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Dual numbers were applied to the dynamics of a rigid-flexible combination system (RFCS) with time-varying configuration in this
paper. The six-dimensional spinor form of the motion of flexible modules, including the dual vector, dual momentum, dual inertia
operator, dual coupling coefficient operator, and dual-modal coordinates, was derived using the dual numbers that could represent
spiral motion in a compact form. On this basis, the integrated dynamic model of a rigid-flexible combination system with a time-
varying configuration was proposed. And then, the relative dynamics equations between two rigid-flexible combination systems
which both have time-varying configuration were provided. An on-orbit assembly mission of flexible modules transported and
operated by free-flying space robots (FFSRs) is presented as an exemplary application of relative dynamics. Simulation results
illustrate the complex coupling effects on the relative motion between two rigid-flex combination systems with time-varying
configuration.

1. Introduction

FFSRs present great potential for on-orbit assembly missions
[1–6]. The implementation of in-space assembly using FFSR
can be divided into three stages. The first step is module cap-
ture [7], which means that FFSR captures the module
through the capture device; the module and FFSR constitute
a combination system. The second step is module transpor-
tation [8]. The module is transported to the desired position
and integrated through combination systems with large
translational and rotational maneuvers. The last step is mod-
ule docking [9]. The adjacent modules are ultimately con-
nected together through docking mechanisms, achieving
structural growth. In this paper, the dynamics of module
transportation using FFSR are investigated.

Since the initial motion state of the module, including
the attitude and position, is unknown during the capture
process, one of the key mission requirements in the mod-
ule transportation process is to adjust the postcapture con-
figuration of the combination system. The aim of the

above configuration adjustment is to prepare the best pose
for assembly. Several dynamic modeling methods of the
operation of free-floating rigid bodies have been proposed.
Liu et al. [10] derived the capture and postcapture dynam-
ics equations for the operation of a noncooperative space
target by using FFSR. In this model, the influence of the
contact force between the FFSR and the assembly module
on the whole system motion was considered while catch-
ing a floating rigid body. Cyril and Chau et al. [11, 12]
have investigated the dynamics for catching and operating
a rigid body by assembly robots. In Refs. [13–16], the atti-
tude dynamics of the combined systems consisting of a
rigid service robot, a rigid target, and two rigid space
manipulators were investigated. Li et al. [17] improved
the attitude dynamics of the combined systems with flexi-
ble manipulators by considering the vibration influence on
the motion of the whole system. The solutions obtained by
the dynamics model mentioned above can handle a large
number of motion description problems in space-
capturing and postcapturing missions.
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Another mission requirement of the module transporta-
tion process is to quickly transport the modules to the
desired positions for integration by using FFSR. The founda-
tion for meeting this requirement is to establish an accurate
and engineering-applicable relative dynamics model for
assembly robots. A lot of work has been done to describe
the relative motion between two spacecrafts. The initial
research on relative dynamics between two spacecrafts was
investigated based on Newton’s second law [18]. This rela-
tive equation was followed and improved upon by Clohessy
and Wiltshire [19], who proposed the relative dynamics
model in a simple form known as the C-W equations when
the leader spacecraft is deployed in a circular orbit. After-
wards, Brodsky and Shoham [20] proposed a translation and
rotation coupling dynamic model based on a dual quaternion.
In the space station rendezvous and dockingmission, the same
integrated dynamic model was used to guide and control the
spacecraft [21]. The above research on relative dynamics
focuses on rigid bodies. Specifically, the object of capture and
control is a rigid body, and the assembly robot is also a rigid
body. However, in order to save mission time and improve
robot work efficiency, in on-orbit assembly missions, structure
modules are often designed with large dimensions and a light
weight [22]. This design results in structural modules exhibit-
ing flexible characteristics. The rigid-flexible coupling effect
must be taken into consideration during module transporta-
tion by rigid FFSR. Sun et al. and Zhang et al. [23–25] pro-
posed the relative dynamics between two rigid-flexible
coupling spacecrafts for an in-space assembly mission, which
considered both the engineering application advantages of
rotating reference and the compactness representation advan-
tages of dual numbers. The current achievements focus on the
relative dynamic modeling of rigid bodies or RFCSs with sta-
ble configuration.

Generally speaking, these two actions, configuration
adjustment and module transportation, can be carried out
separately. However, in order to improve the efficiency of
the on-orbit assembly mission, achieving the two actions at
the same time is a better choice, that is, integrated motion.
The equations proposed in this paper are to describe the
complex coupling dynamics of this integrated motion based

on dual quaternion. The main contributions of this paper
are summarized as follows:

(a) The dual momentum and the dynamics model for
RFCSwith time-varying configuration were developed

(b) The relative dynamics equations between two RFCSs
with time-varying configuration were proposed

The organizational structure of this paper is as follows.
The application scenarios, coordinate systems, and model-
ing assumptions were introduced in Section 2. Section 3
developed the six-dimensional spinor of the flexible
modules motion, and the dynamic model of RFCS with
time-varying configuration was established. Then, in Sec-
tion 4, the relative dynamics model between two RFCSs
with time-varying configuration was established, and the
coupling effect of the on-orbit assembly was analyzed. In
Section 5, the simulation results of the integrated model
proposed in this paper are presented. Finally, Section 6
provides the conclusion of this article.

2. Application Scenarios, Coordinate Systems,
and Modeling Assumptions

The application mission scenario was designed to be flexible
modules postcapture operation and transportation by rigid
FFSRs to a preassembled configuration. As shown in
Figure 1, the RFCS b consists of a flexible module and a
FFSR; the flexible module and FFSR are connected by the
capture device. In this paper, the capture device was assumed
as a three-degree-of-freedom rotary pair; that is, the flexible
module could perform a three-degree-of-freedom relative atti-
tude motion relative to FFSR. In the on-orbit assembly mis-
sion, two actions were carried out at the same time for RFCS
b, that is, configuration adjustment action and module trans-
portation action. The configuration adjustment action is to
prepare the best pose for assembly through the three-degree-
of-freedom relative rotation between the flexible module and
the FFSR. The module transportation action is to transport
the flexible modules to the desired locations near RFCS a for
integration. Figure 1 describes the in-space assembly mission
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Figure 1: Mission system.
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and the coordinate systems. The following four coordinate
systems are used in this paper:

(a) Earth-centered inertial (ECI) coordinate system
oI − xIyIzI . The +z and +x axes of the ECI coor-
dinate system point at the north pole of the Earth
and the vernal equinox, respectively. +y axis com-
pletes the right-hand set

(b) Body-fixed (BF) coordinate system of RFCS a
oa − xayaza. The origin of the BF coordinate system
of RFCS a locates at the connection point between
the module and FFSR. The +x and +z axes point at
the relative measuring sensor and the module,
respectively. +y axis completes the right-hand set

(c) Body-fixed (BF) coordinate system of RFCS b
ob − xbybzb. The origin of the BF coordinate system
of RFCS b locates at the connection point between
the module and FFSR. The +x and +z axes point at
the relative measuring sensor and the module,
respectively. +y axis completes the right-hand set

(d) Floating coordinate system of RFCS bon − xnynzn.
The origin of on − xnynzn coincides with the BF
coordinate ob − xbybzb, and at the initial moment,
the three-axis coordinate direction of on − xnynzn
coincides with the BF coordinate system ob − xbyb
zb. The difference is that the floating frame, on − xn
ynzn, is a flexible module follow-up coordinate
system

In this paper, at the initial moment, the origin and
three-axis coordinate direction of the BF coordinate sys-
tem of RFCS b coincide with the floating frame of RFCS
b. This construction of the coordinate system can simplify
the calculation of the dual momentum of RFCS with a
time-varying configuration. Detailed calculations can be
found in Section 3.2.

The integrated dynamic model of a rigid-flex combina-
tion system with time-varying configuration based on dual
quaternion was derived under the following assumption.

Assumption 1. Compared to the size of the module and
FFSR, the vibration displacement of the module is a small
amount.

3. Dynamics of RFCS with Time-
Varying Configuration

A dual quaternion is a dual number with each element of the
dual a quaternion, that is q̂ = q + εq′, where q and q′ are
both quaternions. ε is the dual unit defined as ε2 = 0 and ε
≠ 0. The spacecraft dynamic model expressed in dual qua-
ternion can be expressed in the same mathematical frame-
work, which makes the representation of the relative
dynamic model compact. This model is generally known as
the integrated dynamic model. The compactness of repre-
sentation is positively correlated with the computational effi-
ciency of the relative dynamic model.

3.1. Motion of Flexible Module. The finite-element principle
is a method of turning a continuous infinite degree-of-
freedom problem into a discrete finite degree-of-freedom
problem. A more specific discussion on the finite-element
principle can be found in Refs. [26, 27]. According to the
finite-element principle, the velocity of an arbitrary discrete
element i of a flexible module relative to the COM of RFCS
b can be expressed as

vi,c m = vb,c m + ωb,c m × rbn,c m + ωb,c m + ωn,c m
× rni,c m + ui,c m + ui,c m,

1

where vi,c m is the velocity of i with respect to the COM of
RFCS b. vb,c m is the orbital velocity of the COM of RFCS
b. ωb,c m is the angular velocity of RFCS b. rbn,c m is the posi-
tion vector from the COM of RFCS b to the origin of the BF
coordinate system ob − xbybzb. ωn,c m is the relative angular
velocity between the flexible module and the FFSR. rni,c m
denotes the position vector from the origin of the BF coordi-
nate system ob − xbybzb to i. ui,c m and ui,c m denote the elastic
position and elastic velocity of i, respectively.

The dual velocity of the discrete element i with respect to
the COM of RFCS b is

ω i,c m = ωi,c m + εvi,c m 2

According to the algebra of dual numbers, the dual
velocity of the discrete element i with respect to the origin
of ob − xbybzb, ob, in terms of components along the BF
coordinate system ob − xbybzb is

ωb
i,n = R̂nb,nω i,c m, 3

where

R̂nb,n = 1 + εrbnb,n × =
I3×3 03×3
rbnb,n

×
I3×3

, 4

rbnb,n is the position vector from the origin of the BF coor-
dinate system ob − xbybzb to the COM of RFCS b in terms of
components along the BF coordinate system ob − xbybzb.
rbnb,n

×
denotes the cross-product matrix of rbnb,n. The

cross-product matrix for an arbitrary third-order vector
x = x1 x2 x3

T is

x × =
0 −x3 x2

x3 0 −x1
−x2 x1 0

5

The dual momentum of i relative to the BF coordi-
nate system ob − xbybzb is

Ĥ
b
i,n = R̂ni,n m̂i R̂nb,nω

b
i,c m , 6
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where

R̂ni,n = 1 + ε rbnb,n + rbbi,n + ubi,n ×

= 1 + ε rbnb,n + rbbn,n + rbni,n + ubi,n ×

= 1 + ε rbni,n + ubi,n ×

7

and rbbn,n, r
b
ni,n, and ubi,n denote the vectors rbn,n, rni,n, and

ui,n represented relative to the BF coordinate system ob −
xbybzb, and rbbn,n ≡ rbbn,c m, r

b
ni,n ≡ rbni,c m, and ubi,n ≡ ubi,c m.

Substituting Equation (7) into Equation (6). According
to Assumption 1, ubi < <rbni,n and ubi < <rbnb,n. Therefore,
the elastic displacement ubi can be neglected in the calcula-
tion of Equation (6). Subsequently, Equation (6) can be fur-
ther expressed as

Ĥ
b
i,n = 1 + ε rbni,n + ubi,n × m̂i R̂nb,nω

b
i,c m

= 1 + ε rbni,n + ubi,n
×

mi vbi,c m + rbnb,n × ωb
i,c m

=miv
b
i,c m +mi r

b
nb,n

×
ωb
i,c m

+ ε rbni,n × miv
b
i,c m +mi r

b
nb,n

×
ωb
i,c m

=miv
b
i,c m +mi r

b
nb,n

×
ωb
i,c m

+ ε mi r
b
ni,n

×
vbi,c m +mi r

b
ni,n

×
rbnb,n

×
ωb
i,c m

8

Substituting Equation (1) and Equation (2) into Equa-
tion (8), the dual momentum of i can be further expressed as

Ĥ
b
i,n =miv

b
i,c m +mi r

b
nb,n

×
ωb
i,c m

+ ε mi r
b
ni,n

×
vbi,c m +mi r

b
ni,n

×
rbnb,n

×
ωb
i,c m

=miv
b
b,c m +mi r

b
bn,c m

×

V
ωb
b,c m

+mi r
b
ni,c m

×

V
ωb
b,c m + ωb

n,c m

+miu
b
i,c m +mi r

b
nb,n

×
ωb
i,c m + εmi r

b
ni,n

×
vbb,c m

+ εmi r
b
ni,n

×
rbbn,c m

×

V
ωb
b,c m + εmi r

b
ni,n

×
rbni,c m

×

V

ωb
b,c m + ωb

n,c m + εmi r
b
ni,n

×
ubi,c m

+mi r
b
ni,n

×
rbnb,n

×
ωb
b,c m + ωb

n,c m

9

In Equation (9), the following operational relationship
holds

rbnb,n
×
= − rbbn,n

×
, 10

mi r
b
ni,c m

×

V
ωb
b,c m = −mi r

b
ni,c m

×
ωb
b,c m, 11

mi r
b
ni,c m

×

V
ωb
n,c m = −mi r

b
ni,c m

×
ωb
n,c m, 12

where rbni,c m
×
Vω

b
n,c m = ωb

n,c m
×
rbni,c m.

According to Equations (10), (11), and (12), Equation
(9) can be expressed in an explicit form

Ĥ
b
i,n =miv

b
i,c m +mi rbnb,n

×
ωb
i,c m

+ ε mi r
b
ni,n

×
vbi,c m +mi r

b
ni,n

×
rbnb,n

×
ωb
i,c m

=miv
b
b,c m +mi r

b
nb,c m

×
ωb
b,c m −mi r

b
ni,c m

×

ωb
b,c m + ωb

n,c m +miu
b
i,c m +mi r

b
nb,n

×
ωb
b,c m + ωb

n,c m

+ εmi r
b
ni,n

×
vbb,c m + εmi r

b
ni,n

×
rbnb,c m

×
ωb
b,c m

− εmi r
b
ni,n

×
rbni,c m

×
ωb
b,c m + ωb

n,c m + εmi rbni,n
×
ubi,c m

+ εmi r
b
ni,n

×
rbnb,n

×
ωb
b,c m + ωb

n,c m

=miv
b
b,c m +mi r

b
bi,c m

×
ωb
b,c m +mi r

b
bi,c m

×
ωb
n,c m

+mi r
b
nb,n

×
ωb
b,c m +miu

b
i,c m + εmi r

b
ni,n

×
vbb,c m

+ εmi r
b
ni,n

×
rbbi,c m

×
ωb
b,c m + εmi r

b
ni,n

×
rbbi,c m

×
ωb
n,c m

+ εmi r
b
ni,n

×
rbnb,n

×
ωb
b,c m + εmi r

b
ni,n

×
ubi,c m

13

In Equation (13), rbbi,c m ≜ rbbi,n, and the following opera-
tional relationship holds

εmi r
b
ni,n

×
vbb,c m = εmi r

b
nb,n

×
vbb,c m + εmi r

b
bi,n

×
vbb,c m,

14

εmi r
b
ni,n

×
rbbi,c m

×
ωb
b,c m = εmi r

b
nb,n

×
rbbi,c m

×
ωb
b,c m

+ εmi r
b
bi,n

×
rbbi,c m

×
ωb
b,c m,

15

εmi r
b
ni,n

×
rbnb,n

×
ωb
b,c m = εmi r

b
nb,n

×
rbnb,n

×
ωb
b,c m

+ εmi r
b
bi,n

×
rbnb,n

×
ωb
b,c m,

16

εmi r
b
ni,n

×
ubi,c m = εmi r

b
nb,n

×
ubi,c m + εmi r

b
bi,n

×
ubi,c m

17

According to the finite-element principle, the dual
momentum of the flexible module with respect to the BF
coordinate system ob − xbybzb can be expressed as
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Ĥ
b
f l,n = 〠

n

i=1
Ĥ

b
i,n 18

Substituting Equations (13), (14), (15), (16), and (17)
into Equation (18), the dual momentum of the flexible mod-
ule can be obtained.

Ĥ
b
f l,n = 〠

n

i=1
miv

b
b,c m + 〠

n

i=1
mi r

b
bi,c m

×
ωb
b,c m + 〠

n

i=1
mi r

b
bi,c m

×
ωb
n,c m

+ 〠
n

i=1
mi r

b
nb,n

×
ωb
b,c m + 〠

n

i=1
miu

b
i,c m + ε〠

n

i=1
mi r

b
nb,n

×
vbb,c m

+ ε〠
n

i=1
mi r

b
bi,n

×
vbb,c m + ε〠

n

i=1
mi r

b
nb,n

×
rbbi,c m

×
ωb
b,c m

+ ε〠
n

i=1
mi r

b
bi,n

×
rbbi,c m

×
ωb
b,c m + ε〠

n

i=1
mi r

b
nb,n

×
rbbi,c m

×
ωb
n,c m

+ ε〠
n

i=1
mi r

b
bi,n

×
rbbi,c m

×
ωb
n,c m + ε〠

n

i=1
mi r

b
ni,n

×
rbnb,n

×
ωb
b,c m

+ ε〠
n

i=1
mi r

b
ni,n

×
ubi,c m

19

In addition, let

V f l
× = 〠

n

i=1
mi r

b
bi,n

×
, V f l

×
v
= 〠

n

i=1
mi r

b
bi,n

×

v
,

mf l = 〠
n

i=1
mi, J f l = 〠

n

i=1
mi r

b
bi,n

×
rbbi,n

×

v
,

20

where J f l denotes the moment of inertia of the flexible mod-
ule. mf l is the mass of the flexible module.

Having derived the discrete equation of the dual
momentum, we perform the following model transforma-
tion on Equation (19).

ubi =Φiη,
ubi =Φiη

21

As shown in Equation (21), the module vibration dis-
placement can have a linear equation relationship with the
modal coordinates, η, through the matrix of eigenvectors of
i, Φi. η is the first derivative of η.

According to Ref. [28], the following equation transfor-
mations can be obtained.

Btran = 〠
n

i=1
miΦi,

Brot = 〠
n

i=1
mi rbci

×
Φi,

22

where Btran and Brot are the rigid-flex translational and rota-
tional coupling matrices, respectively. Substituting Equa-
tions (20), (21), and (22) into Equation (19), the dual
momentum of the flexible module in hybrid coordinate

can be expressed as

Ĥ
b
f l,n =mf lv

b
b,c m + r×nb,nmf lω

b
b,c m + V f l

×
v
ωb
b,c m

+ V f l
×ωb

n,c m + Btranη + εr×nb,n V f l
×
v
ωb
b,c m

+ εJ f lω
b
b,c m + εr×nb,nr

×
nb,nmf lω

b
b,c m + εr×nb,nmf lv

b
b,c m

+ εr×nb,n V f l
×ωb

b,c m + ε V f l
×vbb,c m + εr×nb,n V f l

×ωb
n,c m

+ εJ f lω
b
n,c m + εr×nb,nBtranη + εBrotη

23

Representing Equation (16) in six-dimensional spinor
form

Ĥ
b
f l,n =

I3×3 0

r×nb,n I3×3

Vf l
×
v

mf lI3×3

J f l V f l
×

I3×3 0

r×nb,n I3×3

ωb
b,c m

vbb,c m

+
I3×3 0

r×nb,n I3×3

V f l
×

J f l
ωb
n,c m

+
I3×3 0

r×nb,n I3×3

Btran 0

0 Brot

η

η

24

By symbolizing Equation (24), we obtain

Ĥ
b
f l,n = R̂nb,nM̂f l ωb

n,c m + R̂nb,nω
b
b,c m + R̂nb,nB̂cpη , 25

where ωb
n,c m =

ωb
n,c m

0
∈ℝ6×1 is the dual velocity of the

flexible module relative to FFSR. The dual inertia matrix

M̂ f l =
V f l

×
v

mf lI3×3

J f l V f l
× ∈ℝ6×6 is a six-dimensional

parameter matrix. The dual velocity ωb
b,c m =

ωb
b,c m

vbb,c m
∈

ℝ6×1 is presented in terms of components along the BF coor-

dinate system. B̂cp =
Btran 03×N
03×N Brot

∈ℝ6×2N is a new param-

eter for the dual representation of a rigid-flex combination
system, which is defined as the rigid-flex dual coupling

matrix. η =
η

η
∈ℝ2N×1 is also a new parameter for the

dual representation of a rigid-flex combination system,
which is defined as the dual-modal coordinates.
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Taking the first derivative of Equation (25), we obtain

dĤ
b
f l,n

dt
=
∂Ĥb

f l,n
∂t

+ ωb
n,c m + R̂nb,nω

b
b,c m × Ĥ

b
f l,n

= R̂nb,nM̂ f l ω
b

n,c m + R̂nb,nω
b

b,c m + R̂nb,nB̂cpη

+ ωb
n,c m + R̂nb,nω

b
b,c m

× R̂nb,nM̂ f l ωb
n,c m + R̂nb,nω

b
b,c m + R̂nb,nB̂cpη ,

26

Equation (26) can be further expressed as

dĤ
b
f l,n

dt
= R̂nb,nM̂ f l R̂nb,nω

b

b,c m + R̂nb,nω
b
b,c m

× R̂nb,nM̂ f l R̂nb,nω
b
b,c m + R̂nb,nM̂ f lω

b

n,c m + R̂nb,nω
b
b,c m

× R̂nb,nM̂ f lω
b
n,c m + R̂nb,nω

b
b,c m × R̂nb,nB̂cpη + ωb

n,c m

× R̂nb,nM̂ f l ωb
n,c m + R̂nb,nω

b
b,c m + R̂nb,nB̂cpη + R̂nb,nB̂cpη

27

In addition, let

F̂
b
DR,n = R̂nb,nM̂ f lω

b

n,c m + R̂nb,nB̂cpη + ωb
n,c m

× R̂nb,nM̂f l R̂nb,nω
b
b,c m + ωb

n,c m + R̂nb,nω
b
b,c m

× R̂nb,nM̂ f lω
b
n,c m + R̂nb,nB̂cpη = R̂nb,nM̂f lω

b

n,c m

+ R̂nb,nB̂cpη + ωb
n,c m × R̂nb,nM̂f lω

b
n,c m

+ ωb
n,c m + R̂nb,nω

b
b,c m × R̂nb,nB̂cpη ,

28

where F̂
b
DR,n is the force between the FFSR and the flexible

module. F̂
b
DR,n = F̂

b
DE,n + F̂

b
CN ,n contains two parts, one is the

driving force of FFSR acting on the flexible module, F̂
b
DE,n,

and the other is the connection force between FFSR and

the flexible module, F̂
b
CN ,n.

3.2. Dual Number Representation of FFSR Motion. FFSR is
the rigid part of RFCS b, assuming j is a nominal point of
FFSR. The velocity of j can be represented as

vj,c m = vb,c m + ωb,c m × rbj,c m 29

Note that vj,c m is obtained relative to the COM of RFCS b.
Furthermore, we can obtain the dual velocity of the par-

ticle j.

ω j,c m = ωj,c m + εvj,c m, 30

where ωj,c m ≡ ωb,c m. Similarly, ω j,c m is presented relative to
the COM of RFCS b.

Then, according to the operation rules of dual quater-
nion, the dual velocity j relative to the origin of the BF coor-
dinate system is obtained.

ωb
j, n = R̂nb,nω j,c m 31

Note that ωb
j, n is a dual vector in terms of components

along the BF coordinate system.
Based on the dual velocity of j, we can further obtain the

dual momentum of j.

Ĥ
b
j,n = R̂nj,n m̂j R̂nb,nω

b
j,c m 32

Substituting Equation (32) into Equation (31), we per-
form specific operations on the dual momentum of j and
obtain

Ĥ
b
j,n = R̂nj,n m̂j R̂nb,nω

b
j,c m

=mjv
b
b,c m +mj r

b
bj,n

×

V
ωb
b,c m +mj r

b
nb,n

×
ωb
b,c m

+ εmj r
b
nb,n

×
vbb,n + εmj r

b
nb,n

×
rbbj,n

×

V
ωb
b,c m

+ εmj r
b
nb,n

×
rbnb,n

×
ωb
b,c m + εmj r

b
bj,n

×
vbb,c m

+ εmj r
b
bj,n

×
rbbj,n

×

V
ωb
b,c m + εmj r

b
bj,n

×
rbnb,n

×
ωb
b,c m

33

By simplifying Equation (33), one can obtain

Ĥ
b
f r,n = 〠

m

j=1
Ĥ

b
j,n =mf rv

b
b,c m + V f r

×
v
ωb
b,c m

+mf r rbnb,n
×
ωb
b,c m + ε V f r

×vbb,c m + εJ f rω
b
b,c m

+ εmf r rbnb,n
×
vbb,c m + ε V f r

×
v
rbnb,n

×
ωb
b,c m

+ εmf r rbnb,n
×
rbnb,n

×
ωb
b,c m + ε V f r

× rbnb,n
×
ωb
b,c m,

34

where

V f r
× = 〠

n

j=1
mj r

b
bj,n

×
, V f r

×
v
= 〠

n

j=1
mj r

b
bj,n

×

v
,

mf r = 〠
n

j=1
mj, J f r = 〠

n

j=1
mj r

b
bj,n

×
rbbj,n

×

v

35

J f r is the moment of inertia of FFSR. mf r is the mass of
FFSR.
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Representing Equation (16) in six-dimensional spinor
form, one can obtain

Ĥ
b
f r,n =

I3×3 03×3
r×nb,n I3×3

V f r
×
v

mf rI3×3

J f r V f r
×

I3×3 03×3
r×nb,n I3×3

ωb
b,c m

vbb,c m

36

By symbolizing Equation (24), we obtain

Ĥ
b
f r,n = R̂nb,nM̂ f r R̂nb,nω

b
b,c m , 37

where M̂f r =
V f r

×
v

mf rI3×3

J f r V f r
× ∈ℝ6×6 is the dual inertia

operator of FFSR.
Taking the first derivative of Equation (37), one can

obtain

dĤ
b
f r,n

dt
=
∂Ĥb

f r,n
∂t

+ R̂nb,nω
b
b,c m × Ĥ

b
f r,n

= R̂nb,nM̂f r R̂nb,nω
b

b,c m + R̂nb,nω
b
b,c m

× R̂nb,nM̂f r R̂nb,nω
b
b,c m

38

3.3. Dynamics Modeling of RFCS b with Time-Varying
Configuration. The dual momentum of RFCS b is the sum
of the dual momentum of the flexible module and rigid FFSR.

F̂
b
b,n =

dĤ
b
f r,n

dt
+
dĤ

b
f l,n

dt
= R̂nb,nM̂ f r R̂nb,nω

b

b,c m + R̂nb,nω
b
b,c m

× R̂nb,nM̂ f r R̂nb,nω
b
b,c m + R̂nb,nM̂ f l ω

b

n,c m + R̂nb,nω
b

b,c m

+ R̂nb,nB̂cpη + ωb
n,c m + R̂nb,nω

b
b,c m

× R̂nb,nM̂f l ωb
n,c m + R̂nb,nω

b
b,c m + R̂nb,nB̂cpη

39

Equation (39) can be further expressed as

F̂
b
b,n = R̂nb,n M̂f r + M̂f l R̂nb,nω

b

b,c m + R̂nb,nω
b
b,c m

× R̂nb,n M̂ f r + M̂f l R̂nb,nω
b
b,c m + R̂nb,nM̂ f lω

b

n,c m

+ R̂nb,nB̂cpη + ωb
n,c m × R̂nb,nM̂ f l R̂nb,nω

b
b,c m

+ ωb
n,c m + R̂nb,nω

b
b,c m × R̂nb,nM̂ f lω

b
n,c m + R̂nb,nB̂cpη

40

In addition, let

M̂b = M̂f l + M̂f r =
V f l

×
v

mf lI3×3

J f l V f l
×

+
Vf r

×
v

mf rI3×3

J f r V f r
×

=
V f l

×
v
+ V f r

×
v

mf l +mf r I3×3

J f l + J f r V f l
× + V f r

×
,

41

where Jb = J f l + J f r is the moment of inertia of RFCS b.
mb =mf l +mf r is the mass of RFCS b.

In Equation (41), we can further obtain

V f l
×
v
+ V f r

×
v
= 0,

V f l
× + V f r

× = 0
42

Introducing Equation (42) into Equation (41), the dual
inertia operator of RFCS b can be expressed as

M̂b =
03×3 mbI3×3

Jb 03×3
43

Substituting Equation (28) into Equation (40), the
dynamics of the RFCS b with time-varying configuration
can be obtained.

F̂
b
b,n = R̂nb,nM̂b R̂nb,nω

b

b,c m + R̂nb,nω
b
b,c m

× R̂nb,nM̂b R̂nb,nω
b
b,c m + F̂

b
DR,n,

F̂
b
DR,n = R̂nb,nM̂f lω

b

n,c m + R̂nb,nB̂cpη + ωb
n,c m × R̂nb,nM̂f lω

b
n,c m

+ ωb
n,c m + R̂nb,nω

b
b,c m × R̂nb,nB̂cpη ,

F̂
b
DR,n = F̂

b
DE,n + F̂

b
CN ,n 44

In Equation (44), the first equation represents the six-
degree-of-freedom dynamics of the whole system; the sec-
ond equation represents the relative motion between the
flexible module and the FFSR. Equations in Equation (44)
are equations of the RFCS with time-varying configuration,

Table 1: Orbital parameters of RFCS b.

Description Parameters Value

Eccentricity eb 0.02

Semimajor axis ab 6998455m

Inclination Ib 45°

Argument of perigee ωb 0°

Right ascension of the ascending node Ωb 0°

Initial true anomaly f b 30°
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which can also describe the 6 DOF motion of the spacecraft
having rotational solar panels. The dynamic model of a sat-
ellite with rotational solar panels in Ref. [29] derived from
the classical Newton-Euler method has the same form as
Equation (44), which proves the correctness of the dynamic
model proposed in this paper. Furthermore, Equation (44) is
a general model which can describe the relative motion
between two non-centroid points of spacecraft, while the
classical Newton-Euler model cannot. In addition, the inte-
grated relative dynamic equations of Equation (44) can
improve the computational efficiency of the model.

In the rest of this section, an ideal physical scenario is
assumed. In this scenario, the force exerted by the robot on

the module, F̂
b
DE,n, is zero, and the module moves relative

to the robot at a constant angular velocity, ωb
n,c m. Ignore

motion damping and other disturbances between the robot
and the module. Then, in this scenario, the dynamics of
the RFCS b with time-varying configuration can be
expressed as

F̂
b
b,n = R̂nb,nM̂b R̂nb,nω

b

b,c m + R̂nb,nω
b
b,c m

× R̂nb,nM̂b R̂nb,nω
b
b,c m + F̂

b
CN ,n = R̂nb,nM̂b R̂nb,nω

b

b,c m

+ R̂nb,nω
b
b,c m × R̂nb,nM̂b R̂nb,nω

b
b,c m + R̂nb,nB̂cpη

+ ωb
n,c m × R̂nb,nM̂ f lω

b
n,c m + ωb

n,c m + R̂nb,nω
b
b,c m × R̂nb,nB̂cpη

45

In Equation (45), the variable quantity η is derived from
η. According to Refs. [30, 31], η can be obtained through the
following function:

η + 2ξΛη +Λ2η + BT
tranv

b
s,n + BT

rotω
b
b,n = 0, 46

where Λ = diag Λ1 Λ2 ⋯ ΛN is the natural fre-
quency matrix of the flexible module, Λi is the ith natural
frequency, ξ denotes the damping ratio of the flexible mod-

ule, and vbs,n indicates the orbital velocity of RFCS b under
the action of external forces, excluding gravity.

4. Relative Dynamics between Two RFCS with
Time-Varying Configuration

The relative motion state between RFCS b and RFCS a can
be expressed as a dual quaternion.

q̂ba = qba + ε
1
2 qbar

b
ba,n, 47

where q̂ba ∈ℝ
8×1 denotes the relative dual quaternion state

between two spacecrafts. rbba,n = 0 rbba,n
T T

; rbba,n denotes

the relative position vector from ob to oa with respect to
the body-fixed coordinate system of RFCS b. qba ∈ℝ

4×1

denotes the relative attitude quaternion.

Table 2: Characteristic parameters of RFCS b.

Description Parameters Value

Module mass mf l 20 kg

FFSR mass mf r 80 kg

Moment of inertia of the module J f l

40 34 ‐4 92 ‐8 50
‐4 92 207 05 29 93
‐8 50 29 93 233 33

kg ⋅m2

Moment of inertia of FFSR J f r diag 100, 150, 120 kg ⋅m2

Rigid-flex translational coupling matrix Btran 0 155  − 0 155 0 225 T

Rigid-flex rotational coupling matrix Brot 0 2 0 05 0 15 T

Modal damping ratio of the module ξ 0.05

Stiffness of the module Λ 1.727
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Figure 2: Orbit of RFCS.
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9International Journal of Aerospace Engineering



Furthermore, the relative kinematical equation can be
represented as

q̂ba =
1
2 q̂baω

b

ba,n, 48

where ω
b

ba,n = 0 ωb
ba,n

T T + ε 0 vbba,n
T T

; ωb
ba,n = ωb

ba,n +
εvbba,n. v

b
ba,n is the relative orbital velocity and ωb

ba,n is

the relative angular velocity. ωb
ba,n is the relative dual

velocity.
According to Ref. [21], ωb

ba,n can be derived from the fol-
lowing function:

ωb
ba,n = ωb

b,c m − Ex q̂∗baω
a

aq̂ba , 49

where ωa
a = ωa

a + εvaa and ω
a

a = 0 ωa
a
T T + ε 0 vaa

T T
. vac

is the orbital velocity of RFCS a, ωa
c is the angular velocity

of RFCS a, and the above two vectors are presented with
respect to the body-fixed coordinate system of RFCS a.
Ex ⋅ is the dimensionality reduction operator. The
dimensionality reduction operator for an arbitrary eight-

dimensional vector ω
a

a is Ex ω
a

a = ωa
a + εvaa.

According to Equation (49), the following equation can
be obtained.

ω
b

ba,n = ω
b

b,c m − Ex q̂∗baω
a

aq̂ba

= ω
b

b,c m − E−1
x q̂∗baω

a

aq̂ba + ωb
ba,n × E−1

x q̂∗baω
a

aq̂ba

50

Substituting Equation (44) into Equation (50), the rela-
tive dynamics between RFCS b and RFCS a is obtained.

ω
b

ba,n = R̂
−1
nb,nM̂

−1
b R̂

−1
nb,n F̂

b
b,n − F̂

b
DR,n − R̂

−1
nb,nM̂

−1
b R̂

−1
nb,n R̂nb,nω

b
b,c m

× R̂nb,nM̂b R̂nb,nω
b
b,c m − E−1

X q̂∗ba ⊗ EX ω
a

a ⊗ q̂ba

+ ωb
ba,n × E−1

X q̂∗ba ⊗ EX ωa
a ⊗ q̂ba

= R̂
−1
nb,nM̂

−1
b R̂

−1
nb,n F̂

b
b,n − R̂

−1
nb,nM̂

−1
b R̂

−1
nb,n R̂nb,nω

b
b,c m

× R̂nb,nM̂b R̂nb,nω
b
b,c m − R̂

−1
nb,nM̂

−1
b R̂

−1
nb,n

R̂nb,nM̂ f lω
b

n,c m + R̂nb,nB̂cpη + ωb
n,c m × R̂nb,nM̂f lω

b
n,c m

+ ωb
n,c m + R̂nb,nω

b
b,c m × R̂nb,nB̂cpη

− E−1
X q̂∗ba ⊗ EX ω

a

a ⊗ q̂ba + ωb
ba,n × E−1

X q̂∗ba ⊗ EX ωa
a ⊗ q̂ba

51
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In the ideal physical scenario assumed in Section 3.3, if

the force exerted by the robot on the module, F̂
b
DE,n, is

zero, the relative dynamics equation can further be repre-
sented as

ω
b

ba,n = R̂
−1
nb,nM̂

−1
b R̂

−1
nb,n F̂

b
b,n − F̂

b
CN ,n − R̂

−1
nb,nM̂

−1
b R̂

−1
nb,n R̂nb,nω

b
b,c m

× R̂nb,nM̂b R̂nb,nω
b
b,c m − E−1

X q̂∗ba ⊗ EX ω
a

a ⊗ q̂ba

+ ωb
ba,n × E−1

X q̂∗ba ⊗ EX ωa
a ⊗ q̂ba = R̂

−1
nb,nM̂

−1
b R̂

−1
nb,n F̂

b
b,n

− R̂
−1
nb,nM̂

−1
b R̂

−1
nb,n R̂nb,nω

b
b,c m × R̂nb,nM̂b R̂nb,nω

b
b,c m

− R̂
−1
nb,nM̂

−1
b R̂

−1
nb,n R̂nb,nB̂cpη + ωb

n,c m × R̂nb,nM̂ f lω
b
n,c m

+ ωb
n,c m + R̂nb,nω

b
b,c m × R̂nb,nB̂cpη − E−1

X q̂∗ba ⊗ EX ω
a

a ⊗ q̂ba

+ ωb
ba,n × E−1

X q̂∗ba ⊗ EX ωa
a ⊗ q̂ba

52

5. Simulation Results

In this section, two sets of numerical simulations are pro-
vided. The first simulation was proposed to quantify the
dynamics of RFCS with time-varying configuration in the
ideal physical scenario assumed in Section 3.3 (Equation
(45)). The influence of the relative attitude angular velocity,
ωb

n,c m, on the six-degree-of-freedom motion of the RFCS
was analyzed. The second simulation was provided to ana-
lyze the influence of the coordinate origin selection of the
BF coordinate system ob − xbybzb on relative motion
description.

The initial position vector and orbit velocity of RFCS bwith
respect to the BF coordinate system ob − xbybzb are r

b
b,n 0 =

6876550 0 0 Tm and vbb,c m 0 = 75 484 7679 0 Tm/s.
The initial attitude of RFCS b is set as qb 0 =

0 8924 0 3696  − 0 0990 0 2391 T and ωb
b,c m 0 =

0 0 0 Trad/s.
The dynamics equation (Equation (45)) is imple-

mented in the case when the six-degree-of-freedom
motion of RFCS b is governed by gravity
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(−μrbb,n/ rbb,n
3, μ = 398600 44km ⋅ s‐2) and the gravity gradi-

ent moment (3μrbb,n × Jrbb,n/ rbb,n
5, μ = 398600 44km ⋅ s‐2).

The influence of other forces and noises are neglected.
Table 1 lists the orbital parameters of RFCS b, and Table 2
lists the characteristic parameters of RFCS b.

5.1. Case 1: Effect of Relative Attitude Motion between the
Flexible Module and FFSR on the Six-Degree-of-Freedom
Motion of RFCS. Considering ranb,n = −0 2  − 0 1 0 05 T

m, three sets of relative attitude angular, ωb
n,c m =

0 0 0 T , ωb
n,c m = 0 0 0 01 rad/s, and ωb

n,c m = 0 0
 0 1 rad/s, were adopted, and the simulation results were
obtained.

The blue lines, red lines, and green lines are the six-
degree-of-freedom motion of RFCS when ωb

n,c m =
0 0 0 T , ωb

n,c m = 0 0 0 01 rad/s, and ωb
n,c m = 0 0

 0 1 rad/s, respectively. Figure 2 shows the orbit of RFCS.
Figures 3 and 4 show the orbit velocity and three-axis posi-
tion of RFCS, respectively. Figures 5 and 6 show the angular
velocity and attitude quaternion of the RFCS. As shown in

Figures 2–6, in three cases, the six-degree-of-freedom
motion curves of RFCS basically coincide. It shows that
under the ideal condition assumed in Section 3.3, the relative
rotational angular velocity between the module and FFSR
has little effect on the six-degree-of-freedom motion of
RFCS. The simulation results are consistent with the physi-
cal reality and prove the validity of the mathematical model
for RFCS with time-varying configuration.

5.2. Case 2: Effect Coordinate Origin Selection of on the
Description of the Six-Degree-of-Freedom Motion of RFCS.
Considering ωb

n,c m = 0, three sets of coordinate origin selec-

tion, ranb,n = 0 0 0 Tm, ranb,n = −0 2  − 0 1 0 05 Tm,

and R̂nb,n = −0 5 0 3 0 2 Tm, were adopted, and the sim-
ulation results were obtained:

In Figures 7–12, the blue lines represent the six-degree-
of-freedom motion of RFCS when ranb,n = 0 0 0 Tm.
The red lines represent the six-degree-of-freedom motion
of RFCS when ranb,n = −0 2  − 0 1 0 05 Tm. The green
lines represent the six-degree-of-freedom motion of RFCS
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Figure 12: Attitude quaternion of RFCS under Case 2.

14 International Journal of Aerospace Engineering



when R̂nb,n = −0 5 0 3 0 2 Tm. The gray lines in
Figures 8 and 9 represent the deviation curve between red
and blue in Figure 7, and the black lines represent the devi-
ation curve between green and red in Figure 7. As shown in
Figures 11 and 12, the attitude angular velocity and attitude
quaternion of RFCS do not change with the migration of the
origin of the BF coordinate system. In Figures 7–10, as the
distance between the origin of the BF coordinate system
and the center of mass is larger, the position deviation of
RFCS is larger. The positional deviation of the combined
system reaches about 1m when R̂nb,n = −0 5 0 3 0 2 Tm.

6. Conclusions

This paper proposed a dynamic model of rigid-flex combi-
nation systems with time-varying configuration. Dual qua-
ternions were used to describe the six-dimensional spinor
form of a rigid-flex combination system. The algebra of dual
momentum for RFCS with time-varying configuration was
developed, and the relative dynamics between two RFCSs
with time-varying configuration for on-orbit assembly were
provided. The simulation results show that the configuration
changes have little effect on the six-degree-of-freedom
motion of rigid-flex combination systems under the ideal
physical scenario. The position error caused by the migra-
tion of the origin of the BF coordinate system is about 1m.
This shows that the selection of the origin of the BF coordi-
nate system is key for the dynamic modeling of rigid-flex
combination systems with time-varying configuration.
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