
Research Article
Online Energy-Aware Scheduling for Deadline-Constrained
Applications in Distributed Heterogeneous Systems

Yifan Liu ,1 Chengelie Du,2 Jinchao Chen ,2 and Xiaoyan Du 2

1School of Software, Northwestern Polytechnical University, Xi’an 710072, China
2School of Computer Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China

Correspondence should be addressed to Jinchao Chen; cjc@nwpu.edu.cn

Received 18 July 2023; Revised 12 March 2024; Accepted 26 March 2024; Published 2 May 2024

Academic Editor: Shunan Wu

Copyright © 2024 Yifan Liu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the current computing environment, the significance of distributed heterogeneous systems has gained prominence. The
research on scheduling problems in distributed systems that consider energy consumption has garnered substantial attention
due to its potential to enhance system stability, achieve energy savings, and contribute to environmental preservation.
However, efficient scheduling in such systems necessitates not only the consideration of energy consumption but also the
ability to adapt to the dynamic nature of the system. To tackle these challenges, we propose an online energy-aware scheduling
algorithm for deadline-constrained applications in distributed heterogeneous systems, leveraging dynamic voltage and
frequency scaling (DVFS) techniques. First, the algorithm models the continuously arriving applications and heterogeneous
processors and proposes a novel task-sorting method to prioritize tasks, ensuring that more applications are completed within
their respective deadlines. Second, the algorithm controls the selection range of processors based on the task’s subdeadline and
assigns the task to the processor with the minimum energy consumption. Through experiments conducted with randomly
generated applications, our approach consistently exhibits superior performance when compared to similar scheduling
algorithms.

Keywords: deadline constrained; dynamic systems; energy consumption; online scheduling

1. Introduction

Distributed heterogeneous systems stand out for their net-
work of myriad computing nodes, each furnished with a
unique combination of computing resources across various
types and performance tiers. In the current computing land-
scape, the significance of such systems has gained remark-
able prominence [1, 2]. These systems offer a multitude of
benefits, including high-performance, efficient, and highly
reliable computing capabilities, making them suitable for a
wide range of application scenarios. These domains range
from scientific computation, big data analytics, and artificial
intelligence to cloud services, the Internet of Things, and
beyond. By harnessing the diverse array of computing
resources available within distributed heterogeneous sys-
tems, it becomes feasible to adeptly meet diverse application
requirements [3]. Furthermore, leveraging these resources

allows for enhanced system performance, improved energy
utilization efficiency, and the facilitation of innovation and
development across diverse fields [4]. In the orchestration
of these resources, scheduling algorithms assume a pivotal
role, ensuring their efficient allocation and utilization.

The issue of energy consumption poses a significant
challenge in the context of distributed heterogeneous sys-
tems. Due to the varying energy consumption characteristics
of different types of computing nodes within the system, it
becomes imperative to devise effective approaches for man-
aging and optimizing energy consumption. Addressing the
energy consumption problem entails the development of
resource allocation and task scheduling strategies that aim
to minimize overall energy consumption while meeting the
performance requirements of tasks. Through the utilization
of energy-aware scheduling algorithms in tandem with
dynamic voltage and frequency scaling (DVFS) techniques,

Hindawi
International Journal of Aerospace Engineering
Volume 2024, Article ID 2122895, 14 pages
https://doi.org/10.1155/2024/2122895

https://orcid.org/0000-0002-2399-1076
https://orcid.org/0000-0001-6234-1001
https://orcid.org/0000-0002-2711-4839
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


distributed heterogeneous systems can effectively manage
and control energy consumption [5]. This approach allows
the system to enhance energy efficiency and sustainability
by dynamically adjusting the voltage and frequency levels
of computing nodes in response to workload demands.

As is widely recognized, the energy-conscious task
scheduling problem is classified as an NP-hard problem
[6]. Many existing algorithms primarily address static or off-
line scenarios, wherein all tasks are predetermined and the
environment is assumed to be stable [7–10]. Despite the
wealth of insightful research on static scheduling algorithms,
their adaptability falls short in the face of the dynamic land-
scape of distributed heterogeneous systems, which are charac-
terized by fluctuating performance levels and node availability.
Consequently, the focus on online scheduling becomes critical.
Through online scheduling, dynamic decisions are made con-
cerning task distribution and scheduling by taking into account
the system’s current state as well as the real-time influx of tasks,
necessitating persistent surveillance of the system and resource
conditions in either real time or near real time. By doing so, the
system can adapt to changing conditions, allocate tasks effi-
ciently, and optimize energy consumption in real time, thereby
enhancing overall system performance and resource utilization.

Therefore, when scheduling applications in distributed
heterogeneous systems, it is necessary to consider both energy
consumption and online scheduling issues simultaneously.
But most studies are static [11, 12] or do not consider energy
consumption [13, 14]. To tackle these challenges, we propose
a dynamic scheduling algorithm for randomly arrived applica-
tions, namely, online minimum energy consumption with
deadline-constrained scheduling (OMECDS) algorithm. The
algorithm makes informed decisions about application alloca-
tion, resource selection, and frequency scaling, which can
dynamically adapt to the system’s changing conditions and
optimize resource usage based on workload characteristics,
energy profiles of processors, and timing constraints. The con-
tributions are as follows:

1. By leveraging models of complex applications and het-
erogeneous processors, we propose a formulation for
the energy-aware application scheduling problem in
heterogeneous distributed systems. This formulation
revolves around a constrained optimization approach,
aiming tominimize the energy consumption of applica-
tions while adhering to strict deadline constraints.

2. We propose an OMECDS algorithm which efficiently
allocates suitable processors for stochastic incoming
applications with lower time complexity. Moreover,
we propose a novel approach to prioritize tasks from
different applications to enhance the success rate of
application execution. The proposed algorithm inte-
grates a processor selection mechanism that considers
the subdeadline defined for each task, with the pri-
mary objective of minimizing energy consumption
while adhering to the imposed deadline constraints.

3. To evaluate the performance of our proposed
approach, we conducted experiments using simula-

tions with randomly generated applications. The
results obtained indicate that OMECDS outperforms
other existing approaches.

The remainder of this article is organized as follows. In
Section 2, we provide an overview of the related work on
task scheduling algorithms. Section 3 introduces the applica-
tion model, energy model, and heterogeneous processor
model and provides a detailed description of the problem.
In Section 4, we present the algorithm proposed in this
study. Section 5 presents the experimental results and pro-
vides an in-depth analysis. Lastly, in Section 6, we discuss
the conclusion and further work of our research.

2. Related Work

Considerable attention has been devoted to investigating
scheduling algorithms that incorporate energy consumption
considerations in distributed heterogeneous systems. This
research has broadly categorized existing energy-conscious
scheduling strategies into two main groups: those prioritiz-
ing completion times and those driven by multiple objec-
tives, according to their scheduling aims.

Completion time–oriented methods prioritize minimiz-
ing the overall completion time of applications in a distrib-
uted heterogeneous system, while also taking energy
consumption into account. By adjusting the voltages and fre-
quencies of system processors through techniques like
DVFS, these methods are aimed at optimizing the
performance-energy trade-off. Xiao et al. [15] introduced
an algorithm called MSLECC, which addresses the challenge
of minimizing the dispatch length of parallel applications
while ensuring limited energy consumption in heteroge-
neous distributed systems. MSLECC incorporates an energy
consumption constraint to ensure that the energy consumed
during the scheduling process remains within predefined
limits. By considering the energy efficiency trade-offs associ-
ated with DVFS, the algorithm strikes a balance between
achieving shorter schedule lengths and maintaining energy
consumption at an acceptable level. Chen et al. [11] intro-
duced an enhanced approach to address the challenges of
the MSLECC algorithm. They proposed two key strategies:
an efficient task prioritization strategy and a weight-based
energy distribution strategy. Building upon the genetic algo-
rithm framework, Liu et al. [16] proposed an energy-
conscious dependence task scheduling algorithmwith a multi-
objective fitness function to balance the makespan and energy
consumption. These aforementioned studies are geared
toward enhancing scheduling efficiency in distributed hetero-
geneous systems by transforming themultifaceted challenge of
minimizing completion time and energy consumption into a
singular scheduling objective. This conversion allows for the
application of various optimization techniques and algorithms
to find an efficient solution.

Multiple objective-oriented scheduling algorithms are
designed to address scheduling problems that involve multi-
ple conflicting objectives [17, 18]. In scheduling scenarios,
multiple objectives must be simultaneously addressed,
including minimizing energy consumption, lowering costs,

2 International Journal of Aerospace Engineering



maximizing resource utilization, and meeting deadline con-
straints. The multiobjective optimization scheduling algo-
rithm endeavors to identify an optimal set of solutions,
specifically the nondominated solution set, often referred
to as the Pareto optimal solution set. Zhang et al. [19]
focus on the combinatorial optimization problem of biob-
jective optimization, aiming to achieve a high level of sys-
tem reliability while minimizing energy consumption in
the context of parallel tasks. Li et al. [20] introduced a
hybrid energy-aware multiobjective optimization algorithm
that encompasses eight distinct types of neighborhood
structures. In order to balance global and local search abil-
ities, a hybrid deep exploitation and deep exploration
method is employed. Khiat, Haddadi, and Bahnes [21]
employed an innovative amalgamation of hybrid genetic,
max–min, min–min, and random algorithms to orchestrate
a harmonious equilibrium between energy consumption and
overall response time. Such an equilibrium was accomplished
by the judicious modulation of processor voltages and fre-
quencies, thereby facilitating the attainment of an optimal
computational solution. Rehman et al. [22] proposed an algo-
rithm called MOGA, which was employed to address the con-
flicting interests of cloud stakeholders in optimization
problems. This approach is aimed at minimizing the make-
span while adhering to budget and deadline constraints, while
also offering an energy-efficient solution through the utiliza-
tion of DVFS. Additionally, a gap search algorithm was pro-
posed in this study to optimize the resource utilization of the
cloud’s available resources.

While the papers mentioned earlier primarily focused
on static scheduling methods with offline task allocation
processes, there is ongoing research in the field of online
scheduling algorithms that can effectively handle the
arrival of random tasks [23]. Zhou et al. [24] presented
a multiworkflow scheduling algorithm designed to dynam-
ically schedule concurrent workflows while adhering to
user-defined deadline and budget constraints. In their
approach, they use the concept of ranku from HEFT [25] as
a task priority metric. Additionally, they introduced a bifactor
selection method for resources, aiming to strike an optimal
balance between the budget and deadline constraints. Arabne-
jad, Bubendorfer, and Ng [26] involve the utilization of a cen-
tral queue to manage the workflow that has arrived. In this
process, the subdeadline of each task is calculated, and the
algorithm employs the early deadline first strategy to prioritize
and select tasks for scheduling. This strategy is aimed at
improving the success number of the workflow by ensuring
that tasks with earlier deadlines are scheduled first.

In the domain of task scheduling for distributed het-
erogeneous systems, it is crucial to take into account both
energy consumption and online scheduling issues. By
employing appropriate online energy consumption-aware
scheduling algorithms, it enhances the overall system per-
formance and improves energy utilization efficiency.

3. Model

In this section, we establish the heterogeneous processor model,
application model, and energy model utilized in our study.

3.1. Heterogeneous Processor Model. The distributed hetero-
geneous system we considered consists of m diverse proces-
sors, denoted as P = pk k ∈ 1, 2,⋯,m , interconnected by
a high-speed network. Each individual processor, pk ∈ P,
is equipped with DVFS capabilities, allowing it to switch
between different frequencies, denoted as f k. The available
frequency range for processor pk spans from the minimum
value, f kmin

, to the maximum value, f kmax
. It is important to

note that the execution time of a task decreases as the pro-
cessor’s frequency increases, while the energy consumption
increases. We disregard the energy impact resulting from
processor frequency-state transitions. In our assumption,
when a task is assigned to a processor, it is executed
immediately. However, it is important to note that a pro-
cessor can only execute one task at a time. This restriction
ensures that the processor’s resources are effectively uti-
lized and that tasks are processed sequentially to avoid
any conflicts or resource contention [27, 28].

3.2. Application Model. A parallel application, composed of
several interlinked tasks, can be depicted as a directed acyclic
graph (DAG). In this representation, each node corresponds
to an individual task, and each edge delineates the data
dependencies among tasks. The application is submitted in
a stochastic manner, but once submitted, all relevant informa-
tion about the application is known. We denote the set of
dynamic applications as η = G1,G2,⋯,Gw . A specific DAG
within this set, denoted as Gs, is modeled as Gs = as, ds, Vs,
Es . In this model, as represents the arrival time of Gs, d

s repre-
sents the deadline of Gs, V

s is the set of nodes, where each node
vsi ∈ V

s represents a task, and Es is the set of edges, where each
directed edge esi,j ∈ E

s indicates the data dependency between
tasks vsi and vsj. The communication time between tasks vsi
and vsj is denoted as dtsi,j. If vsi and vsj are located on the
same processor, we assume the communication time dtsi,j =
0. A task can only be executed when all the data from its
predecessors have been transferred. A task without any
immediate predecessors is referred to as an entry task, sym-
bolized as vsentry, while a task with no successors is referred to
as an exit task, symbolized as vsexit. Figure 1 shows an exam-
ple of a DAG-based parallel application that describes the
data dependencies of eight tasks.

Due to the heterogeneity of processors, the execution
time of a task can vary across different processors. The
average execution time of task vsi across all processors with
the maximum frequency is defined as follows:

et vsi = 〠
pk∈P

et vsi k

m
1

where et vsi k is the execution time of task vsi on processor
pk with the maximum frequency. The performance of a
processor is influenced by its operating frequency, which
in turn can lead to varying execution times for the same
task. The actual execution time of task vsi when allocated

3International Journal of Aerospace Engineering



on processor pk with frequency f k,h is defined as follows:

et vsi k,h =
f k,max
f k,h

× et vsi k 2

where f k,h is the actual frequency of pk and f k,max is the
maximum frequency of pk.

The completion of all tasks in the DAG Gs signifies the
completion of Gs as a whole.

Therefore, we define makespans as the time it takes for
Gs to be fully completed. The calculation of makespans can
be determined by

makespans =max
vsi∈V

s
aft vsi − as 3

where aft vsi is the actual finish time of vsi .

3.3. Energy Model. For the processor's power model, we used
the references in the existing articles [12, 29, 30]. The power
consumption manifests in two forms: dynamic and static
power consumption. The power consumption Power pk of
processor pk with frequency f k,h can be computed via

Power pk = Ps
k + h Pind

k + Pd
k = Ps

k + h Pind
k + Cef

k f
mk
k,h

4

where Ps
k represents the static/leakage power consumed

when the processor is turned on, Pind
k denotes the

frequency-independent dynamic power, Cef
k represents the

effective switching capacitance, mk is the dynamic power
exponent, and h is a Boolean coefficient indicating whether
the processor is active or inactive. If a task is being executed
on this processor, h = 1; otherwise, h = 0. It is assumed in
this paper that the static power, which can only be elimi-
nated by turning off the processor, is ignored. Additionally,
it is assumed that the processor can only change its fre-
quency when no task is being executed on it.

While DVFS can indeed contribute to curbing energy
consumption, it is imperative to acknowledge that operat-
ing at diminished frequencies may inevitably lead to pro-

longed completion times for applications. Consequently,
considering system-level power alone, lower frequencies
may not always be the optimal choice for achieving energy
savings. Thus, there exists a minimum energy-efficient fre-
quency for processor pk, denoted as f k,ee [31–33], which is
determined by

f k,ee =
Pind
k

mk − 1 Cef
k

mk 5

Assuming that the processor’s frequency can be
adjusted continuously within the range of f k,min and
f k,max, it is crucial for energy efficiency to limit the actual
frequency f within the range of f k,low and f k,max (i.e.,
f ∈ f k,low, f k,max ). f k,low is determined as the maximum
value between f k,min and f k,ee, which is calculated by

f k,low = max f k,ee, f k,min 6

The energy consumption E vsi , pk, f k,h of task vsi on
the processor pk with frequency f k,h is calculated as

E vsi , pk, f k,h = Pind
k + Cef

k f
mk
k,h ×

f k,max
f k,h

× et vsi k 7

Therefore, the total energy consumption of applica-
tion Gs can be obtained by

Etotal Gs = 〠
ns

i=1
E vsi 8

The used notations in this paper are presented in Table 1.

3.4. Problem Description. The primary aim of this study is to
tackle the issue of allocating available processors to all tasks
within incoming applications, considering the appropriate
frequency settings for each task. The objective is to minimize
the energy consumption of the application while simulta-
neously guaranteeing that the execution time of the applica-
tion remains within the specified deadline constraints. The
algorithm tries to find an optimal allocation strategy that
achieves a balance between minimizing energy usage and
meeting the application’s deadline requirements. Hence,
the optimization objective is defined as follows:

min 〠
Gs∈η

Etotal Gs

s t

1 aft vsi + dtsi,j ≤ max
vsj∈succ vsi

ast vsj

2 〠
m

k=1
xsi,k ≤ 1,∀i ∈ 1, 2,⋯, ns ,∀s ∈ 1, 2,⋯,w

3 makespans ≤ ds,∀s ∈ 1, 2,⋯,w

9

0

1 32 4

5 6

7

9 7

7 93
6 3

2 7

12 12

Figure 1: An example of a DAG-based parallel application with eight
tasks.

4 International Journal of Aerospace Engineering



Constraint (1) in Equation (9) states that a task cannot
be executed until all of its predecessors are completed, and
all data transmissions between them have been finished.
The variable ast vsj represents the actual start time of task
vsj. The aft vsi is the actual finish time of task vsi . The aft
vsi is determined by adding the actual execution of vsi
to the actual start time aft vsi . In Constraint (2), the
binary variable xsi,k indicates whether task vsi is assigned
to processor pk. This assignment is defined as follows:

xsi,k =
1, if vsi scheduled on Ik
0, otherwise

10

Constraint (2) ensures that each task can only be sched-
uled once, preventing duplication or multiple assignments.
Constraint (3) states that the actual completion time of the
application must satisfy its deadline requirement.

4. Proposed OMECDS Algorithm

In this section, we introduce the OMECDS algorithm, tai-
lored for managing the scheduling of multiple applications
with diverse arrival times within a heterogeneous distributed
system. The main objective of the algorithm is to minimize
the overall energy consumption of the system while effi-
ciently scheduling as many applications as possible. This is

accomplished through meticulous optimization of resource
allocation and task scheduling, all the while adhering to
the specified deadline constraints of the applications. The
algorithm is divided into two main phases: the task selection
phase and the processor allocation phase.

During the task selection phase, we introduce a novel
approach to calculate the priority and subdeadline of each
ready task derived from the incoming applications. The
computation of priority and subdeadline takes into account
an array of factors including task dependencies, arrival time,
overarching scheduling objectives, and other pertinent
considerations.

In the processor allocation phase, we map each eligible
task to an available processor, taking into account the
task’s subdeadline. The goal is to assign the task to a pro-
cessor and select an appropriate frequency setting that
ensures the subdeadline is not violated while minimizing
energy consumption. This phase involves making intelli-
gent decisions to optimize the allocation of processors
and frequencies, considering the dynamic characteristics
of the tasks and the available resources. The objective is
to achieve efficient task execution while conserving energy
resources.

4.1. Task Selection Phase. In contrast to static scheduling,
online scheduling operates under the condition that the
topology and data information of the application are
unknown until the application is submitted. This necessi-
tates that the algorithm must be capable of handling
incoming applications, parsing their task information,
and making decisions promptly. The algorithm must
dynamically adapt to the evolving task requirements and
efficiently make real-time scheduling decisions. It should
be able to process incoming applications on the fly, adjust
the task allocation, and optimize the resource utilization
based on the available information. This ability to handle
unknown and evolving application characteristics is essen-
tial for effective online scheduling. As the DAGs arrive,
they are stored in the DAGPool, and their parameters are
parsed during the task selection phase. In this phase, the
algorithm is aimed at identifying the ready tasks, deter-
mining their priority, and allocating subdeadline for
scheduling.

When a DAG is added to the DAGPool, the earliest start
time and the last finish time of its tasks can be calculated
based on the provided feature parameters. The earliest start
time represents the earliest possible time for a task to be exe-
cuted on a processor, which means that all tasks are finished
at a minimum time. We denote the earliest start time of task
vsi as est vsi , which is defined as follows:

est vsi =
as, if vsi = vsentry

max
vsj∈pred vsi

est vsj + dtsi,j , otherwise

11

where the pred vsi is the set of the immediate predecessors
of task vsi . The entry task’s earliest start time is its

Table 1: The used notations in this paper.

Notation Implication

pk The k-th processor in the system

m The number of processors

Gs The s-th DAG in the system

as The arrival time of DAG Gs

ds The deadline of Gs

Vs The set of tasks in Gs

Es The set of edges between all tasks in Gs

vsi The i-th task in Gs

ns The number of tasks in Gs

pred vsi The set of predecessors of task vsi
succ vsi The set of successors of task vsi
dtsi,j The data transfer time between vsi and vsj

et vsi The average execution time of vsi

et vsi k,h
The actual execution time of task vsi on

processor pk with frequency f k,h

est vsi The earliest start time of vsi
eft vsi The earliest finish time of vsi

avail pk
The earliest time that the processor pk

can execute a task

makespans Schedule completion time of Gs

E vsi , pk, f k,h
The energy consumption of task vsi on the

processor pk with frequency f k,h

5International Journal of Aerospace Engineering



application’s arrival time. Accordingly, the earliest finish
time of vsi is defined as

eft vsi = est vsi + et vsi 12

The latest finish time of a task represents the maxi-
mum allowable time for its completion, ensuring that the
task does not exceed the specified deadline constraint.
We define lf t vsi as latest finish time of vsi , which can
be calculated by

lft vsi =
ds, if vsi = vsexit

min
vsp∈succ vsi

lft vsp − et vsp − dtsi,p , otherwise

13

where succ vsi is the set of immediate successors of vsi .
To accommodate the system’s dynamics and adhere to

task priority constraints, the OMECDS employs a strategy
of exclusively scheduling ready tasks during each iteration.
This approach prevents the scenario where the initial appli-
cations occupy a significant portion of system resources,
potentially impeding the completion of subsequent applica-
tions. By prioritizing the scheduling of ready tasks, the algo-
rithm ensures that tasks from different applications have a
fair opportunity to be executed and progress toward comple-
tion according to their priorities. This approach promotes
efficient utilization of system resources and facilitates the
timely execution of all arriving applications.

Ready task means a task has no predecessor or its all
immediate predecessors have been completed. When new
DAGs arrive, all the entry tasks within the DAG are consid-
ered ready tasks and are added to the ready task list (RTL).
Additionally, when the last unfinished predecessor of a task
is completed, that task becomes a ready task and is also
added to the RTL. As a result, the RTL consists of all tasks
that are currently ready for execution. All tasks within the
RTL can be executed in parallel, as they have met their
dependencies and are independent of each other in terms
of execution order.

Sorting the ready tasks is a crucial aspect of this work.
Unlike previous studies [15, 34], which focused on a single
DAG and utilized the ranku as the tasks’ priority, this
work deals with tasks from multiple DAGs that have dis-
tinct deadlines. To maximize the number of completed
DAGs within their respective deadlines, we introduce the
concept of urgency vsi as the priority of tasks, which can

be calculated by

urgency vsi =
et vsi

lft vsi − est vsi
14

The closer the task’s est vsi is to the lft vsi , the more
priority it has. We rank urgency of all ready tasks. This
prioritization allows for the scheduling algorithm to focus
on tasks that are time-critical to ensure the successful
completion of the corresponding DAGs within their dead-
lines. When comparing priorities between two tasks vsi and
vsj, if both urgency of vsi and vsj are positive or negative,
the task exhibiting greater urgency is deemed to have
higher priority. Conversely, if the urgency value is one
positive and the other negative, the task with negative
urgency is ascribed higher priority.

The process of handling newly arrived applications in
OMECDS is outlined in Algorithm 1. The algorithm utilizes
the RTL to manage tasks that are ready for execution. Upon
the arrival of new DAGs, the algorithm calculates the earliest
start time est vsi , earliest finish time eft vsi , and latest finish
time lft vsi for all tasks in the DAG (Line 1). This informa-
tion is crucial for scheduling and processor allocation. For
the new DAGs, only entry tasks are considered ready tasks.
The algorithm adds these entry tasks to the RTL (Line 2).
Additionally, all unselected tasks are added to the TaskPool
(Line 3). The TaskPool serves as a repository for tasks that
are not yet ready for execution. The algorithm sorts the
ready tasks in the RTL based on their urgency vsi values
(Line 4). This prioritization ensures that tasks with higher
urgency, often associated with closer deadlines or critical
dependencies, are scheduled first. Finally, ready tasks in the
RTL are allocated to available processor using the function
ScheduleReadtTask RTL (Line 5). This step involves
assigning suitable processors and frequencies to the tasks,
while considering their timing constraints and energy effi-
ciency objectives.

In a DAG with n tasks, the maximum number of edges e
is given by n − 1 n /2. In Algorithm 1, Line 1 calculates
est vsi , eft vsi , and lft vsi for each task in order to determine
their scheduling parameters. This calculation requires a time
complexity of O n2 . In Line 4, the length of the RTL queue
is determined by the maximum indegree of a task in Gs,
denoted as nin. Sorting tasks in the RTL queue takes a time
complexity of O nin × log nin . The calculation of urgency
in the algorithm also takes a time complexity of O nin
Therefore, the overall time complexity of task selection
for an arrival DAG Gs in the algorithm is O n2 + nin ×

Require: The arrival DAG Gs = as, ds, Vs, Es

Calculate est vsi , ef t v
s
i and lf t vsi for each tasks in Vs;

Add all entry tasks into RTL;
Add other tasks in Vs into TaskPool;
Calculate the urgency vsi of all tasks in RTL ; and sort them in non-descending order;
Call ScheduleReadyTask(RTL ; );

Algorithm 1: The preprocessing for an arrival DAG.

6 International Journal of Aerospace Engineering



log nin . Considering that nin is typically small compared
to n, we can simplify the time complexity to O n2 .

The process of the algorithm that handles the completed
task is detailed by Algorithm 2. When a task vsi is completed,
the algorithm identifies the immediate successor tasks that
become ready as a result. These ready tasks are added to
the RTL to indicate that they are now eligible for execution
(Lines 1–5). The urgency vsj values of selected tasks are cal-
culated (Line 3). The selected tasks are then removed from
the TaskPool to indicate that they have been scheduled for
execution (Line 4). Tasks in the RTL are sorted based on
their urgency values (Line 7). This ensures that the tasks
with higher urgency, which reflects their priority, are sched-
uled first. Finally, the function ScheduleReadyTask RTL is
called to allocate the resources and execute the ready tasks
(Line 8).

The completion of a task indicates that its immediate
successor tasks are likely to be ready for execution. By
promptly identifying and scheduling ready tasks, the algo-
rithm can potentially complete more applications within
their respective deadline constraints. This dynamic handling
of ready tasks enhances the overall efficiency and effective-
ness of the scheduling algorithm. When a task vsi is com-
pleted, Algorithm 2 needs to traverse each task in succ vsi ,
which needs time O nout . O nout is the maximum outde-
gree of a task among Gs. The time complexity in Line 2 is
O nin . The length of RTL saving the ready task in succ vsi
is at most equal to nout. Sorting tasks in RTL requires time
O nout log nout . Hence, the time complexity of the pro-
cessing for the finish of a task is O nin × nout + nout × log
nout .

4.2. Processor Allocation Phase. In the processor allocation
phase, the algorithm assigns appropriate processors and fre-
quencies to the tasks in the RTL based on their priority
order. The objectives are to ensure the timely completion
of tasks, thereby averting any severe consequences, and to
reduce the overall energy consumption of the system.

To meet the deadline constraints, we segment the over-
arching deadline of the application into subdeadlines, each
meticulously assigned to individual tasks. The problem of
matching the overall deadline of an application is trans-
formed into the problem of matching the subdeadline of
each individual task within the application. This transforma-
tion allows for a more fine-grained and task-centric

approach to deadline management. The subdeadline of vsi
can be calculated as

SD vsi = eft vsi + lft vsns − eft vsns
est vsi − lft vsi
lft vsns − est vs1

15

where lft vsns is the last finish time of last task in Gs and
est vs1 is the earliest time of first task. It should be empha-
sized that the slack time SD vsi , associated with task vsi , must
not surpass its latest finish time lft vsi . Should the calcula-
tion of SD vsi based on Equation (15) result in a value
greater than lft vsi , the SD vsi is accordingly adjusted to
equal lft vsi . Transforming the problem in this way enables
the algorithm to schedule tasks based on their individual
subdeadlines. It provides a more detailed understanding of
the temporal requirements of each task and facilitates more
accurate processor allocation and scheduling decisions.

The algorithm iterates through all available processors
and frequencies to find the best combination for each ready
task vsi . It considers the energy consumption E vsi , pk, f k,h
for each processor pk and frequency f k,h and checks if the
estimated finish time eft vsi , pk, f k,h on that combination is
less than the task’s subdeadline SD vsi . eft vsi , pk, f k,h can
be calculated by

est vsi , pk, f k,h =

max avail pk , as , if vsi = vsentry

max avail pk , max
vsj∈pred vsi

aft vsj + dtsi,j , otherwise

16

eft vsi , pk, f k,h = est vsi , pk, f k,h +
et vsi k ∗ f k,max

f k,h
17

where avail pk is the earliest time that pk is idle.
By iterating through all possible combinations and

selecting the one with the minimum energy consumption
that satisfies the subdeadline constraint, the algorithm
ensures that the task is allocated to the best available
resources in terms of energy efficiency while meeting its tim-
ing requirements. If none of the processors can complete the
task within its SD, then assign the task to the processor that
completes it the fastest.

The pseudocode of the processor allocation phase is
stated in Algorithm 3. The algorithm iterates through all

Require: A completed task vsi
For each vsj ∈ succ vsi do

If all of pred vsj have been completed then

Calculate urgency vsj ;
Add task vsj into RTL and remove vsj from TaskPool;

Endif
Endfor
Sort all tasks in RTL by urgency in a non-descending order;
Call ScheduleReadyTask(RTL);

Algorithm 2: The processing for the finish of a task.

7International Journal of Aerospace Engineering



available processors and frequencies to find the best combi-
nation for each ready task vsi (Lines 1–15). The algorithm
initializes related variables for every task in RTL (Line 2).
Then, traverse all processors and frequencies and calculate
est, eft, and E (Lines 3–5). The algorithm checks if the earli-
est finish time (eft vsi , pk, f k,h ) of the task on the selected
processor and frequency is less than the task’s subdeadline
(SD vsi ) (Line 6). This ensures that the allocated processor
can complete the task within the specified subdeadline. The
algorithm selects the processor bestPro and frequency
bestF combination that results in the minimum energy con-
sumption for the task (Lines 7 and 8). Finally, assign task vsi
to bestPro with bestF for execution and remove vsi from RTL
(Lines 13–15).

In the processor allocation phase, we only select ready
tasks for scheduling, which helps improve the system’s
responsiveness to dynamic events. By considering both
energy consumption and subdeadline constraints, OMECDS
chooses the best processor and frequency combination that
minimizes energy consumption while considering the dead-
line constraint. The length of queue RTL is at most equal to
nin. For each task vsi in RTL, Algorithm 3 needs to traverse all
processors. The number of computing processors is m, and
the maximum number of frequencies is H. Lines 1–5 in
Algorithm 3 are to calculate est vsi , pk, f k,h , eft vsi , pk, f k,h ,
and E vsi , pk, f k,h for each task and each processor, which
need time O n2in ×m + nin ×m ×H . The time complexity
of resource allocation is O nin ×m × nin +H .

5. Results

In this section, the performance of the proposed OMECDS
algorithm is evaluated by comparing it with the LESA [11],
MSLECC [15], and FCFS with ranku algorithms. LESA
addresses the challenge of energy-aware scheduling for
dependent tasks on a heterogeneous multiprocessor system.
It introduces a list-based algorithm to effectively determine
start times and processor assignments. The approach opti-

mizes task execution by balancing dependencies and energy
constraints, strategically choosing suitable processors and
speed settings for minimal completion time. MSLECC is
a classic method of solving dependent task scheduling
problems with the shortest schedule length while consider-
ing energy consumption constraints. It differs in task
sequencing and energy allocation methods from LESA.
FCFS with ranku algorithm gives a rank for each DAG
task according to the HEFT [25] and schedules DAGs
according to the “first come first service.” For the online
scheduling problem considered in this article, the LESA
and MSLECC algorithms are repeatedly executed at each
new DAG arrival to handle the scheduling. All the algo-
rithms used in the experiments are implemented in the
Java programming language. The experiments were con-
ducted on a computer with an Intel® Core™ i7-10700H
CPU operating at 2.90GHz, 16.00GB RAM, and a 64-bit
Windows 10 operating system.

5.1. Experimental Setup. The simulated heterogeneous dis-
tributed system consists of m processors with varying pro-
cessing capabilities. The processor and application
parameters used in the experiments are as follows: 10ms ≤
et vsi , pk ≤ 100ms, 10ms ≤ dtsi,j ≤ 100ms, 0 03 ≤ Pind

k ≤ 0 07,
0 8 ≤ Cef

k ≤ 1 4, 2 5 ≤mk ≤ 3 0, and f k,max = 1GHz (all the
frequency values are discrete with an accuracy of
0.01GHz). These parameters are set exactly by reference to
existing work [3, 12, 35]. In this experiment, 20 processors
are randomly generated for each experiment.

The random DAGs used in the experiment are generated
using a DAG generator based on several parameters, namely,
CCR, n, fat, density, regularity, and jump. The parameter
settings are chosen based on a previous paper [13] to ensure
a diverse set of DAG characteristics. CCR represents the
ratio of communication to computation in the DAG. The
available values for this parameter are {0, 1, 2}. n determines
the total number of tasks in the DAG. The values used in the
experiment are {10, 20, 30, 40, 50, 60, 70, 80, 90, 100},

Require: each task vsi in RTL.
Ensure: The schedule scheme.
For each vsi in RTL do

Eminef t,minE⟵MAXVALUE, bestPro, bestF ⟵∅;
For all processor pk do

For all frequency f k,h do
Calculate the est vsi , pk, f k,h , ef t vsi , pk, f k,h , and E vsi , pk, f k,h ;
If SD vsi > ef t vsi , pk, f k,h then

If minE > E vsi , pk, f k,h then
minef t⟵ ef t vsi , pk, f k,h , bestPro⟵ pk, bestF⟵ f k,h, minE⟵ E vsi , pk, f k,h ;

Endif
Endif

Endfor
Endfor
Schedule vsi on bestPro with bestF;
Remove vsi from RTL;

Algorithm 3: Function ScheduleReadyTask RTL .

8 International Journal of Aerospace Engineering



providing a range of DAG sizes. fat influences the width and
height of the DAG, thereby affecting its overall structure.
The available values are {0.2, 0.4, 0.6}. density impacts the
number of edges between different levels of nodes in the
DAG. A higher density value indicates a larger number of
edges. The values used in the experiment are {0.2, 0.4, 0.6}.
regularity affects the uniformity of the number of tasks at
each level of the DAG. A higher regularity value indicates
a higher similarity in the number of tasks among different
levels. The set of values used is {0.2, 0.4, 0.6}. jump repre-
sents the number of different levels an edge can connect. A
larger jump value allows edges to connect nodes that are far-
ther apart in the DAG. The available values for this param-
eter are {1, 2, 4}. Table 2 summarizes the parameter
settings used in the DAG generator.

To simulate the dynamic arrival of DAGs, an arrival time
needs to be set for each DAG. The arrival time represents the
time when the DAG becomes available for scheduling, which
is defined as

as =
0, if s = 0

as−1 + α ∗ ds−1, otherwise
18

where α is the parameter that can control the spacing and
distribution of the DAG arrivals. The α is chosen with the
values {5%, 10%, 15%, 20%, 25%, 30%}, where the default
value is 15%. The arrival time interval is αmultiply the dead-
line of the last arrived DAG. The larger the value of α, the
longer the arrival interval of DAGs. The arrival time of the
first DAG is 0.

The deadline of a DAG can be defined based on the
calculation of a deadlineBase. deadlineBase represents the
completion time of the longest path from the entry task
to the exit task in the DAG, without considering the
communication cost. By using the deadlineBase, we obtain
the minimum overall deadline ds for the DAG which is
defined as

ds = as + β ∗ deadlineBases 19

where β is selected from [2, 2.5, 3, 3.5, 4, 4.5]. The default
value of β is 2. We have procedurally generated the min-
imum execution times for tasks on an assortment of pro-
cessors, ensuring a stochastic representation of the
system’s performance characteristics.

5.2. Results and Discussion

5.2.1. Planning Successful Rate (PSR) and Energy
Consumption Analyses. In the experiment, the performance
of the algorithms is evaluated based on two metrics: energy
consumption and PSR [36]. The PSR metric represents the
percentage of successfully scheduled DAGs, which is calcu-
lated as

PSR = 100 ∗
number of successful schedule
total number in experiment

20

where a successful schedule means that the makespan of a
DAG is less than its deadline. The energy consumption met-
ric measures the total energy consumed by the system dur-
ing the execution of the scheduled DAGs. To analyze the
algorithms’ performance in a dynamic environment, each
algorithm is executed independently 20 times to obtain reli-
able and statistically significant results, and mean values are
calculated. One thousand DAGs are generated using the ran-
dom parameter values as a DAG pool. From this pool of
DAGs, a set of 20 DAGs is randomly selected for each sched-
ule. By running the algorithms multiple times and consider-
ing a diverse set of DAGs, the experiment is aimed at
providing a comprehensive evaluation of the algorithms’
performance, taking into account different scenarios and
variations in DAG characteristics.

The first experiment, depicted in Figure 2, encompasses
the evaluation of both PSR and average energy consumption
across varying arrival time intervals. In Figure 2(a), the PSR
demonstrates a discernible upward trend as the arrival time
interval increases. This increase in the arrival factor, denoted
by α, implies a reduction in the number of applications that
the system must process within a unit of time. In the system
under consideration, the number of processors is fixed. This
means that the computing power of the system is limited.
Consequently, the reduction of α leads to an enhancement
in the successful completion rate of applications. However,
it is important to note that the FCFS algorithm prioritizes
minimizing the completion time of applications at the
expense of significantly higher energy consumption, as illus-
trated in Figure 2(b). As the value of α increases, the urgency
to complete applications within the specified deadline
diminishes, leading to a greater emphasis on energy con-
sumption performance, as depicted in Figure 2(b) when α
exceeds 0.2. Remarkably, the OMECDS algorithm surpasses
the MSLECC algorithm achieves notable energy savings and
PSR improvements. In comparison to the LESA algorithm,
the OMECDS algorithm exhibits a 30.55% increase in aver-
age energy consumption, but a remarkable 204.5% improve-
ment in average PSR. When compared to the FCFS
algorithm, the OMECDS algorithm achieves a 58.57%
reduction in energy consumption and a 7.12% increase in
average PSR.

Figures 3(a) and 3(b) present the PSR and average
energy consumption of the four algorithms under varying
deadline factors. With an increase in the value of β, the
deadlines for each application are extended, resulting in

Table 2: The generator parameters of DAG.

Parameters Value

n = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

fat = [0.2, 0.4, 0.6]

density = [0.2, 0.4, 0.6]

regularity = [0.2, 0.4, 0.6]

jump = [1, 2, 4]

CCR = [0, 1, 2]

9International Journal of Aerospace Engineering



an improvement in the PSR for all algorithms. When β
surpasses 3.5, OMECDS exhibits the capability to schedule
all arrived applications while meeting their respective
deadlines. OMECDS demonstrates a more remarkable abil-
ity to minimize energy consumption when the deadline is
relaxed, as evidenced in Figure 3(b). In contrast, MSLECC
and LESA algorithms allocate energy for each task, leading
to similar energy consumption even under different dead-
line constraints, because their energy consumption con-
straints are fixed. Based on the experimental results, it is
evident that OMECDS outperforms both FCFS and
MSLECC algorithms in terms of both PSR and energy
consumption across different values of β. Additionally,

OMECDS surpasses LESA in terms of PSR across varying
β values. Notably, when compared to LESA, in general,
OMECDS still achieves a significant 18.41% reduction in
average energy consumption.

In Figure 4, we experiment with different numbers of
applications. Notably, the number of tasks in an application
is still randomly generated. The number of applications is
10, 20, 30, 40, 60, 80, and 100. The α is 0.15 and β is 2.5.
Obviously, OMECDS exhibits superior performance com-
pared to FCFS and MSLECC algorithms. Compared with
LESA, the average energy consumption of OMECDS experi-
ences a slight increase of 7.97%, but the PSR shows a sub-
stantial improvement of 198%.

0

10

20

30

40

50

60

70

80

90

100

0.05 0.1 0.15 0.2 0.25 0.3

PS
R

Pr
oc

es
sin

g 
su

cc
es

sfu
l r

at
e (

%
) 

OMECDS
MSLECC

FCFS
LESA

�

(a)

0

5

10

15

20

25

30

35

0.05 0.1 0.15 0.2 0.25 0.3

Av
er

ag
e e

ne
rg

y 
co

ns
um

pt
io

n

OMECDS
MSLECC

FCFS
LESA

�

(b)

Figure 2: PSR values and average energy consumption of four algorithms with different interval arrival times.

0

20

40

60

80

100

120

2 2.5 3 3.5 4 4.5

PS
R

Pr
oc

es
sin

g 
su

cc
es

sfu
l r

at
e (

%
)

OMECDS
MSLECC

FCFS
LESA

�

(a)

0

5

10

15

20

25

30

35

2 2.5 3 3.5 4 4.5

Av
er

ag
e e

ne
rg

y 
co

ns
um

pt
io

n

OMECDS
MSLECC

FCFS
LESA

�

(b)

Figure 3: PSR values and average energy consumption of four algorithms with different deadline factors.

10 International Journal of Aerospace Engineering



Figures 5(a) and 5(b) show the performance of the four
algorithms with a varied number of processor, while keeping
the number of applications fixed at 20. All processors are
randomly generated. The value of α is set to 0.15 and the
value of β is set to 2. As the number of processors increases,
the PSR of all algorithms tends to increase. When compared
to MSLECC, OMECDS achieves an average PSR improve-
ment of 46% and reduces average energy consumption by
20.11%. In comparison to FCFS, OMECDS shows a
10.35% improvement in PSR and a 48.72% reduction in
energy consumption. Compared with LESA, OMECDS
experiences a 63.94% increase in energy consumption but

exhibits an impressive average PSR improvement of
212.09%. Overall, when considering both the successful
completion rate of applications and energy consumption,
OMECDS performs better than the other algorithms.

5.2.2. Runtime Analyses. This subsection is aimed at evaluat-
ing the time efficiency of the four algorithms. The running
time represents the duration from the start of the algorithm
to the point of finding a solution. Time performance is one
of the important indicators to measure the algorithm.

In the first comparison, we analyze the average runtime of
all algorithms under different deadline factors β, as illustrated

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 60 80 100

PS
R

Pr
oc

es
sin

g 
su

cc
es

sfu
l r

at
e (

%
)

Numbers of applications

OMECDS
MSLECC

FCFS
LESA

(a)

0

20

40

60

80

100

120

140

160

Av
er

ag
e e

ne
rg

y 
co

ns
um

pt
io

n

Numbers of applications
10 20 30 40 60 80 100

OMECDS
MSLECC

FCFS
LESA

(b)

Figure 4: PSR values and average energy consumption of four algorithms with different numbers of applications.

0

10

20

30

40

50

60

70

15 20 25 30 35

PS
R

Pr
oc

es
sin

g 
su

cc
es

sfu
l r

at
e (

%
)

Numbers of processors

OMECDS
MSLECC

FCFS
LESA

(a)

0

5

10

15

20

25

30

35

15 20 25 30 35

Av
er

ag
e e

ne
rg

y 
co

ns
um

pt
io

n

Numbers of processors

OMECDS
MSLECC

FCFS
LESA

(b)

Figure 5: PSR values and average energy consumption of four algorithms with different numbers of processors.

11International Journal of Aerospace Engineering



in Figure 6. As mentioned previously, when the deadline con-
straint becomes looser, OMECDS algorithm tends to prioritize
solutions with lower energy consumption. Consequently, as β
increases, the running time of OMECDS experiences a slight
increase. On the other hand, FCFS exhibits better time perfor-
mance compared to OMECDS, LESA, andMSLECC due to its
utilization of the maximum frequency for processors without
dynamic adjustments. However, it is important to note that
OMECDS still demonstrates better time performance com-
pared to LESA and MSLECC. Both MSLECC and LESA are
heuristic-based algorithms with low time complexity, indicat-

ing that OMECDS maintains good execution efficiency while
achieving its objectives.

The last experiment is aimed at investigating the average
running time of all algorithms under varying numbers of ran-
domly generated applications. In Figure 7, it can be observed
that as the number of applications increases, the average exe-
cution time of all algorithms also increases. However, our pro-
posed algorithm demonstrates significantly shorter average
execution times when compared to LESA and MSLECC.
Although FCFS has a shorter execution time than OMECDS,
it is important to highlight that OMECDS excels in application
completion and energy savings. In summary, OMECDS
exhibits outstanding performance in terms of execution effi-
ciency, energy savings, and successful application scheduling.

6. Conclusions

To tackle the dynamic scheduling problem associated with
parallel applications in heterogeneous distributed systems,
we have introduced the OMECDS algorithm, which is aimed
at minimizing energy consumption while adhering to deadline
constraints. The proposed algorithm boasts a low computa-
tional complexity, making it efficient in practical implementa-
tion. Our devised task priority method effectively manages the
spontaneous arrival of applications, while the formulation of
subdeadlines and the selection mechanism for processors
strike an optimal balance between meeting deadlines and
minimizing energy consumption. Experimental results have
demonstrated the superior performance of our approach com-
pared to alternative algorithms. However, for future work, we
plan to delve into distributed methods to tackle existing chal-
lenges. Centralized approaches are susceptible to single points
of failure. We aspire to explore distributed solutions that can
augment reliability and robustness in scheduling parallel
applications.

Data Availability Statement

Data will be made available on request.

Conflicts of Interest

The authors declare no conflicts of interest.

Author Contributions

Y.L. and J.C. designed the resource. Y.L. wrote the first draft
of the paper. Y.L., X.D., J.C., and C.D. analyzed the results,
read the manuscript, and approved the final version. All
authors have read and agreed to the published version of
the manuscript.

Funding

This work was supported by the National Natural Science
Foundation of China (No. 62106202), the Key Research
and Development Program of Shaanxi (No. 2024GX-
YBXM-118), the Aeronautical Science Foundation of China
(No. 2023M073053003), and the Fundamental Research
Funds for the Central Universities.

0

20

40

60

80

100

120

140

160

180

200

2 2.5 3 3.5 4

Ru
nt

im
e (

m
s)

�

OMECDS
MSLECC

FCFS
LESA

Figure 6: Running time of four algorithms with different deadline
factors.

0

100

200

300

400

500

600

700

800

10 20 30 40 60

Ru
nt

im
e (

m
s)

Numbers of applications

OMECDS
MSLECC

FCFS
LESA

Figure 7: Running time of four algorithms with different numbers
of applications.

12 International Journal of Aerospace Engineering



References

[1] J. Chen, C. Du, Y. Zhang, P. Han, and W. Wei, “A clustering-
based coverage path planning method for autonomous hetero-
geneous UAVs,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 23, no. 12, pp. 25546–25556, 2022.

[2] J. Chen, Y. Zhang, L. Wu, T. You, and X. Ning, “An adaptive
clustering-based algorithm for automatic path planning of het-
erogeneous UAVs,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 23, no. 9, pp. 16842–16853, 2022.

[3] G. Xie, G. Zeng, X. Xiao, R. Li, and K. Li, “Energy-efficient
scheduling algorithms for real-time parallel applications on
heterogeneous distributed embedded systems,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 28, no. 12,
pp. 3426–3442, 2017.

[4] Q. Zhang, S. Geng, and X. Cai, “Survey on task scheduling
optimization strategy under multi-cloud environment,”
CMES-Computer Modeling in Engineering & Sciences,
vol. 135, no. 3, pp. 1863–1900, 2023.

[5] Y. Zhang, “DVFS-based energy-aware scheduling of imprecise
mixed-criticality real-time tasks,” Journal of Systems Architec-
ture, vol. 137, article 102849, 2023.

[6] X. Tang, W. Cao, H. Tang et al., “Cost-efficient workflow
scheduling algorithm for applications with deadline constraint
on heterogeneous clouds,” IEEE Transactions on Parallel and
Distributed Systems, vol. 33, no. 9, pp. 2079–2092, 2022.

[7] S. Chang, X. Zhao, Z. Liu, and Q. Deng, “Real-time scheduling
and analysis of parallel tasks on heterogeneous multi-cores,”
Journal of Systems Architecture, vol. 105, article 101704, 2020.

[8] J. Zhou, J. Yan, K. Cao et al., “Thermal-aware correlated two-
level scheduling of real-time tasks with reduced processor
energy on heterogeneous MPSoCs,” Journal of Systems Archi-
tecture, vol. 82, pp. 1–11, 2018.

[9] S. Potluri, S. Mohanty, and S. Mohanty, “QoS-driven hybrid
task scheduling algorithm in a cloud computing environ-
ment,” International Journal of Grid and Utility Computing,
vol. 14, no. 4, pp. 311–319, 2023.

[10] J. Chen, P. Han, Y. Zhang, T. You, and P. Zheng, “Scheduling
energy consumption-constrained workflows in heterogeneous
multi-processor embedded systems,” Journal of Systems Archi-
tecture, vol. 142, article 102938, 2023.

[11] J. Chen, Y. He, Y. Zhang, P. Han, and C. Du, “Energy-aware
scheduling for dependent tasks in heterogeneous multiproces-
sor systems,” Journal of Systems Architecture, vol. 129, article
102598, 2022.

[12] N. Gao, C. Xu, X. Peng, H. Luo, W. Wu, and G. Xie, “Energy-
efficient scheduling optimization for parallel applications on
heterogeneous distributed systems,” Journal of Circuits, Sys-
tems and Computers, vol. 29, no. 13, article 2050203, 2020.

[13] G. Wang, Y. Wang, M. S. Obaidat, C. Lin, and H. Guo,
“Dynamic multiworkflow deadline and budget constrained
scheduling in heterogeneous distributed systems,” IEEE Sys-
tems Journal, vol. 15, no. 4, pp. 4939–4949, 2021.

[14] J. Liu, J. Ren, W. Dai et al., “Online multi-workflow scheduling
under uncertain task execution time in IaaS clouds,” IEEE
Transactions on Cloud Computing, vol. 9, no. 3, pp. 1180–
1194, 2021.

[15] X. Xiao, G. Xie, R. Li, and K. Li, “Minimizing schedule length
of energy consumption constrained parallel applications on
heterogeneous distributed systems,” in 2016 IEEE Trustcom/
BigDataSE/ISPA, pp. 1471–1476, Tianjin, China, 2016.

[16] Y. Liu, C. Du, J. Chen, and X. Du, “Scheduling energy-
conscious tasks in distributed heterogeneous computing sys-
tems,” Concurrency and Computation: Practice and Experi-
ence, vol. 34, no. 1, article e6520, 2022.

[17] J. Chen, T. Li, Y. Zhang et al., “Global-and-local attention-
based reinforcement learning for cooperative behaviour con-
trol of multiple UAVs,” IEEE Transactions on Vehicular Tech-
nology, vol. 73, no. 3, pp. 4194–4206, 2024.

[18] J. Chen, F. Ling, Y. Zhang, T. You, Y. Liu, and X. Du, “Cover-
age path planning of heterogeneous unmanned aerial vehicles
based on ant colony system,” Swarm and Evolutionary Com-
putation, vol. 69, article 101005, 2022.

[19] L. Zhang, K. Li, C. Li, and K. Li, “Bi-objective workflow sched-
uling of the energy consumption and reliability in heteroge-
neous computing systems,” Information Sciences, vol. 379,
pp. 241–256, 2017.

[20] J. Li, H. Sang, Y. Han, C. Wang, and K. Gao, “Efficient multi-
objective optimization algorithm for hybrid flow shop sched-
uling problems with setup energy consumptions,” Journal of
Cleaner Production, vol. 181, pp. 584–598, 2018.

[21] A. Khiat, M. Haddadi, and N. Bahnes, “Genetic-based algo-
rithm for task scheduling in fog–cloud environment,” Journal
of Network and Systems Management, vol. 32, no. 1, p. 3, 2024.

[22] A. Rehman, S. S. Hussain, Z. ur Rehman, S. Zia, and
S. Shamshirband, “Multi-objective approach of energy efficient
workflow scheduling in cloud environments,” Concurrency
and Computation: Practice and Experience, vol. 31, no. 8, arti-
cle e4949, 2019.

[23] Y. Liu, C. Du, J. Chen, and X. Du, “Online deadline-
constrained scheduling of parallel applications in CPSs,” 2023.

[24] N. Zhou, F. Li, K. Xu, and D. Qi, “Concurrent workflow
budget-and deadline-constrained scheduling in heterogeneous
distributed environments,” Soft Computing, vol. 22, no. 23,
pp. 7705–7718, 2018.

[25] H. Topcuoglu, S. Hariri, and M. Wu, “Performance-effective
and low-complexity task scheduling for heterogeneous com-
puting,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 13, no. 3, pp. 260–274, 2002.

[26] V. Arabnejad, K. Bubendorfer, and B. Ng, “Dynamic multi-
workflow scheduling: a deadline and cost-aware approach for
commercial clouds,” Future Generation Computer Systems,
vol. 100, pp. 98–108, 2019.

[27] L. Li, W. Xu, Y. Tan, Y. Yang, J. Yang, and D. Tan, “Fluid-
induced vibration evolution mechanism of multiphase free
sink vortex and the multi-source vibration sensing method,”
Mechanical Systems and Signal Processing, vol. 189, article
110058, 2023.

[28] L. Li, Q. Li, Y. Ni, C. Wang, Y. Tan, and D. Tan, “Critical pen-
etrating vibration evolution behaviors of the gas-liquid
coupled vortex flow,” Energy, vol. 292, article 130236, 2024.

[29] D. Zhu, R. Melhem, and D. Mosse, “The effects of energy man-
agement on reliability in real-time embedded systems,” in
IEEE/ACM International Conference on Computer Aided
Design, 2004. ICCAD-2004, pp. 35–40, San Jose, CA, USA,
2004.

[30] G. Xie, G. Zeng, J. Jiang, C. Fan, R. Li, and K. Li, “Energy man-
agement for multiple real-time workflows on cyber–physical
cloud systems,” Future Generation Computer Systems,
vol. 105, pp. 916–931, 2020.

[31] G. Xie, G. Zeng, R. Li, and K. Li, “Energy-aware processor
merging algorithms for deadline constrained parallel

13International Journal of Aerospace Engineering



applications in heterogeneous cloud computing,” IEEE Trans-
actions on Sustainable Computing, vol. 2, no. 2, pp. 62–75,
2017.

[32] E. Nogues, M. Pelcat, D. Menard, and A. Mercat, “Energy effi-
cient scheduling of real time signal processing applications
through combined DVFS and DPM,” in 2016 24th Euromicro
International Conference on Parallel, Distributed, and
Network-Based Processing (PDP), pp. 622–626, Heraklion,
Greece, 2016.

[33] B. Zhao, H. Aydin, and D. Zhu, “Shared recovery for energy
efficiency and reliability enhancements in real-time applica-
tions with precedence constraints,” ACM Transactions on
Design Automation of Electronic Systems (TODAES), vol. 18,
no. 2, pp. 1–21, 2013.

[34] B. Hu, Z. Cao, and M. Zhou, “Scheduling real-time parallel
applications in cloud to minimize energy consumption,” IEEE
Transactions on Cloud Computing, vol. 10, no. 1, pp. 662–674,
2019.

[35] J. Li, G. Xie, K. Li, and Z. Tang, “Enhanced parallel application
scheduling algorithm with energy consumption constraint in
heterogeneous distributed systems,” Journal of Circuits, Sys-
tems and Computers, vol. 28, no. 11, article 1950190, 2019.

[36] W. Zheng and R. Sakellariou, “Budget-deadline constrained
workflow planning for admission control,” Journal of Grid
Computing, vol. 11, no. 4, pp. 633–651, 2013.

14 International Journal of Aerospace Engineering


	Online Energy-Aware Scheduling for Deadline-Constrained Applications in Distributed Heterogeneous Systems
	1. Introduction
	2. Related Work
	3. Model
	3.1. Heterogeneous Processor Model
	3.2. Application Model
	3.3. Energy Model
	3.4. Problem Description

	4. Proposed OMECDS Algorithm
	4.1. Task Selection Phase
	4.2. Processor Allocation Phase

	5. Results
	5.1. Experimental Setup
	5.2. Results and Discussion
	5.2.1. Planning Successful Rate (PSR) and Energy Consumption Analyses
	5.2.2. Runtime Analyses


	6. Conclusions
	Data Availability Statement
	Conflicts of Interest
	Author Contributions
	Funding



