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Inlet unstart prediction and warning are strictly crucial to the operation of hypersonic engines, especially for combined cycle
engines where implementation across a wide speed range poses significant challenges. This paper proposes a realization
method that involves constructing the conditions of critical backpressure ratios for the inlet unstart and unstart warning states
within a wide speed range and establishing the backpressure prediction models for each engine mode. The detection of the
unstart and unstart warning states is achieved by predicting the backpressure ratio at the exit of the isolator and comparing it
to the critical backpressure ratios. To achieve this, numerical simulations for a three-dimensional inward-turning multiducted
hypersonic combined inlet at various Mach numbers and backpressure ratios are carried out to obtain the dataset of surface
pressure. A 10-fold cross-validation support vector machine (10-CV SVM) is used to solve the unstart boundary of surface
pressure, and an unstart margin is set to determine the unstart warning boundary. A back propagation (BP) neural network is
constructed to estimate the critical backpressure ratios at each working point within a wide speed range. The data information
of surface pressure on the boundaries is used as the input for the predictions. The overall average regression correlation
coefficient approaches 0.99 on the test dataset at each working point. The backpressure prediction models are established by
the one-dimensional convolutional neural network (1D-CNN). Only 2 to 4 measurement points of surface pressure are
considered for cross-validation evaluation, and the mean absolute percentage error is between 4% and 8% with the average
prediction time not exceeding 2ms. Finally, the proposed method and prediction models are validated by wind tunnel
experimental data.

1. Introduction

With the rapid development of hypersonic propulsion tech-
nology, wide-speed hypersonic vehicles have gained wide-
spread attention in research on combustion and propulsion
[1], flight control and navigation [2–4], and aerodynamic
performance and structural design [5, 6]. Combined cycle
engines have become a necessity to meet the demands for
wide speed range flights with its performance advantages
[7–9]. As the key component, the inlet directly affects the
engine operating conditions. It is well known that the
unstart phenomenon is one of the most important issues
of the hypersonic inlet, which should be prevented [10] or
taken effective measures to realize the restart when falling

into the unstart state [11–13]. However, once the inlet
unstart occurs during flight, it will increase the working bur-
den of the hypersonic engine, and the hysteresis phenomena
in the restarting process of the hypersonic inlet are wide-
spread [14]. Especially in some certain cases, it is even
impossible to restart during the engine operation [15].
Moreover, the current research on inlet unstart prediction
and warning is mainly limited to two-dimensional inlets
and relatively single speed range operating conditions, which
is not sufficient to meet the requirements of combined cycle
engines under wide speed range flight conditions.

Hypersonic inlets have evolved from binary, side pres-
sure, and axisymmetric designs to three-dimensional inter-
nal contraction designs. Owing to the advantages of strong
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compression, high flow capture, and small upwind area,
three-dimensional inward-turning combined inlets have
become the current developmental trend in hypersonic
inlets. Examples include the Falcon inlet based on the vari-
able section design method [16], ACCII (advanced combined
circle integrated inlet) in the “Trijet” scheme with stream-
tracking technology [17], and the SR-72 inlet with double
waverider design. Nevertheless, due to the more complex
flow field of the inward-turning combined inlet, there are still
great challenges in the unstart mechanism and prediction,
which involves more flow parameters and interactions.
Therefore, it is vital to provide a method for the unstart
prediction and warning of hypersonic combined inlets with
a wide speed range.

Numerous studies [18–20] have shown that the causes of
the unstart conditions are very complex for hypersonic
inlets, making the prevention of the unstart extremely chal-
lenging. Ref. [20] mentioned that the large internal contrac-
tion ratio, high backpressure, excessive heat release, and low
Mach number are all the causes of hypersonic inlet unstart.
Among them, the improper control of backpressure has
become the dominant factor. Wagner et al. [21, 22] pointed
out that for the unstart phenomenon due to increased back-
pressure, shock-induced separation plays a leading role and
moves along the isolator towards the inlet, causing unstart
to occur. Su and Zhang [23] studied the impact of different
backpressure ratios on the flow unsteadiness in isolators
based on unsteady simulations. High backpressure can make
the flow field in the isolator easily unstable, and the oscilla-
tion resistance increases sharply. Tan et al. [24] experimen-
tally investigated the entire process of two-dimensional
hypersonic inlets from start to unstart. The occurrence pro-
cess of unstart can be divided into four stages: shock train is
located near the combustor, propagates to the isolator, sepa-
rates to reach the throat, and finally causes unstart. This
makes it possible to detect and predict the unstart state of
the inlet based on pressure signals, which can provide help
for indicating the unstart process [25]. In summary, the
effects of backpressure to the inlet stability are crucial, as
the pressure changes within the inlet tunnels are directly
influenced from the combustor, thus being able to reveal
the unstart condition of hypersonic inlets.

At present, the unstart detection methods of the inlet can
be divided into two categories: the parametric analysis of
pressure instantaneous information and the pattern classifi-
cation of the pressure steady-state information [20]. The for-
mer is based on the analysis of inlet pressure spectrum
signals for precursor prediction. It includes the cumulative
sum algorithm (CUSUM) [26], general likelihood ratio algo-
rithm (GLR) [26], recursive Fourier transform (RFT) algo-
rithm [27], high-frequency pressure measurements [28],
and information fusion [29]. While these above methods
have shown promising results in detecting unstart precur-
sors, they are primarily based on wind tunnel experiments,
which are relatively difficult to conduct. In recent years,
the advancement of computational fluid dynamics (CFD)
technology has provided a mature approach for obtaining
inlet pressure data [30]. It can provide effective help for
the research of the latter.

As the intensive application of machine learning methods
in fluid mechanics [31], pattern classification has been applied
more frequently in the recognition of inlet unstart state. Based
on a certain amount of pressure sample data, machine learn-
ing can train a model with high accuracy to recognize inlet
unstart through classification method. Yu et al. [32] used the
machine learning method to classify the start and unstart
states of the inlet for the first time and summarized the opti-
mal classification criteria for the inlet unstart based on the
support vector machine recursive feature elimination (SVM-
RFE) algorithm and Fisher’s linear discriminant (FLD) analy-
sis. Following that, Chang et al. [33] used the SVM classifica-
tion algorithm to solve the operating mode classification
problems of the hypersonic inlets. Additionally, the problems
of the classification accuracy of inlet start/unstart with the
influence of sensor noise and the limited CFD training data
costs were also investigated separately [34, 35]. Zheng et al.
[36] also implemented the optimization classification of
hypersonic inlet start/unstart based on the manifold learning
algorithm. It can be seen that the relevant research on the rec-
ognition of inlet unstart state combined withmachine learning
methods is relatively mature, which proves the effectiveness of
this approach. This is attributed to the significant variations in
surface pressure along the inlet ducts between the start and
unstart states, and the mentioned method is able to discrimi-
nate the data based on the significant pressure features. How-
ever, it is worth noting that there has been no further research
on the inlet unstart warning.

To achieve the unstart prediction and warning of hyper-
sonic combined inlets for a wide speed range, this study
proposes a prevention method for backpressure unstart
based on machine learning. This method uses the BP neural
network to construct the regression mapping relationship
between the surface pressure coefficient and the backpres-
sure ratio for each working point during engine operation.
To complete the predictions of the critical backpressure
ratios of the inlet unstart and unstart states, the pressure
information at the unstart boundary and unstart warning
boundary determined by 10-CV SVM and unstart margin
is used as their regression inputs. Based on this, the condi-
tions of critical backpressure ratios are established by inter-
polating and curves fitting over a wide speed range.
Moreover, the backpressure prediction models for three
engine modes (turbine, ejector ramjet, and scramjet modes)
are reconstructed by 1D-CNN based on the extraction of
optimal surface pressure measurement points. By using sev-
eral surface pressure measurement points along the inlet,
the prediction of the backpressure ratio at the exit of the iso-
lator is completed by the prediction models. Subsequently,
this is followed by a judgment on the inlet unstart and unstart
warning based on the critical conditions.

The main contributions of this paper can be summarized
as follows:

(1) In comparison with existing research, a backpressure
unstart prediction and warning method of the inlet is
proposed. Its advantages rely only on several pres-
sure measurement points, with short prediction
time, acting in wide speed range. The method can
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not only predict the inlet unstart but also reflect the
degree of instability and provides a range of unstart
margins for advance control

(2) Combined with machine learning techniques, a crit-
ical backpressure ratio prediction method for inlet
start/unstart state is introduced. This approach can
effectively reveal exactly how much backpressure
ratio the inlet becomes unstart, which is used as the
critical condition to predict the unstart state

(3) By extracting the optimal surface pressure measure-
ment points along the inlet ducts, a 1D-CNN is uti-
lized to construct surface pressure-backpressure
prediction models for each engine mode. In this
paper, the model predictions are validated using
experimental data, demonstrating the effectiveness
of the proposed approach

The rest of the paper is organized as follows: Section 2
briefly describes the hypersonic combined inlet model and
the CFD dataset from numerical simulations. Section 3
specifically introduces the inlet unstart prediction and
warning method and its realization processes. Section 4 pre-
sents the relevant results of the proposed method and per-
forms the experimental validation. Finally, Section 5 gives
some conclusions.

2. Inlet Model and CFD Dataset

2.1. Combined Inlet Model. The three-dimensional inward-
turning multiducted combined inlet was proposed by Zhu
et al. [37, 38]. Cai et al. [39] confirmed that its geometric
aerodynamic characteristics can meet the requirements of
the propulsion system, which is capable of continuous oper-

ation in a wide speed range. The schematic geometric dia-
gram of the inlet is shown in Figure 1. The two side
tunnels represented by T are the flow ducts for the turbine
engine, the lower tunnel represented by E is the flow duct
for the ejector ramjet engine, and the upper tunnel repre-
sented by S is the flow duct for the scramjet engine. Addi-
tionally, the splitter plates are arranged in the twin-turbine
ducts and ejector ramjet duct, and the mode transition from
turbine mode to ejector ramjet mode and from ejector ram-
jet mode to scramjet mode can be completed by rotating
splitters along corresponding rotation shafts.

2.2. Numerical Method. The numerical simulations are per-
formed using the ANSYS FLUENT 14.5 software. Density-
based 3D Reynolds-Averaged Navier-Stokes (RANS) equa-
tions are solved with the two-equation k‐ω shear stress
transport (SST) turbulence model. The flux term is solved
using the Roe-FDS (Roe flux-difference splitting) difference
scheme. The first-order upwind scheme is used to discretize
the equations spatially to get a stable initial flow field, based
on which the second-order upwind scheme is further applied
for a refined resolution. Convergence criteria for the calcula-
tions are determined by at least three orders of magnitude
reduction in the residuals of the continuity equation,
momentum equation, energy equation, and k‐ω equation,
as well as a stable flow rate at the inlet and outlet sections.
The characteristic index remains relatively unchanged
throughout the iterative process. Assuming that the fluid
is an ideal gas, the constant pressure specific heat is fitted
by piecewise polynomial, and the viscosity is solved by the
Sutherland formula. Various boundary conditions are used
during the calculations, including the pressure far-field
boundary, pressure outlet boundary, nonslip adiabatic solid
wall boundary, and symmetry boundary. The windward
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Figure 1: Schematic geometric diagram of the hypersonic combined inlet: (a) front view; (b) vertical view; (c) end view.
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side of the incoming flow is considered the pressure far
field, the outlet section of each channel is set as the pressure
outlet, and the wall surface adopts the adiabatic nonslip
boundary condition, regardless of heat transfer.

To meet the requirements of different Mach number
computational domain scales and consider the tunnel regula-
tion conditions of the combined inlet, this paper involves
three sets of computational grids, including one set for tur-
bine mode, one set for ejector mode, and one set for scramjet
mode. Only half of the inlet model is used for simulation in
consideration of its symmetric configuration. Each mesh set
adjacent to the wall is refined to ensure y+ < 30 to capture
the surface boundary layer accurately, as shown in Figure 2.
Table 1 summarizes the freestream conditions, engine
modes, and mesh quantities of the calculation conditions in
this work.

To verify the reliability of the calculation results, the
grid-independent verification of the typical working condi-

tion of Mach number 5.0 is carried out. By comparing the
results of coarse mesh (2 million), medium mesh (4 million),
and fine mesh (6 million) shown in Figure 3, it is observed
that the pressure distribution is basically the same for differ-
ent numbers of meshes, indicating that the mesh factor does
not affect the numerical calculation in this paper. Taking
into account the convergence and computational efficiency
of mesh grids, the medium grid with a total cell number of
4 million is chosen to carry out the research and analysis.
For other calculation states, the grid quantity is referred to
the working condition and adjusted accordingly based on
the calculation domain and the number of tunnels.

Additionally, to validate the effectiveness of the turbu-
lence model chosen in reflecting the flow characteristics
inside the inlet, as well as to ensure the reasonableness of
the numerical simulation boundary condition settings. The
experimental model [40] is simulated using the numerical
method illustrated in Figure 4, with the incoming flow
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Figure 2: Calculation grid for each mode: (a) TUR mode with 8 × 106 cells; (b) ERJ mode with 6 × 106 cells; (c) SCR mode with 4 × 106 cells.
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conditions referenced to Ref. [40]. Figure 5 presents the
comparison of the pressure distribution between the experi-
ment and simulation. The simulation results demonstrate
good agreement with the experimental results in terms of
both numerical values and curve trends, further verifying
the accuracy of the numerical method employed.

2.3. CFD Dataset. For the typical working points (noted as
TUR#1~TUR#3, ERJ#1~ERJ#3, and SCR#1~SCR#4)
selected in Table 1, simulation states of each working point
under different backpressure ratios are also provided. The
maximum backpressure ratio of each working point in the
table corresponds to the unstart state of the inlet, and the
rest corresponds to the unstart states. The backpressure ratio
is defined as follows:

pr =
pb
p∞

, 1

where pb represents the backpressure at the exit of the isola-
tor and p∞ represents the static pressure of the freestream.
Figure 6 indicates the pressure monitoring points on the sur-
face lines of each inlet duct to obtain the CFD dataset

through numerical simulation. Due to the symmetrical
geometry of the combined inlet, only half of the surface pres-
sure monitoring points are set for each duct. In this case, 100
measurement points are averagely set for each surface line,
corresponding to one surface pressure sample data. These
samples under all surface lines are used to compose the
CFD dataset at each pr , where the surface pressure coeffi-
cient is derived from the dimensionless conversion of the
surface pressure, defined as follows:

Cp =
ps
p∞

, 2

where ps represents the surface pressure. By constructing the
prediction models between the surface pressure coefficient
Cp and the backpressure ratio pr for each engine mode, this
study attempts to reflect the backpressure at the exit of the
isolator through the surface pressure for applying to the inlet
unstart prediction and warning.

3. Backpressure Unstart Prediction and
Warning Method

The method consists of the following steps: (1) the determi-
nation of the inlet unstart and unstart warning boundary of
surface pressure at typical working points, (2) the construc-
tion of critical backpressure conditions for wide speed range,
(3) the establishment of the backpressure prediction models
for each engine mode, and (4) the realization of unstart pre-
diction and warning.

Figure 7 shows the analytical process of the main work of
the inlet unstart prediction and warning. Process (I) is the
classification of the inlet start/unstart state based on 10-CV
SVM, which is used for solving the unstart boundary of sur-
face pressure. Where an unstart margin η is set to determine
the unstart warning boundary for surface pressure, the data
information (represented by support vectors) on the bound-
aries is used as the regression inputs for the prediction of the
critical backpressure ratios. Process (II) is the regression pre-
diction and wide speed range fitting of the critical backpres-
sure ratios. The regression models for pr are trained by the

Table 1: The working conditions of numerical cases.

Ma H (km) Mode Mesh (1 × 106) Backpressure ratios

1.5 9.1 TUR 8 1, 1.2, 1.4, 1.8, 2, 2.2, 2.4, 2.6

2.0 13 TUR 8 1, 1.5, 2, 2.5, 3, 3.5, 4.25, 4.5, 4.75, 5

2.5 15.5 TUR 8 1, 2, 3, 4, 6, 7, 8, 9

2.5 15.5 ERJ 6 1, 4, 6, 7, 8

3.0 18.5 ERJ 6 1, 2, 4, 5, 6, 7, 8.5, 9.5, 11

4.0 22.7 ERJ 6 1, 3, 6, 9, 12, 15, 16, 17, 18

4.0 22.7 SCR 4 1, 5, 10, 20, 30, 40, 50

4.5 24 SCR 4 1, 10, 20, 30, 40, 50, 60, 70, 80

5.0 26 SCR 4 1, 10, 20, 30, 40, 60, 80, 90, 100, 110, 115

6.0 28 SCR 4 1, 10, 20, 40, 70, 80, 90, 95, 110, 120, 125, 130, 135
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Figure 3: Calculation results of different mesh qualities.
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BP neural network to predict pu and puw at typical working
points. These prediction results will be used to fit the three-
dimensional curves of Ma,H, pu and Ma,H, puw for each
engine mode. Process (III) is the establishment of the Cp-pr
prediction models. It adopts the 1D-CNN to establish the
Cp-pr prediction models between the surface pressure coef-
ficient and the backpressure ratio for each engine mode
based on the determination of the optimal surface pressure
measurement points. Process (IV) is the realization of the
unstart and unstart warning state detection of the inlet.
The data of the inlet for the optimal measurement points
on one surface line is taken and then dimensionless and
normalized. Support p∗r as the prediction result obtained
from the Cp-pr prediction models, while p∗u and p∗uw are
the fitting values of Ma,H, pu and Ma,H, puw curves

under the flight freestream condition. By comparing the
result of p∗r with p∗u and p∗uw, the current state of the inlet
(start state, unstart warning state, and unstart state) can be
detected.

3.1. Inlet Unstart Boundary and Unstart Warning Boundary
of Surface Pressure. Chang et al. [33–35] studied the start/
unstart state classification of inlet surface pressure data and
proposed the boundaries of inlet start and unstart based on
the SVM classification criterion. However, since the classifi-
cation is only for current pressure data, this study adopts the
10-fold cross-validation approach to find the optimal hyper-
plane of SVM and enhance its generalization ability to
accommodate more samples. In this paper, the optimal
hyperplane that divides the start and unstart states of the
inlet is called the inlet unstart boundary of surface pressure,
which is expressed as follows:

〠
m

i=0
ωixi + b = 0, 3

where ωi and b represent the ith weight and the bias of the
optimal hyperplane of SVM with a linear kernel, respectively,
xi represents the ith feature corresponding to the surface
pressure, and m is the number of features of the samples.
To be applied to the unstart warning of the inlet, this paper
determines the inlet unstart warning boundary of surface
pressure by setting the unstart margin η based on the unstart
boundary of surface pressure, which is expressed as follows:

〠
m

i=0
ωi xi + η + b = 0 4

From Eqs. (3) and (4), the unstart boundary and unstart
warning boundary of surface pressure kept the η apart at each
axial direction in the pressure feature space. However, it is
difficult to express the surface pressure distribution of the
inlet under critical states through the unstart boundary and
the unstart warning boundary. The support vectors of SVM
play a crucial role in this regard, as they maintain a maxi-
mum soft interval in the sample space and are equidistant
from the optimal classification boundary [41]. The inlet
unstart boundary is determined by the support vectors of
the positive class (start) and negative class (unstart). There-
fore, the surface pressure coefficient data information at the
boundaries can be represented by the positive and negative
support vectors and the positive and negative support vectors
at unstart margin, respectively, as shown in Figure 8, where
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Figure 4: Experimental model used in ref. [40].
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Cp1 ~ Cp3 represents the three different features of surface
pressure coefficient, taking the three-dimensional feature
space as an example.

3.2. The Construction of Critical Backpressure Conditions for
Wide Speed Range. In some numerical simulations [15,
32–34] with different backpressures for inlet models, high
backpressure can trigger the inlet flow field unstable, result-
ing in the unstart occurring. Figure 9 shows the flow evolu-
tion (Mach number distribution) at the combined inlet when
the backpressure changes from pr = 1 to pr = 5 at Mach 2 in
the simulations. As the backpressure increases, the boundary
layer thickens, and the thickened boundary layer generates a
strong induced shock wave. This, in turn, promotes bound-
ary layer delamination, forming an unstart shock wave. As
this interaction progresses, the delamination bubble at the
top of the containment meets the boundary layer pushing
in from the rear, causing a significant reduction in mass
inflow and finally inlet unstarting.

Meanwhile, in Section 3.1, the negative class support
vectors (partial unstart samples of surface pressure) of the
unstart boundary in Figure 8 are included in the unstable
flow field at pr = 5 of the figure conversely, and the positive
class support vectors (partial start samples of surface pres-
sure) correspond to the stable flow field cases at other pr
states. Although different backpressure ratios can be simu-
lated to reflect the process of the inlet from start to unstart,
the exact values of the backpressure ratio cannot be known
when the inlet starts unstart and unstart warning. To address
this issue, this study establishes the regression models of
backpressure ratio using the BP neural network to predict
them based on the inputs provided in Section 3.1.

Here, the input and output are normalized separately
during data training process. For data division, a certain
proportion of samples are randomly selected for data train-
ing by the BP neural network with Adam optimizer, and the
remaining 20 samples are used for testing. The neural net-
work adopts a “100-20-1” topology in which the hidden
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layer uses the rectified linear unit (ReLU) activation func-
tion and the output layer uses the linear function, as shown
in Figure 10, where Cp1, Cp2,⋯,Cp100 represents all the
scaled surface pressure coefficient inputs of the neural net-
work and p̂r represents the predicted backpressure ratio
obtained by inverse scaled operation on the output. Define
the mean squared error (MSE) between the pr and p̂r as
the loss function of the network, as shown in the following
equation:

Loss =MSE pr , p̂r = 1
N
〠
N

i=1
pr i − p̂r i

2
, 5

where N is the number of the training/test set sample, pr i

represents the actual backpressure ratio of the ith sample,
and p̂r i represents the predicted backpressure ratio of the
ith sample. By adjusting the learning rate α and the decay
rate γ of the learning rate of the optimizer, ensure that the
training loss and test loss converge before 2000 iterations
during the training process, which can obtain the optimal
regression models of each working point. Finally, these
models are used to predict the inlet critical backpressure
ratios pu and puw for each working point.

Where concerning the regression inputs of the critical
backpressure ratios, the support vectors of SVM are equidis-
tant from the optimal hyperplane (unstart boundary). We
can give the positive and negative support vectors V = v+1 ,
v+2 ,⋯,v+m ; v−1 , v−2 ,⋯,v−n of SVM and the positive and negative
support vectors at unstart margin denoted by W = w+

1 ,
w+

2 ,⋯,w+
m ;w−

1 ,w−
2 ,⋯,w−

n . The prediction of the critical
backpressure ratios is calculated by the following formulas:

pu =
1
2

p v+1 + p v+2 +⋯+p v+m
m

+ p v−1 + p v−2 +⋯+p v−n
n

,

6

puw = 1
2

p w+
1 + p w+

2 +⋯+p w+
m

m
+ p w−

1 + p w−
2 +⋯+p w−

n

n
,

7

where p v+1 , p v+2 ,⋯,p v+m and p v−1 , p v−2 ,⋯,p v−n
represent the prediction results of V and p w+

1 , p w+
2 ,⋯,

p w+
m and p w−

1 , p w−
2 ,⋯,p w−

n represent the predic-
tion results ofW. The value of pu is calculated from the aver-
age of p v+1 + p v+2 +⋯+p v+m /m and p v−1 + p v−2 +⋯
+p v−n /n which represent the average prediction results of
the scaled pressure of positive and negative class support
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Figure 9: Mach number contours at the combined inlet of the process from start to unstart at Mach 2.
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vectors, respectively, and the calculation process of the value of
puw is likewise as it.

The critical backpressure ratios of each working point
are only applicable to the unstart prediction and warning
of discrete typical working states. To apply for other working
points in the wide speed range, it is necessary to construct
the relationship between the Mach number, height, and the
critical backpressure ratios pu and puw by curve fitting. The
flight Mach number and height at other working points
can be solved by interpolation method and then fitted to
the three-dimensional curves of Ma,H, pu and Ma,H,
puw , which is done by the least squares polynomial fitting
way with the following equations:

p∗u = C0 + C1Ma + C2H + C3Ma ·H + C4Ma2 + C5H
2, 8

p∗uw = C7 + C8Ma + C9H + C10Ma ·H + C11Ma2 + C12H
2,

9
where C0 ~ C11 are constant terms and the p∗u and p∗uw on the
fitting curves can be directly expressed by the freestream
conditions (Ma and H).

3.3. Establishment of the Cp-pr Prediction Models for Each
Engine Mode. In the unstart prediction and warning, to

obtain the current backpressure ratio of the inlet through
the surface pressure data, it is critical to establish the back-
pressure ratio prediction models for each engine mode.
The Cp-pr prediction models are constructed by 1D-CNN
with the surface pressure coefficient as input and the corre-
sponding backpressure ratio as output. Also, to improve
the utility of the surface pressure measurement points, only
a few optimal measurement points are considered for the
input to connect the model for training. The training process
of the models simultaneously ensures that all data is scaled
to the range of (0, 1) and the model output is eventually
inversely normalized. It adopts 1 upsampling layer, 3 convo-
lutional layers with the ReLU activation function, 2 max-
pooling layers, and 1 fully connected layer with the linear
function, as shown in Figure 11.

The data extraction for optimal measurement points
adopts the regression feature selection method. Generally,
numerous studies [32–34] on the feature selection of surface
pressure monitoring points of the inlet are dedicated to solve
the problems of start/unstart state classification. However,
for the backpressure prediction at the exit of the isolator, this
study implements the SVR-RFE algorithm for regression
feature selection, to extract several significant surface pres-
sure measurement points of the inlet to monitor the back-
pressure. It is worth noting that after feature selection, the
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Table 2: The results of surface pressure classification for each working point.

Working points TUR #1 TUR #2 TUR #3 ERJ #1 ERJ #2 ERJ #3 SCR #1 SCR #2 SCR #3 SCR #4

Classification accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

No. of positive support vectors 3 4 3 3 4 4 3 4 6 6

No. of negative support vectors 5 5 3 2 3 3 4 3 3 4
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dimensionality of the pressure data gets greatly reduced,
making it necessary to enlarge the data size by upsampling.
Linear interpolation as a common upsampling method can
be used to expand the surface pressure dimension to connect
the convolutional neural network for data training.

Considering the actual backpressure scenario of the com-
bined engine operation, the dataset without the through-flow
state (pr = 1) presented in Table 1 is selected for each working
point. In the model evaluation, the mean absolute percentage
error (MAPE) and the correlation coefficient (R2) are
employed, defined as follows:

MAPE pr , p∗r = 1
n
〠
n

i=1

pr i − p∗r i

pr i
× 100%, 10

R2 pr , p∗r = 1 −
∑n

i=1 pr i − p∗r i

2

∑n
i=1 pr i − pr

2 , 11

where n is the number of the validation set sample; pr i and
p∗r i represent the actual and predictive backpressure ratio of

the ith sample, respectively; and pr represents the mean value
of the predicted backpressure ratio of the validation set sample.

3.4. Method for Inlet Unstart and Unstart Warning State
Detection. The unstart prediction and warning method is
mainly based on the three-dimensional fitting curves of
Ma,H, pu and Ma,H, puw , and the Cp-pr prediction
models, where the implementation process of the method
is shown in Figure 12.

The inlet pressure data is taken at optimal measurement
points on the one surface line of the tunnel under the cur-
rent engine operating condition, adopting dimensionless
processing (divided by the static pressure of the freestream)
into the pressure coefficient as well as normalized. Then, the
value of p∗r at the exit of the isolator can be predicted by the
Cp-pr prediction models. For the current flight freestream
condition (Ma and H), the values of p∗u and p∗uw can be
obtained from the fitting curves of critical backpressure

Table 3: The prediction results of critical backpressure ratios at typical working points.

Working points TUR #1 TUR #2 TUR #3 ERJ #1 ERJ #2 ERJ #3 SCR #1 SCR #2 SCR #3 SCR #4

pu 2.496 4.825 8.468 7.514 10.159 17.211 45.111 75.225 112.891 132.290

puw 2.335 4.384 7.693 6.892 9.359 15.489 39.841 68.752 102.498 118.485
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Figure 14: The fitting curves of the pu and puw for each engine mode: (a) TUR mode; (b) ERJ mode; (c) SCR mode.
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ratios. The inlet state can be reflected by the comparison
between the current predicted backpressure ratio p∗r and
the critical conditions p∗u and p∗uw, completing the unstart
and unstart warning state detection. Equation (12) can be
used as the detection judgment of the inlet state, where
“1” represents the start state, “0” represents the unstart
warning state, and “−1” represents the unstart state, defined
as follows:

Sinlet =
1, p∗r < p∗uw

0, p∗uw ≤ p∗r < p∗u

−1, p∗r ≥ p∗u

12

4. Results and Discussion

4.1. The Start/Unstart Classification Results of Inlet Surface
Pressure. The SVM training is optimized by 10-fold cross-
validation to determine the optimal hyperplane, where the
accuracy of the surface pressure classification is 100% for
each working point, as shown in Table 2. The number of
the positive (start class) and negative (unstart class) support
vectors based on all the surface pressure features at each
working point is also counted. These support vectors and
the support vectors at unstart margin represent the data
information at the unstart boundary and unstart warning
boundary of surface pressure, respectively, which are used
as the regression inputs for the critical backpressure ratios
pu and puw. In this paper, the unstart margin is considered
as a constant value to address the inlet unstart warning
problem. To not cross the unstart boundary, it is essential
to set a reasonable unstart margin to determine the unstart
warning boundary, such as 10% in this study.

4.2. The Results of Prediction and Wide Speed Range Fitting
for Critical Backpressure Ratios. The purpose of the critical
backpressure ratios prediction is to determine the backpres-

sure ratios for the unstart and unstart warning states of the
inlet through the surface pressure data. Referring to the
training process of regression models in Figure 5, for the
samples of the typical working points at each engine mode,
a certain percentage of samples are randomly selected for
training and the remaining 20 samples for testing. The
hyperparameters α and γ are adjusted for optimization
based on the convergence of the training and test loss curve
of the BP neural network.

The comparison between the predicted backpressure
ratio results by the BP neural network regression models
and the CFD results on the test dataset is shown in
Figure 13. The blue area marked in the figure is the unstart
warning area at the working points, containing the 10%
unstart margin of surface pressure. The upper part is the
unstart backpressure ratio area, and the lower part is the
start backpressure ratio area. Therefore, the backpressure
ratio can represent the state of the inlet. The average result
of the correlation coefficient R2 referring to the definition
in Eq. (11) for all working points in Figures 13(a)–13(j) is
0.9885. It indicates that the prediction results of regression
models on the test dataset agree well with the CFD values,
especially in the high backpressure state parts.

Combined with the number of regression inputs deter-
mined for each working point shown in Table 2, refer to
the regression prediction process of the critical backpressure
ratios shown in Figure 10 and the calculation of Eqs. (6) and

Table 4: The results of the optimal measurement points for each
engine mode.

Engine mode
Combination of

measurement points
MAPE R2

TUR [77, 82, 83] 0.0465 0.9827

ERJ [81, 99] 0.0541 0.9902

SCR [90, 91, 98, 99] 0.0594 0.9891
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Figure 15: The evaluation results for each engine mode with the selected number of measurement points: (a) MAPE results on the
validation set; (b) R2 results on the validation set. The error bars represent the standard deviation of the validation results of the trained
models for five runs.
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(7) of the critical backpressure ratios. The average prediction
results of the pu and puw based on 20 runs at each working
point are shown in Table 3. It can be found that the predicted
values of the pu are between the backpressure ratio of the
unstart state and the maximum backpressure ratio of the
start state shown in Table 1, indicating that the prediction
of the critical backpressure ratios is consistent with reality.

For the freestream conditions from Table 1, the Mach
number and height are interpolated by the segmented cubic
Hermite method [42]. Based on the prediction results of the
critical backpressure ratios in Table 3, Eqs. (9) and (10) are
used to fit the three-dimensional curves of Ma,H, pu and
Ma,H, puw within the interpolated Ma,H for each
engine mode, as shown in Figure 14. This allows that the
critical backpressure ratios at other working points can be
determined approximately.

4.3. The Performance of Cp-pr Prediction Models. The surface
pressure measurement point selection for each engine mode

is implemented by the SVR-RFE algorithm. To investigate
the effect of model accuracy on the number of selected mea-
surement points, model validation evaluations based on 1 to
10 measurement points are carried out, while the compari-
son of all measurement points is performed. The dataset is
divided into the 80% training set and 20% validation set
where the validation is performed five times through the
trained model, and the results are shown in Figure 15.

It can be observed that the validation results of MAPE
and R2 decrease initially and then increase later with the
increase of the selected measurement points. The valida-
tion errors are minimized when 3, 2, and 4 measurement
points are selected for the TUR, ERJ, and SCR modes,
respectively. As shown in Table 4, the MAPE for these
modes is as low as around 5%, and the corresponding
R2 reaches above 0.98. Compared with 100 measurement
points, it can reduce most of the surface pressure measure-
ment points and improve the prediction accuracy of the
model to some extent.
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From the results of the selected optimal measurement
points in Figure 16, it can be observed that the selected
points for each mode are relatively close to the throat. This
indicates that these points can better reflect the backpressure
at the exit of the isolator.

Based on the optimal measurement points of surface
pressure extracted from each engine mode, we conduct 5-
fold cross-validation for the prediction models. The dataset
is also divided into the 80% training set and the 20% valida-

tion set. The results of the MAPE and R2 are shown in
Figure 17, where the average value and standard deviation
of the error bar at per fold cross-validation are also given.
It shows that the precision of the prediction models for each
mode performs relatively well, with an average R2 above 0.98
and MAPE within the range of 4% to 8%. Therefore, it can
be indicated that the Cp-pr prediction models have good
generalization ability and maintain relatively high accuracy
in cross-validation.

In practice, the inlet unstart usually occurs within milli-
seconds. For both the unstart warning and unstart state
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Figure 17: The evaluation results of the Cp-pr prediction models based on 5-fold cross-validation: (a) TUR mode; (b) ERJ mode; (c) SCR
mode. The error bars represent the standard deviation of models’ evaluation results on cross-validation for five runs.
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detection, the prediction efficiency of the models is also crit-
ical. The time cost for each Cp-pr prediction model is shown
in Figure 18. The training processes of models are conducted
on the NVIDIA GeForce RTX 3050 graphics processing unit
(GPU). It can be seen that the test time cost for each predic-
tion model is within 1 to 2ms, ensuring high prediction
efficiency.

4.4. Experimental Validation of the Inlet Unstart Prediction
and Warning. To validate the effectiveness of the inlet
unstart prediction and warning method proposed in this
study, Zhu et al. and Cai et al. [38, 39] conducted ground-
based wind tunnel experiments in a follow-up study, where
we obtain experimental data at Mach 2 in the TUR mode.
The specific arrangement of measurement points of the
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Figure 21: The comparison between the experimental and predicted results of the backpressure ratios and inlet states for the upper and side
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turbine tunnels is illustrated in Figure 19, with 20 steady
points on each upper surface and 19 steady points on each
side surface. For each tunnel surface, seven experimental
samples transitioning from the inlet start state to the unstart
state are extracted, as depicted in Figure 20. The pr for each
experimental sample is shown in the figure, with two annota-
tions indicating the backpressure ratios of the unstart states,
which are 4.98 for the left tunnel and 4.96 for the right tun-
nel, both higher than the critical backpressure ratio
(pu = 4 825) predicted in Table 3.

Since the locations of the pressure measurement points
may be different between the wind tunnel experiment and
numerical simulation, we replaced the optimal combination
of measurement points with those near [77, 82, 83] in
Table 4. Figure 21 presents the comparison between the
model predictions and experiment results for the backpres-
sure ratios and the inlet states in both the left and right
turbine tunnels. The statistical results of the predicted evalu-
ation of the experimental samples under each surface of the
turbine tunnels are given in Table 5. For the left tunnel, one
sample incorrectly predicts the unstart warning state as an
unstart state, whereas the predictions of the other samples
are satisfactory. As for the right tunnel, the predicted inlet
states on the upper and side surfaces matched the experiment
results perfectly. The overall MAPE of pr predicted by the Cp

-pr prediction models is no more than 7.5%, and the overall
prediction accuracy for the inlet states reaches 96.43%.

From the above experimental results, it can be seen that
the error of the Cp-pr prediction model can be kept within a
low range. The test time for the seven samples on each sur-
face does not exceed 10ms, with an average time cost of
1.3569ms for single sample. The prediction of the inlet state
is very close to the experiment results, with an overall devi-
ation of 3.57%. Only one sample has prediction error due to
a higher backpressure prediction. It is worth noting that in
practice, the impact of a higher backpressure prediction is
smaller than that of a lower one, which allows the model
to predict the occurrence of unstart earlier. In summary,
the unstart prediction and warning method in this paper
exhibits excellent test performance in terms of prediction
performance and time cost. It demonstrates the reliability
and accuracy of the proposed method, despite the adjust-
ment in the location of the measurement points between
the wind tunnel experiment and numerical simulation.

5. Conclusions

In this paper, a backpressure unstart prediction and warning
method is proposed for a combined cycle engine hypersonic

inlet, and the implementation of the inlet unstart and unstart
warning state detection for a wide speed range is discussed.

In the prediction of the critical backpressure ratios, this
study accurately reveals at what backpressure ratio the inlet
becomes unstart and warning based on numerical simula-
tion. The overall average correlation coefficient of BP neural
network regression on the test dataset at each working point
is close to 0.99, indicating high accuracy. The inputs are
determined by 10-CV SVM and the unstart margin, and
the start/unstart state classification of inlet surface pressure
at each working point had 100% accuracy, enabling accurate
determination of surface pressure information at the unstart
boundary and unstart warning boundary.

The conditions of critical backpressure ratios for the inlet
unstart and unstart warning states are constructed by inter-
polation and three-dimensional fitting over the wide speed
range. To a certain extent, the 10% unstart margin provides
the safety range for the inlet unstart. In practice, the trained
Cp-pr prediction models by 1D-CNN, with the mean abso-
lute percentage error of 4% to 8% on cross-validation evalu-
ation, can be used for predicting the corresponding
backpressure ratio only 2 to 4 measurement points required.
It can be compared with the critical backpressure ratios on
the fitting curves under the current freestream conditions
to determine the inlet state. Finally, the proposed method is
effectively validated by wind tunnel experimental data at
Mach 2, and the model prediction error is no more than
7.5%. The average prediction time of a single sample is within
2ms, and the prediction accuracy of the inlet state is as high
as 96.43%. For further studies, the time-varying flow field as
the more usual case will be considered, and the attempts will
be made to conduct more operational conditions.

Abbreviations

H: High number
Ma: Mach number
Cp: Surface pressure coefficient
p: Static pressure
p0: Total pressure
p∞: Static pressure of the freestream
pb: Backpressure at the exit of the isolator
ps: Surface pressure of the inlet
pr : Backpressure ratio
pu: Backpressure ratio of the unstart state
puw: Backpressure ratio of the unstart warning state
Sinlet: Inlet state of prediction
y+: The height of the first mesh cell off the wall in wall

coordinate

Table 5: Evaluation of backpressure ratio and inlet state prediction from the ground-based wind tunnel experimental data at Mach 2.

Turbine tunnel pr-R
2 pr-MAPE Sinlet-accuracy Test time (ms)

Left tunnel (upper surface) 0.9438 0.0440 100.00% 9.6569

Left tunnel (side surface) 0.9577 0.0749 85.71% 9.2873

Right tunnel (upper surface) 0.9220 0.0512 100.00% 9.4883

Right tunnel (side surface) 0.9465 0.0491 100.00% 9.5605
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α: Learning rate
γ: Decay rate for the learning rate
η: Unstart margin
TUR: Turbine
ERJ: Ejector ramjet
SCR: Scramjet
MT: Mode transition.
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