T ×H ×W
and HW =H ×W.

Inspired by [47], we compute the similarity between
every pixel of the historical feature maps f in memory and
every pixel of the current feature maps q to obtain a similar-
ity matrix w ∈ RTHW×HW . The similarity of the i-th pixel on f
and the j-th pixel on q is computed as follows:

wij =
exp f i⨀qj /s

∑∀kexp f k⨀qj /s
, 1

where the binary operator ⨀ denotes vector dot product.
Following [25], to prevent the exp function from overflow-
ing numerically, we add a scaling factor s. Here, s is set to
C, where C is the feature dimensionality of f . Then,

the i-th element of g is a weighted sum of the i-th element
of each historical feature map:

gi = f i
T⨂w, 2

where f i
T ∈ RC×THW is the transpose of f i and ⨂ denotes
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Figure 1: The architecture of our proposed method.
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matrix multiplication. Obviously, g has the same dimensions
with q.

3.4. Data Association. Here, we adopt the simple but practi-
cal Hungarian algorithm [48] to find the association between
the detected targets and the known targets. Notice that we
obtain feature maps of the whole frame and masks for every
target in the detection step. So the feature maps of each tar-
get Pi can be easily obtained by multiplying the feature maps
of the current frame f with the target’s mask. There are three
results for matching. (1) For a matched target, if a detected
target matches an existing target, we consider it as a known
target and update the feature maps in memory. (2) For a new
target, we consider a detected target to be a new target if it
does not match any existing target. (3) For a missing target,
if the existing target does not match any detected target, we
consider the target to be lost and retain its template for a
period of time. Next, we will update the memory based on
the matched results as well as display the tracking results.

3.5. Memory Update. In general, the more templates you use,
the more feature information of the target will be available,
but the more computation you will need to do. Memory
length design and memory writing control are challenging
issues. For each target, we store up to L feature maps.
According to existing work [49, 50], the first frame informa-

tion and previous frame information play an important role
in determining the current frame’s target location. Specifi-
cally, the target from the first frame provides the most reli-
able information, and the previous frame has the most
similar appearance to the target in the current frame. For
the left L − 2 feature maps, we tend to choose features that
are salient, so we limit the similarity, and only feature maps
with a similarity less than a threshold are retained in the
memory. Our memory-updating strategy is summarized
below. When a new target appears, we save its masked fea-
ture map in memory. For subsequent frames, we first save
its masked feature maps, then calculate the similarity of the
feature maps between each intermediate frame and the ini-
tial frame and the current frame, and sort these similarities
in descending order. If the similarity is greater than a thresh-
old, the feature maps at that moment are removed. If the
memory size is exceeded, the earliest feature maps are
discarded (except for the initial frame). If a target is lost in
K consecutive frames, all its feature maps will be deleted.

3.6. Visualization. Instance segmentation is suitable for
detecting targets with variational shapes. In this paper, we
use the high-precision Mask R-CNN as the segmentation
network. It is easy to get the minimum bounding box of
the target according to the mask. Most MOT methods only
output vertical rectangular bounding boxes, but our tracker
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ROI align
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Mask branch

Mask

Box
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RPN

Figure 2: The architecture of segmentation network. Light green boxes (feature maps, mask box) are the results to be output.
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Figure 3: The process of feature fusion.
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can also provide tilted boxes and masked targets. Figure 4
shows the three styles of tracking results. Clearly, the results
in the last column show tilted targets. When the shape of the
target changes only slightly, it is reasonable to use the mini-
mum bounding box to approximate the rotation angle of the
target. If the shape of the target changes sharply, such as
gymnasts, it is meaningless to estimate the rotation angle
because of the lack of a comparison basis.

4. Experiments

In this section, we present the tracking results of our method
on two common and challenging MOT benchmarks,
namely, MOT17 [14] and MOT20 [15].

4.1. Experimental Setup

4.1.1. Dataset. The MOT17 [14] and MOT20 [15] are the
most popular benchmarks for multiple object tracking,
which mainly focus on the task of pedestrian tracking in
dense scenes. The MOT17 [14] contains 7 scenes of indoor
and outdoor public places. The video of each scene is sepa-
rated into train set and test set. To exclude the influence of
different detectors on the tracking results, three sets of
publicly available detections with varying quality are pro-
vided, namely, DPM [10], Faster R-CNN [8], and SDP [9].
MOT20 contains 8 new scenes with much more crowded
targets, and the types of targets are not only pedestrians
but also cars, bicycles, etc. There is only one public detector
available: Faster R-CNN. MOTS [23] is a multitarget track-
ing and segmentation dataset, with only two types of targets,
pedestrians and cars, with a total of 8 scenes.

4.1.2. Metrics. The MOT index uses the CLEAR index [51]
and other track quality indexes [52] to evaluate tracking per-
formance, such as MOTA, IDF1, MT, ML, FP, FN, IDS, and
Hz. MT indicates mostly tracked targets and measures the
ratio of ground-truth trajectories that are covered by a track
hypothesis for at least 80% of their respective life span. ML
indicates mostly lost targets and measures the ratio of
ground-truth trajectories that are covered by a track hypoth-
esis for at most 20% of their respective life span. FP indicates
the total number of false positives. FN indicates the total
number of false negatives (missed targets). IDS indicates
the number of identity switches. MOTA indicates multiob-
ject tracking accuracy, which is the result of comprehensive
FP, FN, and IDS. IDF1 indicates the IDF1 score, which mea-
sures the ratio of correctly identified detections over the
average number of ground-truth and computed detections
measured. In these metrics, MOTA and IDF1 are generally
considered to be the most significant. The commonly used
evaluation indexes of MOTS include sMOTSA, MOTSA,
and MOTSP. sMOTSA (mask-based soft multiobject track-
ing accuracy), which is a soft version of MOTSA, accumu-
lates the mask overlaps of true positives instead of only
counting how many masks reach an IoU of more than 0.5.
MOTSA indicates mask-based multiobject tracking accu-
racy, which is a variant of MOTA, evaluated based on mask
overlap (mask IoU). MOTSP indicates mask overlap-based
variant of multiobject tracking precision, which is a variant

of MOTP, evaluated based on mask IoU instead of bounding
box IoU.

4.1.3. Training. We use an FPN background to Mask R-
CNN and pretrain it on COCO [53] and Mapillary [54].
To increase the diversity of training examples, we adopt a
random radiation transformation strategy for data augmen-
tation. The translation is randomly performed from −0.15 S
to 0.15 S, and the resizing scale varies between [0.8,1.2].
Here, S is the cropping size, and we set S to the scale of 4
times the target bounding box. The net was trained for 40
epochs with 1000 iterations per epoch, and the learning rate
set of ADAM is set to 10−3 and with 0.2 decay every 15
epochs. We implement the segmentation net in PyTorch
and train it on 2 GeForce RTX 3090 Ti GPUS. Each batch
has 96 images (each GPU holds 48 images).

4.2. Benchmark Results

4.2.1. MOTS. We first evaluate our method on MOTS [23],
and the results are shown in Table 1. The selected trackers
are published and peer-reviewed. The symbols “↑” and “↓,”
respectively, mean the higher the better and the smaller the
better. The top two best results are highlighted in bold.
The performance of our method is not outstanding, and
the most critical metric, sMOTA, scores only 61.6, which
ranks in the middle. The intrinsic reason is that MOTS
metrics measure the combined effect of segmentation and
tracking, and most MOTS methods focus on improving
the quality of segmentation and tracklet association. In con-
trast to these trackers, our motivation is to take advantage of
multiple historical feature maps, focusing on memory read-
ing and writing. Thus, we use the Mask R-CNN method and
the Hungarian algorithm as the basic models of segmenta-
tion and data association. Our method is naturally unfeasible
in comparison to these well-designed MOTS methods. For
the subsequent analysis, we will compare it with the methods
in the MOT Challenge.

4.2.2. MOT17. The most important difference between the
MOTS methods and the MOT methods is that the MOTS
methods use a mask image to represent the target, while
the MOT methods use a rectangle image. Clearly, it is easy
to get the rectangle bounding box according to the mask
for a MOTS method, so the MOT metrics can also be
applied to MOTS methods. At first, we evaluated our tracker
against state-of-the-art for multiple objects tracking on the
MOT17 dataset. For a fair comparison, we chose methods
that use private detectors and have been published in
MOT17. The tracking performance is shown in Table 2.
We provide two sets of results of our method, one using
the segmentation mask (ours_seg) and the other using the
rectangle mask (ours_rec). As we can see, our method
achieves the best and the second best score in most metrics.
Although the speed of our method is not the fastest, consid-
ering that we use the feature map of multiple images, this
speed is still satisfactory.

4.2.3. MOT20. Under the same experimental conditions, we
evaluated our method on MOT20, and the results are shown
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in Table 3. Similar to the results on MOT17, our tracker
achieves high scores in most metrics except for IDS and
Hz. As the targets in MOT20 are more crowded and harder
to track, it is normal that the scores on MOT20 are less
impressive. The MOTA scores of {TransCenter [61], LMOT
[66], MOTPrivate [61], ours_rec, ours_seg, XJTU [65], LCC
[64]} decrease by {14.7, 12.9, 12.7, 5.7, 5.4, 3.9, 2.8},
respectively.

4.3. Ablation Studies. To further explore the characteristics
of our approach, we conducted more experiments on
MOT17 with ours_seg.

4.3.1. Memory Length and Template Filtering. To explore the
impact of memory size and template filtering on tracking, we
conducted multiple experiments on MOT17. We tested two
models with different memory writing methods, filtering
similar templates (ours_seg) and not filtering similar tem-
plates (ours_seg_nf). Five sets of experiments were carried
out for each model, and the memory size ranged from 1 to
5. If the memory size is 1, we only save the feature map of
the latest frame. If the memory size is 2, we save the feature
maps of both the initial frame and the latest frame. If the
memory size is greater than 2, the ours_seg model filters
similar templates, but ours_seg_nf does not filter similar

Original Segmentation BBox Minimum
BBox

(a)

(b)

Figure 4: Three styles of tracking results with our proposed method in different scenes. The columns from left to right are the original
image, segmentation result, bounding box, and minimum bounding box.

Table 1: Tracking results on MOTS.

Tracker sMOTA↑ IDF1↑ MOTSA↑ MOTSP↑ IDS↓

ReMOTSv2 [55] 70.4 75.8 84.4 84.0 229

EMNT [56] 70.0 77.0 83.7 84.1 261

MAF_HDA [57] 69.9 67.0 83.8 84.1 401

OPITrack [58] 63.5 45.4 75.5 84.6 342

MPNTrackSeg [59] 58.6 68.8 73.7 80.6 202

SORTS [60] 55.0 57.3 68.3 81.9 552

TrackRCNN [23] 40.6 42.4 55.2 76.1 567

Ours 61.6 62.3 74.9 82.2 256

Table 2: Tracking results using private detectors on MOT17.

Tracker MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓ Hz↑

TransCenter [61] 73.2 62.2 960 435 23112 123738 4614 1.0

LMOT [62] 72.0 70.3 1068 408 28113 126704 3071 28.6

MOTPrivate [61] 70.0 62.1 915 480 28119 136722 4647 1.0

TraDeS [63] 69.1 63.9 858 507 20892 150060 3555 66.9

LCC [64] 68.8 70.2 960 417 38457 135006 2805 0.9

XJTU [65] 68.2 64.6 924 570 24747 152388 2262 99.2

ours_seg 72.3 70.8 986 394 24979 126584 4738 26.5

ours_rec 72.1 70.4 967 412 25135 127404 4801 26.6
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templates and keeps the most recent few templates. MOTA
and FPS are used as metrics for accuracy and speed, respec-
tively. As shown in Table 4, increasing the number of refer-
ence frames does not always improve the MOTA score, but
it does decrease speed. When the memory size exceeds 2,
the MOTA score barely changes, so the optimal value of
memory length is 3. By comparing the results of ours_seg
and ours_seg_nf, we can see that filtering similar templates
has no significant effect on MOTA but can significantly
improve tracking speed. It should be noted that in multitar-
get tracking, new targets may appear at any moment, so the
number of templates for each target is not strictly equal. This
means that memory size limits the maximum number of
templates, and these metrics are statistical values.

4.3.2. Segmentation Mask vs. Rectangle Mask. Because global
feature maps are used, in order to avoid introducing too
much background information, we exploit masks to
highlight the target. We design two kinds of masks, the
segmentation mask and the rectangle mask. Segmentation
masks filter foreground information, and rectangle masks
filter local information containing background information.
Which one is better? Table 5 shows the results. As we can
see, the segmentation mask performs slightly better than
the rectangle mask. Compared with the results in Table 4,

the influence of background on feature maps is not very
significant.

4.3.3. Matching Strategy of Tracking Boxes. In the association
step of the TBD-based MOT method, the detected objects
are matched with known targets. The known targets are
usually the targets in the previous frame or the predicted tar-
gets in the current frame. We set up three groups of experi-
ments. The first group is ours_rec, which locates the target in
the current frame using historical information. The second
group predicts the target in the current frame with its
bounding box in the previous frame. The third group just
used the target in the previous frame. Table 6 shows the
results of different tracking boxes on MOT17. It can be seen
that our method is better than the “current” group, and the
“current” group is better than the “previous” group. This
shows that our method is much more accurate at predicting
the targets’ location.

4.3.4. What Is the Bottleneck of Accuracy? In Section 4.2, we
notice that our method has a higher IDS score than other
methods, while we get the second-best MOTA score. With
the high accuracy of the segmentation network, we have a
lower probability of identifying the target incorrectly, thus
lowering the number of false positives (FP) and false nega-
tives (FN). Table 7 shows the statistics of false recognition.

Table 3: Tracking results using private detectors on MOT20.

Tracker MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓ Hz↑

LCC [64] 66.0 67.0 699 165 43938 129584 2237 0.2

RekTCL [66] 65.2 70.1 761 131 61209 114709 4139 22.4

XJTU [65] 64.3 66.6 626 174 40780 140565 3379 33.0

LMOT [62] 59.1 61.1 312 286 13526 196673 1398 22.4

TransCenter [61] 58.5 49.6 603 185 64217 146019 4695 1.0

MOTPrivate [61] 57.3 46.7 444 223 42271 173903 5014 1.0

ours_seg 66.9 69.7 821 154 37297 128974 5075 20.3

ours_rec 66.4 68.5 836 161 38315 130160 5124 20.2

Table 4: The performance of memory length and template filtering on MOT17.

1 2 3 4 5

ours_seg
MOTA↑ 70.2 71.6 72.3 72.4 72.1

FPS↑ 35.1 29.5 26.5 21.6 15.9

ours_seg_nf
MOTA↑ 70.2 71.6 72.4 72.3 72.2

FPS↑ 35.1 29.5 22.5 15.2 10.1

Table 5: The performance on segmentation mask and rectangle mask.

Dataset Tracker MOTA↑ FP↓ FN↓ IDS↓

MOT17
ours_seg 72.3 24979 126584 4738

ours_rec 72.1 25135 127404 4801

MOT20
ours_seg 66.9 37297 128974 5075

ours_rec 66.4 38315 130160 5124
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IDS is undoubtedly the bottleneck of multiobject tracking
accuracy (MOTA) in our method. In other words, data asso-
ciation greatly affects overall performance. Since we use the
Hungarian algorithm [48], there is much room for improve-
ment in the future.

4.4. Discussion. In this section, we evaluate our approach to
the popular MOT Challenge dataset. While our overall per-
formance in MOTS was poor, our trials on MOT17 and
MOT20 showed that our approach was competitive. Accord-
ing to the ablation study, the following conclusions can be
drawn: (1) Memory contributes the most to tracking. From
Tables 4 and 6, we can see that when we use the memory
network, MOTA will improve by about 3 points. This indi-
cates that the fused feature can better represent the target
than the original feature. Using a split or rectangular mask
has an insignificant impact on overall performance. (2)
Tracking performance is not always better when the length
of memory is longer. Because the mask contains the position
of the target in the image, too many reference frames will
introduce a large amount of outdated spatial information.
This will adversely affect the estimation of the target
position. (3) Data association is the bottleneck. Our starting
point is to design a mechanism that can use target information
in multiple frames. Therefore, in terms of data association,
we adopt the basic method without further optimization,
which has a significant impact on the performance of mul-
titarget tracking.

5. Conclusion

The aim of the present research is to improve the adaptability
of objects to template changes, thereby improving multiobject
tracking performance. Our solution is to introduce dynamic
multiple templates, the core of which is the reading and
writing of memory. We store high-precision masked feature

maps in memory, which are obtained from a segmentation
net. Feature fusion is performed by computing the pixel-level
similarity between the historical feature maps and the feature
maps of the current frame. To alleviate the meaningless com-
putation caused by similar features, we filter the feature maps
in memory. Experiments on MOTS, MOT17, and MOT20
demonstrate that tracking is conducive to the number of
templates increasing. But more templates would slow down
tracking and introduce more unimportant target information
that leads to poor tracking performance. How to select some
representative templates from long time frames should be a
critical issue in multitarget tracking research. Our work pro-
vides a way to exploit multiple templates inMOT and contrib-
utes to a better understanding of the relationship between
tracking and templates. The major limitation of this study is
the data association step. We use the basic Hungarian algo-
rithm to solve this problem. Integration of data association
into an end-to-end neural network and solving the tracking
problem as a whole would be a good idea. It would be our
future work focus.
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