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In this study, a robust adaptive beamformer based on constant modulus (CM) criteria is developed to improve the robustness of
the array beamforming, which is a reconstructing minimal optimization for solving the mismatch problem of weight vector caused
by steering vector mismatch. In the global positioning system (GPS) L1 band, firstly, a GPS array signal is modelled by designing a
dual-polarized antenna array. Secondly, the distortion problem of beamforming is formulated in the traditional minimum
variance distortionless response (MVDR) beamformer. For repairing the weight vector mismatch problem, a novel beamformer
based on the CM envelope response is proposed to reconstruct MVDR beamforming in the array processing. Besides, min-max
penalty criteria are used to enable the beamformer to allocate more degrees of freedom (DOFs) when penalizing the MVDR
beamformer responses. Finally, an auxiliary two-element real variable is designed to plan the proposed beamformer. But it is
still a nonconvex quadratic programming problem, so an alternating direction method of multipliers (ADMM) is employed to
transform the objective function into several subproblems. Illustrative numerical simulation results are provided for validating
the effectiveness of the proposed beamformer by comparing it with other existing approaches.

1. Introduction

With the development of a robust adaptive beamformer
(RAB), the concerns over its reliability also heighten in the
global positioning system (GPS). But, because of multiple
interferences (i.e., jamming signals, calibration errors, and dis-
torted antenna shape), the antijamming robustness of RAB
severely degrades in real applications, wherein the mismatch-
ing error between the presumed and actual response is the
most commonly affected by the interferences [1]. To solve this
problem, a special case of null-steering technique-based dual-
polarized array response is proposed to provide double
degrees of freedom (DOFs) [2, 3]. Here, it cannot only help
the beamformer obtain the desired signal from the mismatch
polarization [2] but also prove the more 2N-1 DOFs in com-
parison with the N-element single-polarized array.

Beyond that, some diagonal loading (DL) techniques
with various uncertainty sets of the steering vector (SV)

are studied to obtain a good antijamming RAB. Such as in
[4], the sample covariance matrix of RAB is regularized by
using a symmetric tridiagonal loading factor. Undeniably, a
suitable factor of the projection subspace is difficult to
achieve, affecting the robustness of antijamming beamform-
ing. Then, a time-variant factor via the uncertain set con-
straints is proposed in the paper [5]. However, it is still
faced with a crucial problem with the selection of the loading
level. Then, a fixed DL factor-based eigenvalue is selected to
enhance the antijamming robustness of array processing in
[6]; however, this approach must be built on a fixing
transformation of the covariance matrix. In [7], a DL beam-
former based on the sample matrix inversion is presented to
adaptively steer the beamforming, but it is still sensitive to
the accuracy of the sample covariance matrix of the array
response. Additionally, in [8], adaptive beamforming is
obtained by using the DL technique, which is able to steer
the beamforming at a small number of samples.
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Unfortunately, this DL beamforming is subject to the limita-
tions of the small sampling snapshots so that exists a mis-
match error between the likelihood estimation and the
reality in the signal processing response. In particular, if
the desired signal is contained in the small sampling snap-
shots, the imprecise SV estimation of these DL beamforming
severely degrades the antijamming robustness.

In another class of RAB techniques, eigenspace-based
approaches are exploited to construct the subspace of the
input signal. For example, in [9], the antijamming weight
vector of the subaperture is obtained to generate some nulls
from the jamming direction in the eigenspace-based beam-
former; however, some prior conditions must be known
when the array beamforming is achieved, otherwise not. In
[10], the sampling covariance matrix is reconstructed to
obtain the antijamming RAB by using the orthogonality
between the SV subspace and the interference subspace,
but there still exists a calibration error in steering beamform-
ing. Then, an eigenspace-based beamformer is reconstructed
by solving the linear problem of SV subspace projection in
the array response, i.e., the Capon spatial spectrum in [11].
But this eigenspace is still sensitive to the sample snapshots
and the input signal-to-noise ratio (SNR). Additionally,
there are some antijamming beamformers that combat the
small snapshots, enhancing the robustness of beamforming.
For example, in [12], a Lagrange multiplier based on loading
sample matrix inversion (LSMI) is used to obtain the RAB in
each iteration. But due to the array calibration error, the no-
vanishing SV error still severely degrades the robustness of
beamforming. In another example from [13, 14], there are
two different beamformers being designed by using the modi-
fied NCCB (norm-constrained Capon beamformer) approach
and the WC (worst case) method, but the computational time
can cost higher than that of LSMI for the same number of
antennas. In [15], an antijamming problem of RAB is solved
by using the spatial filtering techniques in the radar beamform-
ing, but the precision of beamforming also suffers from the SV
error in the iteration; meanwhile, the computational cost of that
RAB is higher than the smaller interval needed. Then, a RAB
based on minimum variance distortionless response (MVDR)
is considered by solving the output power maximization prob-
lem and SV mismatch error in [16]. Although the MVDR
beamformer can obtain the signal-of-interest steering vector
through a double-sided norm perturbation constraint and a
similarity quadratic constraint, it is still a quadratically con-
strained quadratic programming (QCQP) problem with inho-
mogeneous constraints. When facing the QCQP problem of
RAB, the mismatch error of the array response can seriously
reduce the robustness of the beamformer. For solving the men-
tioned QCQP problem, this paper employs a variable splitting
technique such as the alternating direction method of multi-
pliers (ADMM), where the ADMM technique is an efficient
dual-decomposed optimisation approach that combines the
dual-ascent method and the convergence bounded multiplier
method. In particular, the dual-ascent performance by adding
the convex penalty terms can bring numerical robustness [17].

In this paper, a novel RAB based on the constant modulus
(CM) penalty criterion is developed to reconstruct the tradi-
tional MVDR beamformer [16]. By contrast, due to CM equal-

ization with constant envelope features, this paper presents the
advantage of higher accuracy than the MVDR beamformer
[16] under the optimizing weight of RAB per iteration. And
the proposed method is computationally superior to the
state-of-the-art QCQP problem by using the ADMM variable
splitting technique; this is because ADMM has the character-
istic of simple update rules and stable-fast convergence to
solve the corresponding control variables at each iteration. In
addition, our method highlights, compared with the beamfor-
mer [16], the following points:

(a) The sample covariance subspace is reconstructed by
using the envelope response of the CM array pro-
cessing in the collected snapshots. This allows the
beamformer to enhance the robust adaptation of
weight from the spatial blind beamforming

(b) A min-max penalized optimization criterion can
manage the CM spatial responses from the sampling
interference subspace, which can minimize the max-
imal penalty term to allocate more DOFs to suppress
the interference as well as improve the robust adap-
tation of the potential SV mismatch constraints in
blind beamforming

(c) By designing two auxiliary real-valued conditions,
the objective function is converted to solve the rank
uncertainty problem, followed by the CVX tool.
Then, the beamformer can obtain better robustness
than other approaches at a low cost

This paper is organized as follows. In Section 2, a GPS signal
is modelled by using a dual-polarized GPS antenna array. In
Section 3, the antijamming distortion problem is formulated
from a traditional MVDR beamforming. Next, a novel RAB
based on the constant modulus (CM) penalty criterion is pro-
posed in Section 4. Finally, the numerical simulations and con-
clusions are drawn in Section 5 and Section 6, respectively.

Notation 1. Table 1 lists this article’s operators.

2. GPS Signal Model

This paper considers a uniform square antenna array
(USAA), as shown in Figure 1, where 2 × 2 dual-
polarized GPS antenna elements are designed on a dual-
layer substrate of “Rogers RO3010 (tm)” substrate with a
relative permittivity of 10.2 and a dielectric loss tangent
of 0.0035, and the distance between antenna elements is
half λ-wavelength (i.e., about λ = 240mm in the GPS L1
band). In USAA, the 8-ports are matched by a 50Ohm
impedance, and then the radiation gains are motivated to
obtain the desired GPS signal Ŝx t by orthogonal linear
polarization, where Ŝx t is an 8 × 1 column vector at the
time instant as follows:

Ŝx t = E0
2

G1,Hθ − jG1,Hϕ , G1,Vθ − jG1,Vϕ ,⋯, G4,Vθ − jG4,Vϕ
T ,
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where E0 is the amplitude of the minimum guaranteed sig-
nal power from the GPS receiver, the subscripts H and V
stand for the horizontal and vertical polarization (HP and
VP), respectively, and Gi,H/V is the maximum gain of HP
or VP of the i -th antenna element. The jamming signal
Ŝj has a similar form to the desired signal Ŝx, which is
only considered as deception jamming. Then, in this
paper, the GPS transmission signal Ŝ t is designed in
the GPS L1 band, which is a composite model including
a desired GPS signal Ŝx t , jamming signal Ŝj t , and noise
e t , and all given signals are uncorrelated, as explained in
the following equation:

Ŝ t = Γ x a θx, φx Ŝx t + Γ j a θ j, φj Ŝj t + e t , 2

where a θx, φx and a θ j, φj denote the SV at the
azimuth-pitch angle (θx , φx) and (θ j, φj) direction, e t

obeying to N 0, σ2 as a Gaussian noise is used in Ŝ t ,
the symbol Γ is defined as an 8 × 8 manifold error matrix
to repair the desired signal “x” and jamming signal “j”, as
follows:

Γ ≅ diag 1, η1e−jα1,⋯,ηN−1e
−jα i−1 T

, 3

where ηi represents the i-th gain of USAA, αi = i − 1 sin
θ cos ϕ is the i-th phase shift error corresponding to
the i-th independent random variables, i.e., the i-th steer-
ing element Γxi i = 1,⋯,8 as the desired x-signal.

Then, the corresponding expressions are shown as
follows:

Γxi = ηie
−jαxi = ηie

−j i−1 sin θx cos φx , 4

a θ, φ = 1, e−j2πr sin θ cos φ ,⋯,e−j2π i−1 r sin θ cos φ ,

5

where r is the relative ratio between the element distance and
the wavelength and θ, φ is a pair of the azimuth angle and
pitch angle. Let â θ, φ = Γ · a θ, φ represent the total SV
with array error. Note that RAB is implemented in the
expected environment, removing pseudorandom code and
carrier error. Namely, the uncorrelated characteristics of a
GPS signal are assumed in the stage after despreading and
before carrier synchronization.

3. Problem Formulation

In traditional MVDR beamformer [16], the directions of
arrival (DOAs) of transmission signal and SV are usually
known in advance. And let wt = w1,w2,⋯,wN

T ∈ℂN×1 as
the complex weight variable of beamforming, then the out-
put signal from L snapshots is as follows:

y t =wH
t Ŝ t 6

Thus, the output energy is

P w = 1
L
〠
L

t=1
y t 2 = 1

L
〠
L

t=1
wH

t Ŝ t 2

= Γ x wH
t a θx, φx

2 1
L
〠
L

t=1
Ŝx t 2

+ Γ j wH
t a θj, φj

2 1
L
〠
L

t=1
Ŝj t

2 + wt
2 1
L
〠
L

t=1
e t 2

7

When L⟶∞, P w is rewritten as

P w = E y t 2 =wH
t E Ŝ t ŜH t wt =wH

t Rwt , 8

where R = E Ŝ t ŜH t is the covariance vector of the array
response. This beamformer based on the MVDR criterion
has the minimum output energy, while the target directional
gain keep unchanged, i.e., wH

t a θ, φ = 1, then the model of
the MVDR beamformer is obtained as follows:

min
wt

wH
t Rwt ,

s t wH
t a θ, φ = 1,

9

where each variable of wt, R, a, θ, φ is explained as weight
vector, covariance matrix, steering vector, and azimuth-
pitch angle about the beamforming. By using the Lagrange
multiplier method, the cost function of the above problem
is produced as follows:

L wt, μ =wH
t Rwt + μ wH

t a θ, φ − 1 10

When the partial derivative of L wt , μ about wt is zero,
the final solution to (10) is obtained as follows:

wt = μR−1a θ, φ , 11

Table 1: List of operators.

Symbol Description

Bold letter Complex matrix

ℂ Complex space

· H Hermitian transpose

· T Transpose

N ·, · Gaussian distribution

U ·, · Uniform distribution

· Determinant of a square

· 2 Euclidean norm

R Real parts of complex matrix

I Imaginary parts of complex matrix

σ2 Received noise power
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where μ = aH θ, φ R‐1a θ, φ −1
. In MVDR beamformer,

due to the SV a θ, φ mismatch error including of random
error and calibration error [18], the array response can cause
weight mismatch problems as follows:

wt = μR−1a θ, φ = μR−1Γa θ, φ
= μR−1 Γ θ, φ + Γ θ, φ − Γ θ, φ + ΔΓ θ, φ a θ, φ

= μR−1 a θ, φ + a θ, φ − a θ, φ

Random error

+ Δa θ, φ
Calibration error

= wt +wt − wt + Δwt

Mismatch

12

Then, in the following section, to reduce the weight mis-
match error of beamforming, a novel RAB on based the CM
penalty criterion is developed to improve the robustness of
beamforming.

4. Proposed Method

4.1. Formulation. Firstly, for limiting the target SV distor-
tion, a nonlinear inequality relax constraint of wH

t a θ, ϕ 2

≤ C2 is used to repair the constraint condition of the MVDR
beamformer. Secondly, a CM envelope response is employed
to reconstruct the target output energy of theMVDR beamfor-
mer in the collected snapshots. This CM blind channel equal-
ization can obviously improve the robust adaptation of the
potential constraints from weight mismatch processing.
Finally, a novel optimization problem is formulated as follows:

min
wt

wH
t R̂wt + wH

t Ŝ t
p − μ

q

s t
wH

t wt = B

wH
t a θ, φ 2 ≤ C2

∀ θ, φ ∈ Θ,Φ ,∀t,

13

where Θ and Φ are defined as the discrete angular set of azi-
muth and pitch direction, the parameter C ≥ 0 is assumed to
be the MVDR constraint supremum, B is a given constant

parameter, and μ is the received signal amplitude of the first
snapshot, and the superscript p − q represents the number of
constant modulus. In (13), the first constraint wH

t wt = B states
the estimated weight modulus of the allocation variables
wH

t wt t∈L, and the second constraint wH
t a θ, φ 2 ≤ C2 rep-

resents a nonlinear inequality relaxation to restrict the sidelobe
level of beamforming for repairing the SV, i.e., C = 0 001
(-30dB). Next, to consolidate the beamformer, this work is
mainly explored from two perspectives:

(1) A min-max recursive criterion-based inequality
relaxed constraints is proposed to penalize the spatial
responses of interferences as follows

min
wt

max ξt

s t wH
t a θ, φ 2 ≤ C2,∀ θ, φ ∈ Θ,Φ ,∀t,

14

where the penalty term as max ξ L
t=1 possesses the mini-

mum output energy as wH
t R̂wt from the MVDR beamfor-

mer. Namely, the maximum penalty parameter ξ is
regarded as the suppression preference; interferences with
the larger ξ have a higher priority to be suppressed. This
allows max ξ L

t=1 to minimize the energy function wH
t R̂wt

to obtain the robust response in beamforming. Note that
the inequality constraints in (14) are always feasible, and
the penalty term can automatically allocate DOFs given by
the dual-polarized USAA.

(2) The antijamming weight vector wt is obtained by
reconstructing the sample covariance subspace of the
MVDR beamformer while solving the minimum CM prob-
lem of the output beamforming y t =wH

t Ŝ t , as follows

wt
L
t=1 ≔ arg min

w
D wt , 15

where D wt = wH
t Ŝ t

p − μ
q
.

By combining (14) and (15), the estimated problem in
(13) can be recast to a new object function as follows:

min
wt

wH
t Ŝ t p − μ

q
+ ρ max

t
ξt

s t
wH

t wt = B

wH
t a θ, φ 2 ≤ C2;∀ θ, φ ∈ Θ,Φ ,∀t,

16
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Figure 1: GPS USAA: (a) 2 × 2 GPS antenna arrays with d = 11 6 cm, l =w = 2 2 cm. (b) The upper plane with R = 16 75mm, a = 3mm,
b = 10mm, c = 5mm, f = 9mm, e = 35mm, α = 90 ° . (c) The side view of antenna cell with h1 = 5mm and h2 = 10mm.
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where ρ ∈ 0, 1 is used for the trade-off between antijam-
ming and reducing noise. In practice, the optimization prob-
lem in (16) is still nonconvex programming. In general,
semidefinite relaxation (SDR) could be used to solve it. But
if the rank of the solution is not 1 when SDR is used to elim-
inate the equation, wH

t wt = B, a nonoptimal solution is pos-
sibly obtained [19]. Then, a variable splitting technique
based on two-element real-valued conditions is employed
to avoid this situation in the following subsection, such as
ADMM.

4.2. Solution Procedure via ADMM. In this subsection, the
ADMM method is used to transform the cost function (12)
into several subproblems by variable splitting technique,
and for bypassing the difficulty of this work, a penalty
parameter κ as well as setting p = 1,q = 2 are used to rewrite
the object functions (16) as follows:

min
wt

wH
t Ŝ t − μ

2 + ρκ

s t

wH
t wt = B,

wH
t a θ, φ 2 ≤ C2

κ ≥ ξ L
t=1,∀ θ, φ ∈ Θ,Φ ,∀t

17

Motivated by [20], there are two auxiliary real-valued
variables being used as follows:

m, n ∈ℂ2L×1m =Aw, n =w, 18

where w =
R wt

I wt
,A =

R a θ, φ I a θ, φ
−I a θ, φ R a θ, φ

.

Then

aH θ, φ wt = R a θ, φ − jI a θ, φ
⋅ R wt + jI wt wH

t a θ, φ 2

= aH θ, φ wt
2 = aH θ, φ wt aH θ, φ wt

H

= R a θ, φ I a θ, φ wt
2

+ −I a θ, φ R a θ, φ wt
2 = Awt

2

19

Based on the above equations with ∀ θ, φ ∈ Θ,Φ , ∀t,
the multiple constraints with only the real-valued variables
can be tackled separately as

min
w

wH Ŝ t − μ
2 + ρκ

s t
m =Aw ; n =w
n 2 = B ; m 2 < C2 ; κ ≥ ξ L

t=1,

20

After that, a novel equation based on the augmented

Lagrangian method is defined as:

ℓ w,m, n, κ, λ1, λ2 = wH Ŝ − μ
2 + ρκ + λ1 m −Aw

+ λ2 n − w + τ

2 m −Aw 2 + n −w 2

21

where λ1, λ2 are the Lagrangian multipliers vectors and τ > 0
is the step size. Each computational process is shown as
follows:

(1) Solving w

By omitting the irrelevant terms, the solution for w in
equation (21) is

wt+1 = arg min
w

ℓ w,mt , nt , κ, λt1, λt2 , 22

∂ℓ
∂w = 0⇒wt+1 =

1
2E

−1F, 23a

where E and F are explained as follows:

E = ŜŜT −
τ

2 ATA + I ,

F= 2μŜT +AT λt1
T + λt2

T + τATmt + τnt
23b

(2) Solving m and n

Noted where m is independent with n. For λ1 = λt1 and
λ2 = λt2, then (21) can be reformulated to two subproblems:

min
m

τ

2 m −mt
2

s t mt
2 ≤ C2,

min
m

τ

2 n − nt 2

s t nt
2 = B,

23c

where mt =Aw‐λt1/τ and nt =w‐λt2/τ.
Solutions of (23c) are

mt+1 =
C
mt

mt , mt > C,

mt , mt = C,

nt+1 =
B

nt
nt ,

23d

(3) Maximum penalty parameter κ

The Karush-Kuhn-Tucker conditions [21] of primal fea-
sibility is the necessary condition to minimize a feasible
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Initialize w0 , m0 , n0 , λ01 , λ02 ;
Compute Ŝ using ((1)-(2)); Determine ã(θ,φ) using (5);

Repeat for t=1,…,L;
Obtain m(t+1) and n(t+1) using (23d);
Determine κ by solving (23f) using Bisection method;
Obtain w t + 1 using (23a);
Update λt+11 , λt+12 using (23g) and (23h).

Until end for t=L;

Output w =
R w t+1

I w t+1

Final anti-jamming weight wfinal = R−1
j+ea/aHR−1

j+ea/ w

Algorithm 1: Blind adaptive antijamming beamforming.
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point of constrained nonlinear programming. Thus, equa-
tion (21) with respect to κ is equivalent as follows:

min ρκ + λt1 wt H Ŝ t − μ + τ

2 wt H Ŝ t − μ
2

s t κ ≥ ξt
L
t=1,

23e

A Bisection method (The bisection method is a succes-
sive nonlinear approximation method that keeps cut the
interval a b (sign of f a ≠ sign of f b ) into 2 halves
and check which half interval contains a root of the nonlin-
ear function f x .) [22] is employed to find the root with
respect to κ in (23e). That result is shown as:

max 0, λ1 + τwH Ŝ t

2 κ/ξt
= ρ, 23f

where κ =max ξt
L
t=1 ⋅ Δ

2 , Δ ≈ λt1 + τwH
t Ŝ .

(4) Updating the Lagrangian multipliers λ1, λ2

λt+11 = λt1 + τ mt+1 − Awt+1 , 23g

λt+12 = λt2 + τ nt+1 −wt+1 23h

Finally, the proposed RAB based on the CM penalty crite-
rion is summarized in Algorithm 1. Here, the computational
burden is to find the root in (23f), but the finding root needs
to run only once by using the bisection method. And the run-
ning time of the designed beamformer mainly depends on the
iterative process of solving the weight vector, where the com-
putational complexity is Ο M3 at each iteration.

5. Simulation Results

5.1. The Signal Model Based GPS Antenna Array. In Ansoft
HFSS software, a four-element dual-polarized USAA with
M = 8 ports is designed to obtain the radiation gains of the
antenna array at the GPS L1 band, which can model the
GPS signal Ŝ t . In this work, the results are shown in
Figure 2, which shows the normalized gain of the E/H-plane
at 1.57GHz when the first port is active and other ports are
terminated in match loads. It is clearly found that the E-

plane gain pattern is more symmetrical and has similar
“apple-shape” radiation than the H-plane. Although the mea-
sured results are lower than the simulation due to the scatter-
ing structure errors in the testing environment, the maximal
radiation efficiency is almost up to 77.26%. Then, we employ
the maximal gains of the E/H-plane to obtain the signal Ŝx.
In addition, the deception jamming Ŝj has a similar form with

Ŝx except for a different power, and the noise e t adopts a
Gaussian noise. In short, the performance of dual-polarized
USAA meets the requirement of a GPS antenna terminal,
and the results are used to receive a GPS signal model Ŝ t .

5.2. Antijamming RAB Performance Comparison. To show
the antijamming robustness of that novel beamforming, we
list some exciting methods as the references, where there
are the optimal beamforming, DL [6], LSMI [12], NCCB
[13], WC [14], MVDR [16], and sample matrix inversion-
based reconstruction (SMI) [23]. The interference-to-noise
ratio (INR) is equal to -15dB, and the noise obeys a Gaussian
distribution N 0, 12 . The snapshot is set to be L = 128, and
the computational results are averaged by 200 Monte Carlo
trials. The input SNR is set from -20dB to 20dB, and the sim-
ulation is running with the iteration from 10 to 100.

Firstly, the estimated directions of input signals are
obtained as the a priori condition of the simulation experi-
ment. MUSIC (multiple signal classification) [24], where
the signal source both interferences and noise are shown in
Figure 3. Here, it especially explains that the spectrum data
are obtained by the covariance of different signals. In
Figure 3, a solid line indicates the spectrum of interference
from three peaks at θ = −55 ° , 35 ° , 60 ° . While the spec-
trum peak P θ = 600 coincides with the peak of noise, then
the DOAs θ = −55 ° , 35 ° , 60 ° are chosen as the direc-
tions of interferences. Then, the obtained DOAs and maxi-
mum radiation gains from HP and VP are introduced into
formula (2) to generate the signal model.

Next step, the antijamming comparisons of beamform-
ing based on the a priori DOAs condition are shown in
Figure 4. Here, the SNR = 20dB and INR = 10dB are cho-
sen as other a priori conditions in the simulation experi-
ment. It is clearly found that all valley points can be
well located in the DOAs from the spectrum peaks shown
in Figure 4. Note that the number of interference sources
is 2N − 1 = 7 while there are three interference sources
[i.e., DOAs = −55 ° , 35 ° , 60 ° ] in Figure 4; this is
because the azimuth angle is only chosen as the half number

Table 2: Example sets list.

Scenario Example error Vector Distribution

1 Random look direction DOA U −5 ° , 5 °

2 Perturbations
Gain N 1, 0 12

Phase U −5 ° , 5 °

3 Position error Space U −λ/25, λ/25

4 Coherent local scattering Manifold error U 0, 2π
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Figure 6: Continued.
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of the whole angle from -180° to 180°. By comparing the pro-
posed method with LSMI and RAB, it can be observed that the
antijamming null attenuates stronger than 38dB in the jam-
ming direction and the beamforming has a lower side lobe
in all nonjamming directions. The conclusion of this experi-
ment is that the proposed approach has good robustness to
antenna array perturbation due to its constant modulus
smooth characteristic in the beamforming.

Besides, for showing the comparison of beamforming
power, the interference suppression (IS) levels are used as
an important index of before and after antijamming work.
Figure 5 plots IS levels by using the existing beamformers,
where the black and blue graphs are pointed to the left black
label and the right blue label, respectively. It can be found
that the proposed method obtains the best antijamming level
from INR = 5dB to 35dB in all approaches. This is because
the penalty variable max ξ L

t=1 can automatically enable the
reconstructed beamformer to distribute more DOFs to sup-
press interferences in the spatial signal responses. Although
its IS level is slightly worse than RAB, from 35dB to 50dB,
the IS level gradually enhances along with the INR increase.

Finally, we list four scenarios as presented in Table 2,
where the different example errors are shown to explore
the robustness of antijamming beamforming by using the
signal-to-interference plus noise ratio (SINR) comparison
versus snapshots and SNR.

Scenario 1 considers the SINR comparison versus
input SNR and the number of snapshots in random look
direction errors. As shown in Figure 6(a), all existing
beamformers can perform good SINR performance along
with SNR increasing, but when SNR exceeds zero dB,
RAB shows worse performance due to SINR decline.
Additionally in Figure 6(b), we can clearly find that the
proposed method performs best among all methods along
with the growth of snapshots. This is because the used CM
criteria can enable the beamformer to collect the max-
stable power from look direction errors when SNR and
snapshots gradually increase. But the SINR of LSMI and

NCCB degrade along with the snapshots increasing. In
scenario 2, we discuss the effects of antijamming beam-
forming in gain and phase perturbations. In Figure 6(c),
along with the input SNR increasing, we can observe that
the antijamming performance of all existing beamformers
can show good robustness except RAB. In Figure 6(d),
due to the gain and phase smooth perturbations, the pro-
posed method performs the best SINR level versus the
number of snapshots. Scenario 3 considers that the
antenna element error is caused by the position mismatch.
Figures 6(e) and 6(f) depict the robustness against antenna
position error. We can observe that the SINR level of all
beamformers can obtain the enhancement at −30 dB < SN
R < 0dB. Especially in the field of navigation, the proposed
method performs best when the SNR is generally -30 dB.
And when the number of snapshots exceeds 60, the pro-
posed method outperforms other methods. In scenario 4,
the coherent local scattering can cause the SV distortion
in (12). The final results are shown in Figures 6(g) and
6(h), where the proposed method provides the best perfor-
mance among all beamformers when the number of snap-
shots exceeds 50, while the SINR of NCCB, WC, LSMI,
and RAB show a downward trend versus the input SNR
increasing.

From the above analysis, it is illustrated that the pro-
posed RAB can obtain good robustness of beamforming in
all existing beamformers. However, the SINR of RAM suffers
from performance degradation when the input SNR
increases in all scenarios. Although the weight vectors of
WC and NCCB can be solved by the CVX tool, the objective
solution sometimes appears in the local optimization when
the nonconvex nonlinear optimization is solved by the long
running time. LSMI can give an efficient solution to find the
optimal loading level, but an inaccurate loading sample leads
to an imprecise Lagrangian multiplier. In contrast, the pro-
posed RAB based on CM envelope response can obtain the
robust adaptation of weight vector mismatch constraints in
the spatial beamforming; further, the antijamming

–30 –20 –10 0 10

–45

–30

–15

0

15

30

SI
N

R 
(d

B)

SNR (dB)

Optimal
LSMI
SMI
NCCB

WC
RAB
DL
Pro

(g)

20 40 60 80 100
–20

–15

–10

–5

0

5

10

15

SI
N

R/
dB

Snapshot

Optical
LSMI
SMI
NCCB

WC
RAB
DL
Propose

(h)

Figure 6: Example sets from scenario 1 to 4: (a), (c), (e), and (g) versus input SNR: (b), (d), (f), and (h) versus number of snapshots.
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robustness of beamforming is also improved by the simple
update rules and stable-fast convergence.

6. Conclusion

In this paper, we propose a novel beamformer via the con-
stant modulus (CM) penalization criteria to improve the
antijamming robustness of beamforming. Wherein, the CM
envelope response is used to obtain the robust adaptation
of weight vector mismatch by reconstructing the MVDR
beamformer in collected snapshots, and a min-max penal-
ized function is proposed to penalize the spatial responses
of the array signal model. This can enable the reconstructed
beamformer to allocate more DOFs to suppress the interfer-
ences. However, a nonconvex quadratic program problem is
formulated in this beamformer, and then we use the ADMM
optimization method to solve this quadratic problem.
According to the SINR, some simulations show that the pro-
posed beamformer can achieve better antijamming robust-
ness in beamforming by competing with the exciting
beamformers.
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