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In the field of aerospace, solving the boundary problem associated with the parachute-capsule system remains a big challenge. The
conventional Monte Carlo method proves inadequate for acquiring comprehensive boundary information. To address this issue,
this paper introduces a novel tube prediction scheme by leveraging the natural geometric characteristics of the reachable tube and
employing a multiobjective optimization strategy. Initially, a multibody dynamic model with nine degrees of freedom was
established and verified by the airdrop test data to ensure the accuracy and reliability of the model. Subsequently, the Sobol
sensitivity analysis method was employed to assess uncertain factors that affect the deceleration phase of the reentry capsule.
These factors are then utilized to determine the optimization parameters for the multiobjective optimization model. Ultimately,
the multiobjective evolutionary algorithm based on decomposition was employed to solve the multiobjective optimization
model, and the geometric boundary of the tube corresponds to the Pareto front of the multiobjective optimization. The
proposed methodology was validated through a simulation experiment utilizing the Chang’e-5 reentry capsule as an
engineering case. The experimental results unequivocally demonstrate the superior accuracy of our approach in predicting the
boundary of the reachable tube compared to the Monte Carlo method. This research serves as a valuable reference for
calculating reachable tubes in practical engineering scenarios and can be effectively applied to spacecraft search and rescue
operations during the reentry phase.

1. Introduction

With the rapid advancement of aerospace technology and an
increasing number of deep-space exploration activities in
China, research on the recovery and landing technology of
reentry capsules has become significantly important. This
recovery methodology prioritizes the safety of the landing
sites. Predicting the recovery trajectory ensures that all items
land in a secure area, away from observers and buildings,
during the recovery process. Anticipating the landing posi-
tions of the reentry capsule components is crucial for ensur-

ing the safety of the recovery process, the hardware, and
individuals in the vicinity of the landing sites [1].

As a commonly employed pneumatic deceleration
device, parachutes have found extensive applications in the
recovery of spacecraft reentry capsules because of their light-
weight and efficient characteristics. Parachutes are com-
monly used for deceleration, descent, stabilization, flight
termination, and landing [2, 3]. However, the unpredictabil-
ity associated with a parachute system remains relatively high
owing to factors such as weight, additional mass, drag coeffi-
cient, and wind, making accurate predictions challenging.
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This complexity poses significant challenges for predicting
reachable trajectories.

In recent years, the prediction of the landing points of
reentry capsules has reached an immature stage. The con-
ventional approach involves generating scattered informa-
tion about the airdrop point through multiple calculations
using the Monte Carlo method, often leading to challenges
such as time-consuming computations and complex data
processing. For instance, the consolidated airdrop tool
(CAT; the USA) calculates the scattered area of landing loca-
tions for airdrops, and Zhou et al. employed Monte Carlo
simulations to predict the descent trajectory of controllable
parafoils [4]. Cao and Wei incorporated interfering factors
into the flight dynamic model and employed the Monte
Carlo method to forecast the flight trajectory and landing
point distribution of the parachute system [5]. Guo et al.
conducted predictions of the flight trajectory for the
Shenzhou-7 spacecraft by employing various wind profiles
[6]. Spencer and Braun conducted a Monte Carlo study on
the landing point dispersion of the Mars Pathfinder space-
craft [7]. NASA developed the CPAS Sasquatch software
for forecasting airdrop landing positions [8] to enhance the
accuracy of predictions and ensure range safety. In 2013,
they released an improved version of the Sasquatch tool.
The principle behind this approach is to calculate the recov-
ery trajectories for various groups, factoring in only the
uncertain elements. The landing positions of all the gener-
ated trajectories were then combined to establish the bound-
ary of the scattered region. A novel prediction method for
reachable tubes based on optimal control was introduced
in the literature [9]. This method established a polar coordi-
nate system by placing the origin in a reachable set. Then, it
defines a series of directional vectors originating from the
origin and traversing the entire state space at specific angle
intervals. The farthest reachable points are calculated for
each direction. This approach, derived from the aircraft
flight envelope calculation method, offers a new perspective
for predicting the recovery trajectories. Furthermore, this
approach can be coupled with optimization techniques to
address the reachable region under uncertain disturbances.

The prediction of the recovery-reachable tube boundary
for reentry capsules plays a pivotal role in airdrop mission
design and planning systems. Currently, predicting the
recovery of the reachable tube boundary of the reentry cap-
sule involves generating scattered information about the
landing point through multiple simulation trials and subse-
quently determining the reachable boundary. However, this
method does not consider the interactions among the vari-
ous influencing factors. To enhance prediction efficiency,
ensure data accuracy, reduce calculation time, and ultimately
improve the performance of the planning system, this paper
proposes a novel method for predicting the reachable tube
boundary of a parachute recovery system. This method uti-
lizes the concept of multiobjective optimization by trans-
forming the recovery reachable boundary at a fixed height
into a multiobjective optimization problem to overcome
the limitations of the existing approach.

The remainder of this paper is organized as follows.
Section 2 introduces the nine-degree-of-freedom nonlinear

model of the Chang’e-5 (CE-5) reentry capsule and verifies
its accuracy and effectiveness. Section 3 employs the Sobol
method to analyze the sensitivity of uncertain perturbation
parameters and determine the parameters with the most sig-
nificant impact on the output. In Section 4, an accessibility
theory is introduced, and a prediction method for capsule
reentry flight is proposed using multiobjective optimization.
Section 5 elaborates on the simulation calculations and com-
pares and discusses the prediction results. Finally, Section 6
concludes the study.

2. Models

2.1. Model Hypothesis. Before simulating a dynamic system
on a computer, it is crucial to develop a mathematical model
that accurately describes the physics of the system. However,
owing to the complexity and unknown real-world effects of
the system, simplification of the model is often necessary
to make it more computationally tractable. Although this
simplification can limit the effectiveness of the model, a
balance between accuracy and computational feasibility is
necessary. In this study, the main simplification involved
considering the entire parachute and reentry capsule as rigid
bodies with six degrees of freedom. Subsequently, a nonlin-
ear mathematical model with nine degrees of freedom (9-
DOF) was established to accurately depict the dynamic char-
acteristics of the recovery system. In this model, factors such
as aerodynamic force, aerodynamic moment, and gravity are
transformed into a body-fixed coordinate system. Addition-
ally, the effect of unsteady drag on the parachute in air was
considered as an additional mass. To summarize, the model
is based on several simplified assumptions as follows:

(1) The parachute system is assumed to be in a stable
descent state, with both the parachute and reentry
capsule treated as rigid bodies connected at the point
at the bottom of the capsule

(2) The parachute is allowed to yaw, pitch, or roll rela-
tive to the capsule

(3) The fixed reference frame of the Earth is considered
an inertial frame

(4) The aerodynamic effects of the reentry capsule are
neglected

2.2. Model Coordinate System. In the 9-DOF model of the
parachute-capsule system, an earth-fixed coordinate system
was established, along with corresponding fixed coordinate
systems on both the parachute and reentry capsule, as shown
in Figure 1. Their details are provided below.

(1) Earth-Fixed Coordinate System se oexeyeze . The ori-
gin oe is the projection point of the reentry capsule
on the ground when the recovery program starts.
The axis oexe is oriented in the downward direction
of a vertical gravity vector
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(2) Parachute-Fixed Coordinate System sp oxpypzp . The
origin o is at the hinge point. The oxp axis is aligned
along the symmetry axis of the parachute

(3) Capsule-Fixed Coordinate System sc oxcyczc . The
origin o is also at the hinge point. The oxc axis points
down along the symmetry axis of the reentry capsule

In the parachute-fixed coordinate system, the velocity of
the system at the hinge point o is denoted as Vo =
Vox, Voy, Voc

T , and the rotational angular velocities of the

main parachute and reentry capsule are recorded as ωp =
ωpx, ωpy , ωpz

T and ωc = ωcx, ωcy , ωcz
T , respectively. The

transformation matrix from sp oxpypzp to se oexeyeze is
described by the pitch angle θp, yaw angle φp, and roll angle
γp, and the corresponding transformation matrix is denoted
as Be

p . Similarly, Euler angles θc, φc, and γc describe the
transformation matrix from sc oxcyczc to se oexeyeze ,
which is represented as Be

c . The transformation matrix from
sc oxcyczc to sp oxpypzp is denoted as Bp

c .

2.3. Multibody Dynamic Model. The parachute-capsule sys-
tem is characterized by assigning a mass mp0 to the para-
chute and mc to the reentry capsule. The generalized mass
mp and inertia Ip of the parachute are defined as follows.

mp =

mp0 + a11 0 0

0 mp0 + a33 0

0 0 mp0 + a33

,

Ip =

Ix + a44 0 0

0 Iy + a66 0

0 0 Iz + a66

,

1

where Ix , Iy , and Iz represent the moment of inertia of the
parachute at the origin o and a11, a33, a44, and a66 represent
the additional mass of the parachute [10].

The aerodynamic force and moment acting on the para-
chute are denoted as Fp = Fpx, Fpy , Fpz

T and Mp, respec-
tively, whereas those acting on the reentry capsule are
denoted as Fc = Fcx , Fcy , Fcz

T and Mc, respectively. The

gravitational acceleration is represented as g = g, 0, 0 T .
The dynamic equation of the main parachute-reentry cap-
sule two-body system is established at the hinge point o
and expressed in matrix form as follows:

mcE3×3 +mp Vo + mcE3×3 +mp ωpVo

−mcB
p
c Rcωc + Rc ωcωc −mp Rpωp + Rp ωpωp

= Fp + mcE3×3 +mp g + Bp
cFc,

2

Icωc +ωcIcωc +mcRc Vo +ωcB
c
pVo = Rcmcg +Mc, 3

Ipωp +ωpIpωp +mpRp Vo +ωpVo = Rpmpg +Mp, 4

where E3×3 is a 3 × 3 identity matrix. Vo,ωp, andωc represent
the accelerations of Vo, ωp, and ωc, respectively. Rc = Rcx,
Rcy , Rcz and Rp = Rpx, Rpy , Rpz represent the vectors extend-
ing from the hinge point o to the centroid of the reentry cap-
sule and parachute, respectively. Rc and Rp are antisymmetric
matrices constructed based on Rc and Rp, respectively, and
they are defined as follows:

Rc =
0 −Rcz Rcy

Rcz 0 −Rcx

−Rcy Rcx 0
,

Rp =
0 −Rpz Rpy

Rpz 0 −Rpx

−Rpy Rpx 0
,

5

By combining (2)–(4) with the kinematic equation, we
obtain

Vo = Bp
cR,

γp, φp, θp
T
=Ωpωp,

γc, φc, θc
T
=Ωcωc,

6

where R = xe, ye, ze
T denotes the derivative of R =

xe, ye, ze
T , which denotes the displacement at the hinge

point o, and
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Figure 1: Parachute-capsule system
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Ωp =
1 −tan θp cos γp tan θp sin γp

0 cos γp/cos θp −sin γp/cos θp
0 sin γp cos γp

,

Ωc =
1 −tan θc cos γc tan θc sin γc

0 cos γc/cos θc −sin γc/cos θc
0 sin γc cos γc

7

Finally, the 9-DOF dynamic equations of the parachute-
capsule system were obtained as follows:

Vo,ωc,ωp,Vo,ωc,ωp
T =

Atransfer 09×9
09×9 A−1

mass

Beuler

Bforce
,

8

where

Atransfer =
Bp
c 03×3 03×3

03×3 Ω−1
c 03×3

03×3 03×3 Ω−1
p

,

Amass =

mcE3×3 +mp −Bp
cmcRc mpRp

mcRc Ic 03×3
−mpRp 03×3 Ip

,

Beuler = xe, ye, ze, γc, φc, θc, γp, φp, θp
T
,

Bforce =

mcE3×3 +mp ωpVo

−ωc Icωc −mcRc ωcB
c
pVo

−ωp Ipωp −mpRp ωpVo

+

mcg +mpg

Rc mcg

Rp mpg

+

Fp + Bp
cFc

Mc

Mp

+

mcB
p
c Rc ωcωc +mp Rp ωcωc

0

0
9

In summary, this dynamic model can be used to simulate
and analyze the dynamic characteristics of the main
parachute-capsule system, such as attitude, velocity, and
acceleration.

2.4. Model Verification. The recovery process of the CE-5
capsule is depicted in Figure 2. The recovery program
was initiated when the reentry capsule altitude reached
11 km. The system control assembly issued instructions to
eject the parachute container cover, deploy the parachute
pack, and extend the forward bay cover parachutes
(FBCPs) and drogues until they separated. Under the influ-
ence of drogues, the reentry capsule decelerated and main-
tained a steady attitude. After the drogues had been
deployed for a certain period, they detached from the reen-
try capsule, and the main parachute pack was deployed.

The main parachute was initially filled in a closed state.
After a brief delay, the closure was released, allowing the
main parachute to be fully inflated. The reentry capsule
safely descended to the ground at a controlled speed using
the main parachute.

In this section, we validate the theoretical model using
an airdrop experiment. An airdrop test was conducted
using a full-scale replica of a reentry capsule. By launching
it at an altitude of 5124.50m, we obtained the time-
dependent changes in the altitude and velocity of the reen-
try capsule [11]. We employed the dynamic model estab-
lished in Section 2.3 to simulate and calculate the outer
ballistic data of characteristic points within the parachute
cabin system under identical initial conditions. These
results were then compared with the data from the airdrop
test.

Figure 3 shows a comparison between the simulated and
measured values of altitude and velocity during the airdrop
test. The model-based simulation results closely matched
the airdrop test results, confirming the correctness and effec-
tiveness of the established 9-DOF dynamic model.

3. Model Parameter Sensitivity Analysis

Parameter sensitivity analysis is a valuable method for eval-
uating the effects of different parameters on the output.
This enabled us to address the uncertainty in the output
of each variable in the entire system [12]. The Sobol
method [13] involves the Monte Carlo sampling of param-
eters within a feasible space, simulation of the sampled
values, and generation of a large number of output results.
During the sampling process, each parameter is associated
with a distribution variance, and the ratio of the variance
of a parameter to the variance of the output result repre-
sents the first-order sensitivity. Assume that the model/sys-
tem is denoted by Y = f X , where Y denotes the output
and X = X1,⋯, XD denotes a set of D influence parame-
ters. The first-order sensitivity analysis coefficient reflects
the independent effect of a single parameter on the variance

Programs starts

Eject cover

Separate drogues

Main parachute is full

Re-entry capsule land

Time

0 s

0.5 s

15.5 s

23.5 s

610 s

Altitude

11 km

0 km

Figure 2: Recovery process of the capsule of CE-5.
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of the model output. The first-order sensitivity of Xi, i =
1,⋯,D is defined as

Si =
VarXi

EX~i
Y Xi

Var Y
, 10

where X~i indicates the set of all parameters except Xi, E
· and Var · denote expectation and variance operators,
respectively. EX~i Y Xi represents the expectation opera-
tion performed on parameters X~i, given the condition of
Xi. It yields the average expected value of Y when Xi is
known.

Moreover, the global sensitivity of parameter Xi, i =
1,⋯,D is defined as follows:

STi =
EX~i

VarXi
Y X~i

Var Y
11

The difference between the global and first-order sensi-
tivity coefficients indicates the extent to which higher-order
parameter interactions affect the model. The closer this dif-
ference is to zero, the less influence the parameter exerts on
the output.

In practice, VarXi
EX~i

Y Xi , EX~i
VarXi

Y X~i , and
Var Y are estimated using the following sampling
procedures.

(1) Generate an N × 2D sample matrix, where each row
represents a sample point of 2D parameters. The
value for each parameter is generated based on its
probability distribution. The i-th and i +D -th col-
umns correspond to the i-th parameter such that
they are generated based on the probability distribu-
tion of the i-th parameter

(2) The first D column of the sample matrix is used as
matrix A, and the remaining D columns are used
as matrix B

(3) Construct D matrices Ai
B, i = 1,⋯,D , where the

i-th column of Ai
B is equal to the i-th column of B,

and the remaining columns are from A

(4) The calculated outputs of the samples in the matrices
A, B, and Ai

B, i = 1,⋯,D are denoted by f A , f B ,
and f Ai

B , i = 1,⋯,D , respectively.

(5) VarXi
EX~i

Y Xi , EX~i
VarXi

Y X~i , and Var Y
are estimated as follows:

VarXi
EX~i

Y Xi = 1
N
〠
N

j=1
f B j f Ai

B j
− f A j ,

EX~i
VarXi

Y X~i = 1
2N〠

N

j=1
f A j − f Ai

B j

2
,

Var Y = Var f A , f B
12

In our system, 11 uncertain parameters affect the recov-
ery of the reachable tube of the reentry capsule. These
parameters included the mass, drag area, atmospheric den-
sity, wind direction, wind speed, wind direction angle, initial
velocity, reentry inclination angle, reentry deviation angle,
height, and longitude and latitude deviations. The longitude
and latitude deviations affect only the translation of the
recovery reachable tube. Instead of considering them as
uncertain parameters, we analyzed the offset of the para-
chute opening point. We treated 10 of these uncertainties
as inputs, and the distance between the final and unbiased
landing points (The unbiased landing point denotes the
landing point without considering any uncertain parame-
ters.) was considered as the output. In this paper, we discuss
how these uncertain parameters can influence the boundary
prediction of the reachable tube of a reentry capsule.

The detailed parameter sampling settings for the sensi-
tivity analysis used in our method are listed in Table 1,
where Vi denotes the base value for the i-th parameter.
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Figure 3: The relationship between altitude/velocity and time in the simulation and test experiment.
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The results depicted in Figure 4 highlight that certain
parameters, specifically wind direction, wind speed, atmo-
spheric density, altitude of parachute deployment, parachute-
drag area, and eastward offset, exert a significantly greater
influence than the others. Consequently, only these six
uncertain parameters were considered as optimization vari-
ables in the subsequent analysis. This strategic approach
not only reduces the complexity arising from uncertain
parameters but also substantially enhances the optimization
efficiency.

4. Reentry Capsules Reachable Tube Boundary
Prediction Model and Algorithm

The concept of reentry capsule reachable tubes is based on
accessibility theory. Therefore, this section briefly introduces
the accessibility theory for nonlinear dynamic systems,
followed by multiobjective optimization models for predict-
ing the reentry capsule reachable tube boundary. Finally, a
multiobjective evolutionary algorithm based on decomposi-
tion (MOEA/D) is introduced to solve the formulated multi-
objective optimization problem.

4.1. Accessibility Theory. Accessibility analysis is commonly
employed in automatic control and computer science [14].
It is primarily used to address a class of complex systems
in which continuous dynamic and discrete events coexist
and interact, essentially addressing complex nonlinear sys-
tems [15]. Reachability analysis generally encompasses for-
ward and backward reachable sets. In this context, we
focus on discussing an approximate method for calculating
the forward reachable set. Throughout the following discus-
sion, the term “reachable set” specifically refers to the for-
ward reachable set. The fundamental approach involves
employing a constructed model and iteratively advancing
through each segment based on a given initial set and spec-
ified time step. The continuous dynamics of each period
were approximated, and the set of reachable states within a
specified time was computed. A pictorial illustration of the
reachable set is shown in Figure 5.

For the following nonlinear dynamic system

x t = f t, x t , u t ,H , 0 ≤ t ≤ t f , 13

where t denotes the time, x t represents the input of the
power system, u t denotes the input uncertain parameters,
H is the current height, and x t is the system output (e.g.,
x t =X t = X, Y represents the position coordinates in

Table 1: Parameter sampling setting.

Number Parameters Distribution Sampling interval

1 Wind direction Gaussian V1 ± 15 °
2 Wind speed Gaussian V2 ± 5%
3 Atmospheric density Gaussian V3 ± 30%
4 altitude of parachute deployment Gaussian V4 ± 500m
5 Parachute-drag area Gaussian V5 ± 4m2

6 Eastward offset Gaussian V6 ± 300m
7 Velocity Gaussian V7 ± 20°m/s

8 Mass Gaussian V8 ± 6 5 kg
9 Velocity inclination angle Gaussian V9 ± 10 °
10 Velocity deflection angle Gaussian V10 ± 2 °

1 2 3 4 5 6 7 8 9 10
Parameters number

0
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|S
T
i-
S i
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Figure 4: The result of the parameter sensitivity analysis.

Uncertain disturbance

t

Forward reachable set 𝜒
fInitial set 𝜒

0

Figure 5: A pictorial illustration of the reachable set.
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our system). The reachable set of the initial set X0 is the set
of all end states x t f that can be reached along the system
trajectory from the initial states in X0 that are within the
allowable control input u t ∈U [9]. The reachable tube is
formally defined as follows:

RF 0, t f ,X0 = ∪
τ∈ 0,t f

RF τ,X0 , 14

whereRF τ,X0 = x τ ∈ℝn ∃u τ ∈U, x 0 ∈X0 denotes
the reachable set at time τ and n denotes the number of sta-
tus variables.

Based on the concept of a reachable tube, we can simi-
larly define a reentry capsule reachable tube that comprises
all possible positions of the reentry capsule at any allowable
height. In the following section, we formulate the prediction
of the reentry capsule reachable tube boundary as a multiob-
jective optimization problem and then use a multiobjective
evolutionary algorithm to address it.

4.2. Multiobjective Optimization Model of Reentry Capsule
Reachable Tube Boundary Prediction. We assume that the
position of the reentry capsule OH = XH

0 , YH
0 at height H

when no uncertain parameters are considered (i.e., all uncer-
tain parameters are set to 0). The boundary of the reachable
tube, denoted as RT H , at a height of H, consists of the far-
thest positions from XH

0 , YH
0 in all directions at height H.

The boundary of the reachable tube at all heights, given by
RT = ∪H∈ 0,Hf

RT H , forms the complete boundary of the

reentry capsule reachable tube during the recovery process,
where Hf denotes the height of the reentry capsule at the
recovery start-up point. Therefore, as shown in Figure 6,
the boundary point at the height H along the direction d
can be obtained using the following single-objective optimi-
zation model:

max   X, Y − XH
0 , YH

0

s t
X, Y = f t, x t , u t ,H
u t ∈U ,

15

where u t denotes the decision vector, including the six
uncertain parameters (namely, wind direction, wind speed,
atmospheric density, altitude of parachute deployment,
parachute-drag area, and eastward offset) and U denotes
their possible values at height H.

Because of the computationally expensive nature of the
system output calculation, this single-objective model has
the following drawbacks.

(1) For a specific height H, it needs to provide a direc-
tion d to determine one boundary point, and the
total number of directions is infinite

(2) The optimal solution only corresponds to one
boundary point at the height H along direction d.
Hence, the optimization algorithm must be run mul-

tiple times to approximate the complete boundary at
the height H

To address these issues of the single-objective optimiza-
tion model, we developed the following multiobjective opti-
mization model:

max X − XH
0 , Y − YH

0

s t
X, Y = f t, x t , u t ,H
u t ∈U

16

Assume the position of the equilibrium point OH = XH
0 ,

YH
0 without any disturbance at height H as the origin and

establish the coordinate system SHO OXOYO at height H.
In the established coordinate system, the model (16) is a
multimodal multiobjective optimization problem [16, 17],
which means that different decision vector values can result
in the same objective function value. The complex nature of
the problem poses challenges for the optimization algorithm
in determining the entire Pareto front (PF) that can cover
the entire boundary. Therefore, we address this issue by sep-
arating it (16) into four independent multiobjective optimi-
zation subproblems as follows:

(i) The MOP in quadrant 1 is as follows:

max X − XH
0 , Y − YH

0

s t
X, Y = f t, x t , u t ,H
u t ∈U

17

(ii) The MOP in quadrant 2 is as follows:

max XH
0 − X, Y − YH

0

s t
X, Y = f t, x t , u t ,H
u t ∈U

18

H H
OH = (X0, X0 )

Boundary at height H

Direction d
Boundary point

Figure 6: A pictorial illustration of determining the boundary
point at height H along direction d.
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(iii) The MOP in quadrant 3 is as follows:

max XH
0 − X, YH

0 − Y

s t
X, Y = f t, x t , u t ,H
u t ∈U

19

(iv) The MOP in quadrant 4 is as follows:

max X − XH
0 , YH

0 − Y

s t
X, Y = f t, x t , u t ,H
u t ∈U

20

Based on the separation, we have four MOP subprob-
lems in the coordinate system SHO OXOYO . However, since
we remove the direction d of the single-objective optimiza-
tion model in the multiobjective optimization model, the
PFs of all these four MOPs may not effectively cover the
entire boundary. Therefore, we rotate the coordinate system
SHO OXOYO clockwise by 45° and get another four MOP
subproblems in the rotated coordinate system. Finally, we
get eight MOP subproblems at the height H, and the combi-
nation of the PFs of all these eight MOP subproblems forms
the final reachable boundary at height H. A pictorial illustra-
tion of the PFs in the original coordinate system SHO OXO
YO and the corresponding rotated coordinate system are
shown in Figure 7.

For the height H, we can obtain its reachable boundary
by solving the eight MOP subproblems. The reachable tube
boundary of the reentry capsule during the entire recovery
process was obtained by combining all reachable boundaries
within the height range of 0,Hf . In this study, we discre-
tized the height using ΔH and used a combination of the
boundaries at all discrete heights to approximate the entire
boundary of the reachable tube. A pictorial illustration of
the discretization process is shown in Figure 8.

4.3. Multiobjective Evolutionary Algorithm Based on
Decomposition. Multiobjective evolutionary algorithms
(MOEAs) have been a popular research topic in various
fields [18, 19] for several reasons: (1) They can handle a wide
range of multiobjective optimization problems. (2) They can
generate a set of Pareto optimal solutions in a single run.
Current mainstream MOEAs can be divided into three cate-
gories: dominance-[20], decomposition- [21], and indicator-
based MOEAs [22]. In this study, because complex nonlin-
ear relationships exist between the decision vectors and
objectives in the formulated multiobjective optimization
models, we adopted a specific MOEA, namely, MOEA/D
[21, 23], to solve all the MOP subproblems. MOEA/D first
decomposes an MOP into a number of single-objective opti-
mization subproblems using a set of uniformly distributed
weight vectors and then collaboratively solves all these

single-objective subproblems. The two main reasons for
using MOEA/D in this paper are as follows [24, 25]:

(1) The PFs of all MOP subproblems were continuous
and regular

(2) The two objectives of all MOP subproblems have the
same magnitude

The details of the MOEA/D algorithm can be found in
the literature [21].

5. Simulation Experiments

5.1. Experimental Settings. In our simulation experiments,
the search space for the uncertain parameters remained the
same as that listed in Table 1, and five discrete heights were
considered (H1 = 9 km, H2 = 7 km, H3 = 5 km, H4 = 3 km,
and H5 = 1 km). For the MOEA/D, the Tchebycheff method
was selected as the decomposition method, and the popula-
tion size and maximum number of iterations were set as 200

O

45°

O

PF 1
PF 2
PF 3
PF 4

PF 5
PF 6
PF 7
PF 8

Figure 7: A pictorial illustration of the PF in the original
coordinate system SHO OXOYO and the corresponding rotated
coordinate system.
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Figure 8: A pictorial illustration of the discretization. AH , BH , CH ,
and DH denote the endpoint of the boundary at height H.
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and 100, respectively. The other parameters of MOEA/D
were the same as those used in the original study [21]. Each
MOP subproblem at a fixed height was independently solved
using MOEA/D.

5.2. Experimental Results. In this study, we utilized the com-
monly used Monte Carlo target shooting [26] and our pro-
posed methods to predict the reachable boundary of the
reentry capsule at five discrete heights. The experimental

results are shown in Figure 9. The following observations
were derived from the results:

(1) The Monte Carlo target-shooting method cannot
provide a completely reachable boundary at each
height, whereas our method can

(2) The boundary determined by our method fully
encompasses the region predicted by the Monte
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Figure 9: The result of the Monte Carlo target shooting method and our method. The nominal trajectory denotes the position trajectory
achieved without considering any uncertainty parameters (i.e., all uncertainty parameters are set to 0).
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Carlo target shooting method, indicating that our
method has higher accuracy in predicting the reach-
able boundary than the Monte Carlo target shooting
method

Finally, by applying the interpolation method to the
results obtained at these five heights, the reachable bound-
aries at any height can be determined. The resulting reentry
capsule-reachable tube obtained using the proposed method
is illustrated in Figure 10. Figure 10 displays the primary
structure of the reachable tube, and its accuracy can be read-
ily enhanced by incorporating data from a greater number of
heights.

6. Conclusion

This paper introduces a novel approach by modeling the
reentry capsule reachable tube boundary prediction problem
as a multiobjective optimization problem and solving it by
employing a decomposition-based multiobjective evolution-
ary algorithm. Its performance was validated through com-
parison with the commonly used Monte Carlo target
shooting method in the context of estimating the reachable
tube of the Chang’e-5 reentry capsule. The experimental
results demonstrate the effectiveness of both the model and
optimization algorithm.

In terms of algorithms, the proposed method involves
solving numerous multiobjective optimization problems to
determine a reachable tube. There were positive correlations
between these multiobjective optimization problems. There-
fore, we plan to employ evolutionary multiobjective multi-
task optimization algorithms in the future to enhance both
the solution accuracy and efficiency [27–29]. In addition,
because of the high computational requirements of the sys-
tem, we intend to consider data-driven evolutionary algo-
rithms [30, 31] to deal with it.

Our research provides a new way for the recovery pre-
diction of other types of parachute-capsule systems, which
can be applied to the recovery of general spacecraft in
activities such as deep space exploration, improve the effi-

ciency and accuracy of search and rescue, and avoid eco-
nomic losses.

Data Availability

No underlying data was collected or produced in this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China under grants 62206120 and 11772353.

References

[1] Y. Bai, Q. Hu, Y. Long, K. Ma, C. Zhao, and M. Zhang, “Para-
chute deployment fault identification and landing point
prediction of spacecraft recovery system based on swin trans-
former and edge detection,” in 2022 5th International Confer-
ence on Mechatronics, Robotics and Automation (ICMRA),
Wuhan, China, 2022.

[2] G. Guglieri, “Parachute-payload system flight dynamics and
trajectory simulation,” International Journal of Aerospace
Engineering, vol. 2012, Article ID 182907, 17 pages, 2012.

[3] E. M. Queen and B. Raiszadeh, “Mars science laboratory para-
chute simulation model,” Journal of Spacecraft and Rockets,
vol. 43, no. 2, pp. 374–377, 2006.

[4] W. Zhou, R. Ma, X. Hu, and G. Wang, “Research on circular
parachute descent trajectory control,” Journal of Ordnance
Equipment Engineering, vol. 42, no. 1, pp. 26–30, 2021.

[5] Y. Cao and N. Wei, “Flight trajectory simulation and aerody-
namic parameter identification of large-scale parachute,”
International Journal of Aerospace Engineering, vol. 2020, Arti-
cle ID 5603169, 13 pages, 2020.

[6] Z. Guo, Q. Miao, S. Wang, and H. Li, “Prediction of the trajec-
tory of the manned spacecraft Shenzhou-7 deploying a para-
chute based on a fine wind field,” Science China (Earth
Sciences), vol. 54, no. 9, pp. 1413–1429, 2011.

[7] D. A. Spencer and R. D. Braun, “Mars Pathfinder atmospheric
entry - trajectory design and dispersion analysis,” Journal of
Spacecraft and Rockets, vol. 33, no. 5, pp. 670–676, 1996.

[8] K. J. Bledsoe and M. Bernatovich, “Development and overview
of CPAS Sasquatch airdrop landing location predictor soft-
ware,” in 23rd AIAA Aerodynamic Decelerator Systems Tech-
nology Conference, p. 2122, Daytona Beach, FL, 2015.

[9] Z. Lu, H. Hong, M. Gerdts, and F. Holzapfel, “Flight envelope
prediction via optimal control-based reachability analysis,”
Journal of Guidance, Control, and Dynamics, vol. 45, no. 1,
pp. 185–195, 2022.

[10] O. A. Yakimenko, Precision Aerial Delivery Systems: Modeling,
Dynamics, and Control, American Institute of Aeronautics and
Astronautics, Inc., 2015.

[11] L. Wang, Q. Gao, W. Xu, G. Zhang, and Q. Zhang, “Dynamic
modeling and analysis of Chang’ e-5 parachute deceleration
system,” Journal of Astronautics, vol. 42, no. 8, pp. 1051–
1056, 2021.

00

2

–2

4

2

North
 (k

m)

H
 (k

m
)

East (km)

6

4 –4

8

6 8 –610

Nominal trajectory

Figure 10: The reachable tube obtained by our method.

10 International Journal of Aerospace Engineering



[12] Q. Wu, Parameter Global Sensitivity Analysis and Its Applica-
tion to Deterministic Complex Dynamic System Modelling,
[Ph.D. thesis], Wuhan University, 2013.

[13] I. M. Sobol, “Global sensitivity indices for nonlinear mathe-
matical models and their Monte Carlo estimates,” Mathemat-
ics and Computers in Simulation, vol. 55, no. 1-3, pp. 271–280,
2001.

[14] G. Jianing, “Research on operating characteristics of microgrid
based on reachability analysis theory, [Ph.D. thesis],” Shanghai
Jiao Tong University, 2020.

[15] G. Yin, Y. Rong, J. Zhang, and X. Chai, “Application overview
of reachability analysis theory in power systems,” Smart Grid,
vol. 4, no. 5, pp. 506–511, 2016.

[16] Z. Wei, W. Gao, M. Gong, and G. G. Yen, “A bi-objective
evolutionary algorithm for multimodal multi-objective opti-
mization,” in IEEE Transactions on Evolutionary Computa-
tion, 2022.

[17] W. Gao, W. Xu, M. Gong, and G. G. Yen, “A decomposition-
based evolutionary algorithm using an estimation strategy for
multimodal multi-objective optimization,” Information Sci-
ences, vol. 606, pp. 531–548, 2022.

[18] G. Li, Z. Wang, Q. Zhang, and J. Sun, “Offline and online
objective reduction via Gaussian mixture model clustering,”
IEEE Transactions on Evolutionary Computation, vol. 27,
no. 2, pp. 341–354, 2023.

[19] Z. Wang, Q. Zhang, A. Zhou, M. Gong, and L. Jiao, “Adaptive
replacement strategies for MOEA/D,” IEEE Transactions on
Cybernetics, vol. 46, no. 2, pp. 474–486, 2016.

[20] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and
elitist multiobjective genetic algorithm: NSGA-II,” IEEE
Transactions on Evolutionary Computation, vol. 6, no. 2,
pp. 182–197, 2002.

[21] Q. Zhang and H. Li, “MOEA/D: a multiobjective evolutionary
algorithm based on decomposition,” IEEE Transactions on
Evolutionary Computation, vol. 11, no. 6, pp. 712–731, 2007.

[22] J. G. Falcon-Cardona and C. A. C. Coello, “Indicator-based
multi-objective evolutionary algorithms: a comprehensive sur-
vey,”ACMComputing Surveys (CSUR), vol. 53, no. 2, pp. 1–35,
2020.

[23] H. Li and Q. Zhang, “Multiobjective optimization problems
with complicated Pareto sets, MOEA/D and NSGA-II,” IEEE
Transactions on Evolutionary Computation, vol. 13, no. 2,
pp. 284–302, 2009.

[24] L. He, H. Ishibuchi, A. Trivedi, H. Wang, Y. Nan, and
D. Srinivasan, “A survey of normalization methods in multi-
objective evolutionary algorithms,” IEEE Transactions on Evo-
lutionary Computation, vol. 25, no. 6, pp. 1028–1048, 2021.

[25] Y. Hua, Q. Liu, K. Hao, and Y. Jin, “A survey of evolutionary
algorithms for multiobjective optimization problems with
irregular Pareto fronts,” IEEE/CAA Journal of Automatica
Sinica, vol. 8, no. 2, pp. 303–318, 2021.

[26] K. Guo, L. Huang, and X. Xie, A simulation research on the
impact factors of the dispersion of transport aircraft airdrop
parachute’s landing positions, Changjiang Information &
Communications, 2023.

[27] A. Gupta, Y.-S. Ong, L. Feng, and K. C. Tan, “Multiobjective
multifactorial optimization in evolutionary multitasking,”
IEEE Transactions on Cybernetics, vol. 47, no. 7, pp. 1652–
1665, 2017.

[28] G. Li, Q. Lin, and W. Gao, “Multifactorial optimization via
explicit multipopulation evolutionary framework,” Informa-
tion Sciences, vol. 512, pp. 1555–1570, 2020.

[29] K.-J. Du, J.-Y. Li, H. Wang, and J. Zhang, “Multi-objective
multi-criteria evolutionary algorithm for multi-objective
multi-task optimization,” Complex & Intelligent Systems,
vol. 9, no. 2, pp. 1211–1228, 2023.

[30] Y. Jin, H. Wang, T. Chugh, D. Guo, and K. Miettinen,
“Data-driven evolutionary optimization: an overview and
case studies,” IEEE Transactions on Evolutionary Computa-
tion, vol. 23, no. 3, pp. 442–458, 2019.

[31] G. Li and Q. Zhang, “Multiple penalties and multiple local
surrogates for expensive constrained optimization,” IEEE
Transactions on Evolutionary Computation, vol. 25, no. 4,
pp. 769–778, 2021.

11International Journal of Aerospace Engineering


	Reentry Capsule Reachable Tube Boundary Prediction via Evolutionary Multiobjective Optimization
	1. Introduction
	2. Models
	2.1. Model Hypothesis
	2.2. Model Coordinate System
	2.3. Multibody Dynamic Model
	2.4. Model Verification

	3. Model Parameter Sensitivity Analysis
	4. Reentry Capsules Reachable Tube Boundary Prediction Model and Algorithm
	4.1. Accessibility Theory
	4.2. Multiobjective Optimization Model of Reentry Capsule Reachable Tube Boundary Prediction
	4.3. Multiobjective Evolutionary Algorithm Based on Decomposition

	5. Simulation Experiments
	5.1. Experimental Settings
	5.2. Experimental Results

	6. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments



