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Based on the variable gain extended state observer, a finite-time fault-tolerant control strategy is developed for the quadrotor
unmanned aerial vehicle with actuator faults and external disturbances. Firstly, a novel variable gain extended state observer is
designed to estimate the unknown external disturbances, which mitigates the initial peaking phenomenon existing in
traditional extended state observer-based methods. Meanwhile, the neural networks are applied to accurately approximate
unknown couplings online. Moreover, with the help of the projection operator technique, the unknown actuator faults are
observed in real time. Combined with the backstepping framework, the finite-time robust fault-tolerant control scheme is
constructed and the stability is strictly proved via Lyapunov’s theory. Finally, the validity of the developed control scheme is
demonstrated through numerical simulations.

1. Introduction

With the reformation and development of automatic control
theory, the quadrotor unmanned aerial vehicle (UAV) has
attracted wide attention in different fields. Owing to the
advantages of low-speed flight, low-altitude hovering, verti-
cal takeoff, and landing, it can not only be applied to many
civilian areas but also has pivotal practical utility in the mil-
itary and national defense fields [1, 2]. However, the quadro-
tor UAV is not only a typical underactuated system but also
impressionable to the actuator faults and external distur-
bances because of the unique rotor structures [3]. Therefore,
high-efficiency robust fault-tolerant control (FTC) design for
the quadrotor UAV is a challenging topic worthy of inten-
sive study.

Disturbances exist in almost all industrial systems and
adversely affect control performance. Consequently, various
antidisturbance methods have been presented to assure the
system tracking performance in recent years, such as robust
control [4, 5], sliding mode control [6–9], disturbance
observer-based control [10, 11], and active disturbance

rejection control (ADRC) [12–16]. Sliding mode control is
widely used due to its robustness and fast response. Among
these methods, the ADRC technique has been extensively
used because of its ability to estimate total unknown uncer-
tainties and disturbances [12]. As an important part of the
ADRC technique, the high-quality extended state observer
(ESO) can enhance the robustness of the system. In [13], a
high-order ESO-based trajectory tracking control method
was proposed for the quadrotor UAV in the presence of
position constraints and uncertainties. In [14], an ESO-
based robust deadbeat current controller was developed for
the permanent magnet synchronous machine system with
mismatch parameters and unmodeled nonlinear elements.
In [15], the sliding mode approach was combined with the
ESO approach to stabilize the pneumatic servo system
subject to unknown disturbances. In [16], a deep forest
algorithm-based fault diagnosis and location algorithm was
presented for the quadrotor UAV system by means of the
ESO technique. Nevertheless, most of the existing research
results related to the ADRC methods were based on the con-
stant observation gain, which always requires large values to
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ensure the rapid convergence of observation errors. For this
reason, there is a so-called initial peaking phenomenon in
the early operation of the observer existing in the traditional
ESO method, and it is unfavorable to the transient dynamic
response of the system. Therefore, novel variable gain
extended state observer (VGESO) needs further exploration
to enhance the antidisturbance performance.

Furthermore, actuator fault is another important factor
that threatens the safe flight of quadrotor UAV. If the actua-
tor fault cannot be handled in a timely manner, it will not
only affect the flight control performance but also cause
property losses in serious cases. At present, the adaptive esti-
mation scheme is widely adopted to deal with the unknown
fault due to its direct observation capability. In [17], an adap-
tive FTC strategy was developed for quadrotor UAV systems
under actuator faults. In [18], an output feedback-based
robust adaptive fault estimation strategy was presented for
the quadrotor attitude system with actuator faults. In [19],
sensor faults were studied for the switched uncertain nonlin-
ear systems based on fuzzy control technology. In [20], a dis-
tributed fault estimation method was presented for the
heterogeneous multiagent systems. Radial basis function
neural networks (RBFNNs) are commonly utilized to
approach continuous unknown functions. In [21], a neural
FTC strategy was developed to address uncertainties existing
in the helicopter system. In [22], a fuzzy neural network PID
control method was presented to restrain the adverse impact
of actuator faults. However, most of the existing works focus
on the asymptotic stability of the quadrotor UAV under
actuator faults, and the finite-time stability needs further
consideration.

Since the operational missions of the quadrotor UAV
become more and more complicated, it is of practical signif-
icance to address the finite-time convergence problem. In
[8], the problem of finite-time stability was discussed for
the variable sweep morphing aircraft based on the adaptive
supertwisting sliding mode control method. In [23], a
finite-time terminal sliding mode control scheme was devel-
oped for UAV systems with load suspension. In [24], a
backstepping-based finite-time controller was presented for
the disturbed quadrotor UAV system. Considering the
dynamic obstacle disturbances, a finite-time controller was
developed for the quadrotor UAV system in [25]. In [26],
the issue of time-triggered-based finite-time control was
investigated for the quadrotor system. In [27], an adaptive
sliding mode finite-time stabilization control method was
designed for the UAV system with parametric uncertainties.
However, reviewing the reported literature, the high-quality
finite-time FTC design for quadrotor UAV subject to exter-
nal disturbance and actuator fault deserves more attention.

In general, a VGESO-based finite-time FTC algorithm is
developed for the quadrotor UAV to guarantee flight safety
and mission success. The main contributions of this work
are summarized as follows:

(1) A novel VGESO is developed to deal with the
unknown disturbance, which can overcome the ini-
tial peaking phenomenon existing in the traditional
ESO approach

(2) The adaptive fault observer is combined with the
RBFNN technique to estimate the unknown actuator
fault directly

(3) The presented antidisturbance FTC strategy can
make the quadrotor UAV accomplish the tracking
mission in finite time

The rest of this article is organized as follows. In Section
2, the nonlinear dynamic equations of the quadrotor UAV
are established and some necessary assumptions are given.
In Section 3, the robust fault-tolerant controller design and
stability analysis are introduced. In Section 4, contrastive
numerical simulations are conducted to demonstrate the
effectiveness of the developed technique. In Section 5, con-
clusions and prospects are given.

2. Problem Description

The schematic diagram of the quadrotor UAV is given in
Figure 1, where Re = oe, xe, ye, ze defines the earth frame
fixed on a point on Earth and Rb = ob, xb, yb, zb denotes
the body coordinate frame fixed on the centroid of the quad-
rotor UAV. Then, taking both actuator faults and external
disturbances into account, the complete dynamic equations
of quadrotor UAVs are derived based on Newton-Euler the-
ory as follows [28]:

x = ρ1u1
m

cos ϕ sin θ cos ψ + sin ϕ sin ψ + d11,

y = ρ1u1
m

cos ϕ sin θ sin ψ − cos ψ sin ϕ + d12,

z = ρ1u1
m

cos θ cos ϕ − g + d13,

ϕ = ς + υ sin ϕ tan θ + μ tan θ cos ϕ,

θ = −μ sin ϕ + υ cos ϕ,

ψ = μ cos ϕ
cos θ + υ sin ϕ

cos θ ,

ς = υμ
Jy − Jz
Jx

+ ρ21u2
Jx

+ d21,

υ = ςμ
Jz − Jx
Jy

+ ρ22u3
Jy

+ d22,

μ = ςυ
Jx − Jy
Jz

+ ρ23u4
Jz

+ d23,

1

where ϒ = x, y, z T denotes the position vector defined in
Re; Λ = ϕ, θ, ψ T represents the attitude angle including roll
angle ϕ, pitch angle θ, and yaw angle ψ; Θ = ς, υ, μ T is the
angular rate defined in Rb; u1 is the total thrust; M =
u2, u3, u4 T is the control moment; m is the mass; g is the
acceleration of gravity; J = diag Jx, Jy , Jz is the moment
of inertia matrix; ρ1 and ρ2i i = 1, 2, 3 define the constant
partial loss of effectiveness (LOE) fault factor of corresponding
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actuator; and dj = dj1, dj2, dj3
T j = 1, 2 represents unknown

external disturbances.
The primary control objective of this study is to develop

an effective robust fault-tolerant controller, which simulta-
neously guarantees that

(1) all errors of the closed-loop system are bounded

(2) the desired trajectories can be tracked in finite time

Meanwhile, the following assumptions and lemmas are
given.

Assumption 1 (see [29]). The external disturbances are
assumed to be bounded satisfying d1 ≤ R1, d1 ≤ R2,
d2 ≤ R3, and d2 ≤ R4, where R1, R2, R3, and R4 are posi-
tive constants. Moreover, the actuator LOE fault factors ρ1
and ρ2i are assumed to be constant and belong to ε, 1 ,
where ε > 0 is the lower bound.

Lemma 2 (see [21]). RBFNNs are commonly used for approx-
imate unknown continuous functions f Fm : Rn ⟶ R,
which can be written in the form of

f Fm = Ŵ
T
h Fm +℘, 2

where Fm ∈ Rn is the input variable vector and ℘ is the result-
ing approximation error, Ŵ ∈ Rj stands for the estimation of
the optimum weight vector W∗, and h Fm = h1 Fm , h2
Fm ,⋯,hj Fm ∈ Rj represents the basis function. The opti-
mal weight vector of the RBFNN is defined as

W∗ = arg min
Ŵ∈Ω f

sup
Fm∈ΩFm

f̂ Fm Ŵ − f Fm , 3

where Ωf = Ŵ Ŵ ≤W is a valid set with W being a
constant and ΩM is an acceptable set of the state. Substituting
the optimal weight value results in

f Fm =W∗Th Fm + ℘∗, 4

where ℘∗ is the optimal approximation error satisfying ℘∗ ≤ ℘
with ℘ being a constant.

Lemma 3 (see [30]). For any real numbers bi i = 1, 2,⋯,n ,
the following inequalities hold:

Σ
n

i=1
bi

σ

≤ Σ
n

i=1
bi

σ,

Σ
n

i=1
bi

2
ι

≤ Σ
n

i=1
bi

ι
2

,
5

where 0 < σ < 1 and 0 < ι < 2.

Lemma 4 (see [30]). For arbitrary positive constants ϖ1, ϖ2,
and ϖ3, the following inequation holds:

κ1
ϖ1 κ2

ϖ2 ≤
ϖ1

ϖ1 + ϖ2
ϖ3 κ1

ϖ1+ϖ2 + ϖ2

ϖ1 + ϖ2
ϖ3

ϖ1/ϖ2 κ2
ϖ1+ϖ2 ,

6

where κ1 and κ2 are real values.

Lemma 5 (see [30, 31]). For the given nonlinear system, if
there exists a smooth positive definite function V x satisfying
V x ≤ −τ1Vη x + τ2, where real numbers satisfy τ1 > 0,
0 < η < 1, and 0 < τ2 <∞, the system states convergence in

finite time, with the settling time Tst defined as Tst ≤ 1/ 1 −
η Kdτ1 V1−η

3 0 − τ2/ 1 − Kd τ1
1−η /η , where 0 < Kd <

1 is a constant.

3. Finite-Time Fault-Tolerant
Controller Design

In this section, the design process of the proposed finite-time
robust fault-tolerant controller is introduced elaborately,
with the flow chart presented in Figure 2.

3.1. VGESO Design of Position Loop. For the sake of clarity,
we rewrite the position loop governing equations of quadro-
tor UAV as

ϒ = Δ,
Δ = ρ1BU − gϑ + d1,

7

where Δ is the velocity vector, B = diag ux/m, uy/m, uz/m ,
ux = sin ψ sin ϕ + cos ψ cos ϕ sin θ, uy = sin ψ cos ϕ sin θ −

Earth frame

�

yb

zb

ze

xe
oe

ye

xb
�

ob

�

Figure 1: Coordinate system of the quadrotor UAV.
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cos ψ sin ϕ, uz = cos θ cos ϕ, U = u1, u1, u1 T , and ϑ =
0, 0, 1 T .

Based on Lemma 2, the following approximation of the
unknown coupling term ρ1BU can be obtained:

L1ρ1BU =W∗T
1 h BU + ℘∗

1 , 8

where L1 ∈ R3×3 defines the positive diagonal matrix, W∗
1

∈ Rj×3 is the optimal weight matrix satisfying W∗
1 ≤W1,

h BU ∈ Rj×1 is the Gaussian basis function vector and h
BU ≤ δ1, and ℘∗

1 is the approximate error.
Define Δ = x1 and d1 = x2. Then, we have

x1 = L−11 W∗T
1 h BU + L−11 ℘∗

1 − gϑ + x2,

x2 = d1
9

According to (9), the VGESO is expressed as

x̂1 = −β1 t z1 + L−11 Ŵ
T
1 h BU − gϑ + x̂2,

x̂2 = −β2 t z1,
10

where x̂i i = 1, 2 represents the estimation of xi; z1 = x̂1 − x1
;

Y1 t =
γ1/ z1

2, z1 ≥ h1,
γ2, other ;

11

β1 t = diag Y1 t /2,Y1 t /2, Y1 t /2 ; β2 t = diag Y1 t ,
Y1 t , Y1 t ; γ1, h1, and γ2 are positive constants; and Ŵ1
is the estimation of W1.

Considering (9) and (10), the observation errors of the
VGESO can be expressed as

z1 = −β1 t z1 + L−11 W
T
1 h BU − L−11 ℘∗

1 + z2,

z2 = −β2 t z1 − d1,
12

where z2 = x̂2 − x2 and W1 = Ŵ1 −W∗
1 .

Define Σ1 = z1, z2 T . Then, we can obtain

Σ1 =
z1

z2
=

−β1 t 1

−β2 t 0
Σ1 +

L−11 W
∗T
1 h BU

0

+
−L−11 ℘∗

1

−d1
= A1Σ1 + B1 + B2

13

For the purpose of ensuring A1 is Hurwitz matrix, the
parameters satisfy β1 t > 0 and β2 t > 0. To put it differ-
ently, there is a positive definite matrix

P1 =
P11 P12

P13 P14
, 14

which satisfies

A1
TP1 + P1A1 = −Q1, 15

where Q1 represents the positive definite matrix.

Remark 6. In the initial phase of ESO estimation, owing to
the large initial error between the estimated signal and actual
value, a large overshoot will appear in the early adjustment
process. This is the so-called initial peaking phenomenon
[32, 33]. The VGESO designed above can solve the initial
peaking problem by using a small gain at first and then

M

Desired
position and
desired yaw

angle

Inverse
solution 

VGESO

VGESO

Attitude loop controller

Virtual control
law

Position loop controller

Controller Virtual control
law

Controller

Disturbances and actuator faults

�d

�d, �d

�d

Υd

Υ, Υ

d

Ξ, Ξ

u1

Nonlinear
mathematical

model

Figure 2: Block diagram of controller design.
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maintaining a high gain, which upgrades the practical appli-
cation and ensures observation accuracy.

3.2. Robust Fault-Tolerant Controller Design of Position
Motion. Tracking errors of position motion are defined as

e1 =ϒ d −ϒ , 16

e2 = Δd − Δ, 17

where ϒ d = xd , yd , zd
T denotes the desired position and

Δd = ud , vd ,wd
T is the virtual controller.

Combining (7) and (17), the derivative of (16) is

e1 =ϒ d − Δd + e2 18

The virtual controller Δd is designed as

Δd =ϒ d + k1e
2π1−1
1 , 19

where k1 = diag k11, k12, k13 > 0 and 0 5 < π1 < 1.
Considering (19), equation (18) can be further

described as

e1 = −k1e
2π1−1
1 + e2 20

Then, differentiating (17) yields

e2 = Δd − ρ1BU + gϑ − d1 21

The position loop finite-time controller is proposed as

BU = 1
ρ1

Δd + gϑ − d1 + k2e
2π1−1
2 + e1 + s1e2 , 22

where s1 is the proposed positive definite matrix.
Define a1 = 1/ρ1. Since ρ1 ∈ ε, 1 , it can be seen that a1

∈ 1, 1/ε . Then, (22) becomes

BU = â1 Δd + gϑ − x̂2 + k2e
2π1−1
2 + e1 + s1e2 , 23

where â1 is the estimate of a1.
Combining (23), equation (21) can be expressed as

e2 = Δd −
â1
a1

Δd + gϑ − x̂2 + k2e
2π1−1
2 + e1 + s1e2

+ gϑ − d1 = −e1 − k2e
2π1−1
2 + z2 − s1e2

−
a1
a1

Δd + gϑ − x̂2 + k2e
2π1−1
2 + e1 + s1e2 ,

24

where a1 = â1 − a1.

Select the Lyapunov candidate function as

V1 =
1
2 a1e1

Te1 +
1
2 a1e2

Te2 +
1
2r1

a1
2

+ 1
2 tr W

T
1 T

−1
1 W1 + ΣT

1 P1Σ1,
25

where r1 > 0 and T1 = TT
1 > 0 are the appropriate parameters.

Considering (20) and (24), the derivative of (25) is
given by

V1 = a1e
T
1 −k1e

2π1−1
1 + e2 + a1e

T
2 −e1 − k2e

2π1−1
2 + z2 − s1e2

−
a1
a1

Δd + gϑ − x̂2 + k2e
2π1−1
2 + e1 + s1e2

+ 1
r1
a1â1 + tr W

T
1 T

−1
1 Ŵ1 + ΣT

1 P1Σ1 + Σ
T
1 P1Σ1

≤ −a1e
T
1 k1e

2π1−1
1 − a1e

T
2 k2e

2π1−1
2 + a1e

T
2 z2 − a1e

T
2 s1e2

− eT2 a1Γ1 +
1
r1
a1â1 + tr W

T
1 T

−1
1 Ŵ1 − ΣT

1Q1Σ1

+ 2ΣT
1 P1B1 + 2ΣT

1 P1B2,
26

where Γ1 = Δd + gϑ − x̂2 + k2e
2π1−1
2 + e1 + s1e2.

The parameter update law and adaptive fault observer
are designed as

Ŵ1 = −T1 2h BU zT1 P11L
−1
1 +Gn1Ŵ1 ,

â1 = Proj 1,1/ε r1Γ1
Te2 − r1Gm1â1,

27

where Gn1 and Gm1 are designed positive constants, Proj ·
is the projection operator, and its role is to project â1 into
1, 1/ε [34].

Defining N1 = 1/r1 a1â1, N2 = tr W
T
1 T

−1
1 Ŵ1 , and

N3 = −ΣT
1Q1Σ1 + 2ΣT

1 P1B1 + 2ΣT
1 P1B2, we can get

N1 = ΓT
1 e2a1 − Gm1a1a1 −Gm1a1

2

≤ ΓT
1 e2a1 −

1
2Gm1a1

2 + 1
2ε2 Gm1,

28

N2 = −2tr W
T
1 h BU zT1 P11L

−1
1 −Gn1tr W

T
1 W1 +W∗

1

≤ −2tr W
T
1 h BU zT1 P11L

−1
1 −Gn1 W

T
1

2
+ 1
2Gn1 W1

2

+ 1
2Gn1 W∗

1
2 ≤ −2tr W

T
1 h BU zT1 P11L

−1
1

−
1
2Gn1 W1

2 + 1
2Gn1W

2
1,

29
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N3 ≤ −ΣT
1Q1Σ1 + 2 ΣT

1 P1 B2 + 2zT1 P11L1
−1W

T
1 h BU

+ 2zT2 P13L1
−1W

∗T
1 h BU ≤ −ΣT

1 Q1 − λ1I Σ1 +
C2
1

λ1

+ 2zT1 P11L
−1W

T
1 h BU + λ2C

2
2z

T
2 z2 +

W
T
1

2

λ2
,

30

where λ1 and λ2 are designed positive parameters, P1
B2 ≤ C1, and P13 L1

−1 h BU ≤ C2.
Substituting (28), (29), and (30) into (26), we have

V1 ≤ −a1e
T
1 k1e

2π1−1
1 − a1e

T
2 k2e

2π1−1
2 + a1e

T
2 z2 − a1e

T
2 s1e2

−
1
2Gm1a1

2 + 1
2ε2 Gm1 −

1
2Gn1 W1

2 + 1
2Gn1W

2
1

− ΣT
1 Q1 − λ1I Σ1 +

C2
1

λ1
+ λ2C

2
2z

T
2 z2 +

W
T
1

2

λ2

≤ −a1 Σi=1
3
k1ie

2π1
1i − a1 Σi=1

3
k2ie

2π1
2i − a1s1 −

1
2 a1

2 eT2 e2

−
1
2Gm1a1

2 + 1
2ε2 Gm1 −

1
2Gn1 W1

2 + 1
2Gn1W

2
1

− ΣT
1 Q1 − λ1I − ℏ1 Σ1 +

C2
1

λ1
+

W
T
1

2

λ2
,

31

where

ℏ1 =
03×3 03×3

03×3
1
2 + λ2C

2
2 I3×3

, 32

and I is the identity matrix.
Define BU = Tu1, Tu2, Tu3

T . With the desired yaw angle
ψd given, the corresponding attitude angles ϕd and θd and
required propeller lift u1 can be calculated as [35]

ϕd = arctan cos θd Tu1 sin ψd − Tu2 cos ψd

Tu3
,

θd = arctan Tu1 cos ψd + Tu2 sin ψd

Tu3
,

u1 =
mTu3

cos θd cos φd

33

3.3. VGESO Design of Attitude Motion. Similarly, the atti-
tude equation of the quadrotor UAV can be rewritten as

Ξ =Hℵ,
ℵ = −J−1ℵ × Jℵ + ρ2 J

−1M + d2,
34

where H is the attitude transition matrix and ρ2 = diag
ρ21, ρ22, ρ23 .

Considering the unknown actuator fault ρ2, RBFNNs are
adopted to approximate the coupling term ρ2 J

−1M, which is
in the form of

L2ρ2 J
−1M =W∗T

2 h J−1M + ℘∗
2 , 35

where L2 = LT2 > 0 is the designed parameter,W2 ∈ Rj×3 is the
optimal weight satisfying W∗

2 ≤W2, h J−1M ∈ Rj×1 is the
Gaussian function which satisfies h J−1M ≤ δ2, and ℘∗

2 is
the approximate error.

Define ℵ = x3 and d2 = x4. Then, we have

x3 = −J−1x3 × Jx3 + L−12 W∗T
2 h J−1M + L−12 ℘∗

2 + x4,

x4 = d2
36

Based on (36), the VGESO is established as

x̂3 = −J−1x3 × Jx3 + L−12 Ŵ
T
2 h J−1M + x̂4 − β3 t z3,

x̂4 = −β4 t z3,
37

where x̂3 and x̂4 are the estimations of x3 and x4; z3 = x̂3 − x3;

Y2 t =
γ3
z3

2 , z3 ≥ h2,

γ4, other ;
38

β3 t = diag Y2 t /2,Y2 t /2,Y2 t /2 ; β4 t = diag Y2 t ,
Y2 t , Y2 t ; Ŵ2 is the estimation of W2; and γ3, h2, and
γ4 are the prepared positive constants.

Considering (36) and (37), the observation errors of the
VGESO are given by

z3 = L−12 W
T
2 h J−1M − L−12 ℘∗

2 + z4 − β3 t z3,

z4 = −d2 − β4 t z3,
39

where z4 = x̂4 − x4 and W2 = Ŵ2 −W∗
2 .

Let Σ2 = z3, z4 T . Then, we can obtain

Σ2 =
z3

z4
=

−β3 t 1

−β4 t 0
Σ2 +

L−12 W
T
2 h J−1M

0

+
−L−12 ℘∗

2

−d2
= A2Σ2 + B3 + B4

40

For the purpose of ensuring that A2 is Hurwitz matrix,
the parameters satisfy β3 t > 0 and β4 t > 0. To put it dif-
ferently, there is a positive definite matrix
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P2 =
P21 P22

P23 P24
, 41

which satisfies

A2
TP2 + P2A2 = −Q2, 42

where Q2 is the selected positive definite matrix.

3.4. Robust Fault-Tolerant Controller Design of Attitude
Motion. The tracking errors of attitude motion are defined as

e3 = Ξd − Ξ, 43

e4 =ℵd −ℵ, 44

where Ξd = ϕd , θd , ψd
T and ℵd is the virtual control law.

Combining (34) and (44), the derivative of (43) can be
reformulated as

e3 = Ξd −Hℵd +He4 45

The virtual control law ℵd is given as

ℵd =H−1 Ξd + k3e
2π1−1
3 , 46

where k3 = diag k21, k22, k23 is the positive design matrix.
Substituting (46) into (45) gives

e3 = −k3e
2π1−1
3 +He4 47

Then, differentiating (44) yields

e4 =ℵd + J−1ℵ × Jℵ − J−1ρ2M − d2 48

The attitude loop finite-time controller is proposed as

M = J
ρ2

ℵd + J−1ℵ × Jℵ − d2 + k4e
2π1−1
4 +HTe3 + s2e4 ,

49

where s2 is the designed positive definite matrix.
Define a2 = diag 1/ρ21, 1/ρ22, 1/ρ23 . Since ρ2i ∈ ε, 1 , it

can be seen that a2i ∈ 1, 1/ε . Then, (49) becomes

M = Jâ2 ℵd + J−1ℵ × Jℵ − x̂4 + k4e
2π1−1
4 +HTe3 + s2e4 ,

50

where â2 = diag â21, â22, â23 and â2i i = 1, 2, 3 is the esti-
mation of a2i.

Substituting (50) into (48) yields

e4 =ℵd + J−1ℵ × Jℵ −
â2
a2

ℵd + J−1ℵ × Jℵ − x̂4 + k4e
2π1−1
4

+HTe3 + s2e4 − d2 = −k4e
2π2−1
4 −HTe3 + z4 − s2e4

−
a2
a2

ℵd + J−1ℵ × Jℵ − x̂4 + k4e
2π1−1
4 +HTe3 + s2e4 ,

51

where a2 = â2 − a2.
Choose the Lyapunov candidate function as

V2 =
1
2 e

T
3 a2e3 +

1
2 e4

Ta2e4 +
1
2r2

a2
2

+ 1
2 tr W

T
2 T

−1
2 W2 + ΣT

2 P2Σ2,
52

where r2 > 0 and T2 = TT
2 > 0 are the designed parameters.

Considering (47) and (51), the derivative of (52) is
given by

V2 = eT3 a2 −k3e
2π1−1
3 +He4 + e4

Ta2 −k4e
2π1−1
4 −HTe3 + z4

− s2e4 −
a2
a2

ℵd + J−1ℵ × Jℵ − x̂4 + k4e
2π1−1
4 +HTe3 + s2e4

+ Σ
i=1

3 1
r2
a2iâ2i + tr W

T
2 T

−1
2 Ŵ2 + ΣT

2 P2Σ2 + Σ
T
2 P2Σ2

≤ −eT3 a2k3e
2π1−1
3 + eT3 a2He4 − e4

Ta2k4e
2π1−1
4 − e4

Ta2H
Te3

+ e4
Ta2z4 − e4

Ta2s2e4 − e4
Ta2Γ2 + Σ

i=1

3 1
r2
a2iâ2i

+ tr W
T
2 T

−1
2 Ŵ2 − ΣT

2Q2Σ2 + 2ΣT
2 P2B3 + 2ΣT

2 P2B4,

53

where Γ2 =ℵd + J−1ℵ × Jℵ − x̂4 + k4e
2π1−1
4 +HTe3 + s2e4.

The parameter update law and adaptive fault observer
are designed as

Ŵ2 = −T2 2h J−1M zT3 P21L
−1
2 +Gn2Ŵ2 ,

â2i = Proj 1,1ε r2Γ2ie4i − r2Gm2â2i,
54

where Gn2 and Gm2 are designed positive constants, Proj ·
is the projection operator, and Γ2i, e4i i = 1, 2, 3 are the ith
elements of Γ2 and e4.

Defining N4 =∑3
i=1 1/r2 a2iâ2i, N5 = tr W

T
2 T

−1
2 Ŵ2 ,

and N6 = −ΣT
2Q2Σ2 + 2ΣT

2 P2B3 + 2ΣT
2 P2B4, we have

N4 = Σ
i=1

3
Γ2ie4ia2i − Σ

i=1

3
Gm2a2ia2i − Σ

i=1

3
Gm2a2i

2

≤ Σ
i=1

3
Γ2ie4ia2i − Σ

i=1

3 1
2Gm2a2i

2 + 3
2ε2 Gm2,

55
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N5 = −tr W
T
2 2h J−1M zT3 P21L

−1
2

−Gn2tr W
T
2 W2 +W∗

2

≤ −tr W
T
2 2h J−1M zT3 P21L

−1
2 −Gn2 W

T
2

2

+ 1
2Gn2 W2

2 + 1
2Gn2 W∗

2
2

≤ −tr W
T
2 2h J−1M zT3 P21L

−1
2

−
1
2Gn2 W2

2 + 1
2Gn2W

2
2,

56

N6 ≤ −ΣT
2Q2Σ2 + 2 ΣT

2 P2 B4

+ 2zT3 P21L2
−1W

∗T
2 h J−1M

+ 2zT4 P23L2
−1W

∗T
2 h J−1M

≤ −ΣT
2 Q2 − λ3I Σ2 +

C2
3

λ3

+ 2zT3 P21L2
−1W

∗T
2 h J−1M

+ λ4C
2
4z

T
4 z4 +

W
T
2

2

λ4
,

57

where λ3 and λ4 are designed positive parameters, P2
B4 ≤ C3, and P23 L2

−1 h J−1M ≤ C4.
Substituting (55), (56), and (57) into (53), one has

V2 ≤ −eT3 a2k3e
2π1−1
3 − e4

Ta2k4e
2π1−1
4 + 1

2 e4
Ta2

2e4 +
1
2 z4

2

− e4
Ta2s2e4 − Σ

i=1

3 1
2Gm2a2i

2 + 3
2ε2 Gm2 −

1
2Gn2 W2

2

+ 1
2Gn2W

2
2 − ΣT

2 Q2 − λ3I Σ2 +
C2
3

λ3
+ λ4C

2
4z

T
4 z4

+
W

T
2

2

λ4
≤ − Σ

i=1

3
a2ik3ie

2π1
3i − Σ

i=1

3
a2ik4ie

2π1
4i

− a2s2 −
1
2 a2

2 e4
Te4 −

1
2Gm2 Σi=1

3
a2i

2 + 3
2ε2 Gm2

−
1
2Gn2 W2

2 + 1
2Gn2W

2
2

− ΣT
2 Q2 − λ3I − ℏ2 Σ2 +

C2
3

λ3
+

W
T
2

2

λ4
,

58

where

ℏ2 =
03×3 03×3

03×3
1
2 + λ4C

2
4 I3×3

59

3.5. Closed-Loop Stability Analysis

Theorem 7. For the given quadrotor UAV system (1) con-
taining actuator faults and external disturbances, the VGE-
SOs are designed as (10) and (37). By applying the proposed
robust fault-tolerant tracking controllers (23) and (50), all
closed-loop tracking errors are bounded and convergent in
finite time.

Proof. Select the Lyapunov function as

V3 =V1 + V2 60

Considering (31) and (58), the derivative of (60) can be
expressed as

V3 ≤ −a1 Σi=1
3
k1ie

2π1
1i − a1 Σi=1

3
k2ie

2π1
2i − a1s1 −

1
2 a1

2 eT2 e2

−
1
2Gm1a1

2 + 1
2ε2 Gm1 −

1
2Gn1 W1

2 + 1
2Gn1W

2
1

− ΣT
1 Q1 − λ1I − ℏ1 Σ1 +

C2
1

λ1
+

W
T
1

2

λ2
− Σ

i=1

3
a2ik3ie

2π1
3i

− Σ
i=1

3
a2ik4ie

2π1
4i − a2s2 −

1
2 a2

2 e4
Te4 −

1
2Gm2 Σi=1

3
a2i

2

+ 3
2ε2 Gm2 −

1
2Gn2 W2

2 + 1
2Gn2W

2
2

− ΣT
2 Q2 − λ3I − ℏ2 Σ2 +

C2
3

λ3
+

W
T
2

2

λ4
≤ −Φ1Va +Φ2

− a1 Σi=1

3
k1ie

2π1
1i − a1 Σi=1

3
k2ie

2π1
2i − Σ

i=1

3
a2ik3ie

2π1
3i − Σ

i=1

3
a2ik4ie

2π1
4i ,

61

where

Φ1 = min λmin Q1 − λ1I − ℏ1
λmax P1

,Gm1r1,
Gn1 − 2/λ2
λmax T−1

1
,

λmin Q2 − λ3I − ℏ2
λmax P2

, 3Gm2r2,
Gn2 − 2/λ4
λmax T−1

2
,Φ2

+ 1
2 a2

2 + 1
2Gn2W

2
2 +

C2
3

λ3
,

Va =
1
2r1

a1
2 + 1

2 tr W
T
1 T

−1
1 W1 + ΣT

1 P1Σ1 +
1
2r2

a2
2

+ 1
2 tr W

T
2 T

−1
2 W2 + ΣT

2 P2Σ2

62

By the utilization of Lemma 3, we can get

−a1 Σ
3

i=1
k1ie

2π1
1i ≤ −a1k1m Σ

3

i=1
e2π1
1i ≤ −a1k1m

1
2 Σ

3

i=1
e21i

π1

, 63

−a1 Σ
3

i=1
k2ie

2π1
2i ≤ −a1k2m Σ

3

i=1
e2π1
2i ≤ −a1k2m

1
2 Σ

3

i=1
e22i

π1

, 64
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− Σ
3

i=1
a2ik3ie

2π1
3i ≤ −a2ik3m Σ

3

i=1
e2π1
3i ≤ −a2ik3m

1
2 Σ

3

i=1
e23i

π1

, 65

− Σ
3

i=1
a2ik4ie

2π1
4i ≤ −a2ik4m Σ

3

i=1
e2π1
4i ≤ −a2ik4m

1
2 Σ

3

i=1
e24i

π1

,

66

where k1m =min k1i , k1m = k1m2π1 , k2m =min k2i , k2m =
k2m2π1 , k3m =min k3i , k3m = k3m2π1 ,k4m =min k4i , and
k4m = k4m2π1 .

By using Lemma 4 with κ1 =Va, κ2 = 1, ϖ1 = π1, ϖ2 =
1 − π1, and ϖ3 = 1/π1, we can get

−Va ≤ −Vπ1
a + 1 − π1 π

π1/ 1−π1
1 67
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Figure 3: Observation errors of VGESO and ESO.
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Combining (63), (64), (65), (66), and (67), equation (61)
can be written as

V3 ≤ −Φ1V
π1
a +Φ1 1 − π1 π

π1/ 1−π1
1 +Φ2 − k1m

1
2 a1 Σi=1

3
e21i

π1

− k2m
1
2 a1 Σi=1

3
e22i

π1

− k3m
1
2 a2i Σi=1

3
e23i

π1

− k4m
1
2 a2i Σi=1

3
e24i

π1

≤ −Φ3V
π1
3 +Φ4,

68

where Φ3 = min Φ1, k1m, k2m, k3m, k4m and Φ4 =Φ1 1 −
π1 ππ1/ 1−π1

1 +Φ2.
According to Lemma 5, all error signals converge in

finite time. Meanwhile, the upper bound of setting time is
calculated by Tst ≤ 1/ 1 − π1 KdΦ3 V1−π1

3 0 − Φ4/ 1 −
Kd Φ3

1−π1 /π1 with 0 < Kd < 1 being a constant. This con-
cludes the above proof.

4. Simulation Results

In this section, numerical simulations of the quadrotor UAV
with actuator faults and external disturbances are carried
out. The mass and inertia matrix are selected as m = 2 1 kg
and J = diag 0 0211, 0 0219, 0 0366 Nm. The reference
trajectories are chosen as xd = 0 5 sin 0 5t + 0 5 m, yd =

0 5 sin 0 5t m, zd = 0 1t + 2m, and ψd = 0 3 rad. The
parameters during the control design are chosen as γ1 = 25,
γ2 = 50, γ3 = 25, γ4 = 25, h1 = 0 5, h2 = 0 5, Gn1 = 0 5, Gn2 =
0 5, r1 = 0 02, r2 = 0 01, ε = 0 5, Gm1 = 0 001, Gm2 = 0 003,
k1 = diag 2, 2, 2 , k2 = diag 10, 10, 10 , k3 = diag 2, 2, 2 ,
k4 = diag 9, 9, 9 , s1 = diag 40, 40, 40 , and s2 = diag 20,
20, 20 .

To implement related numerical simulations and evalu-
ate the observer performance, the actuator LOE fault factors
are introduced

ρ1 =
1, 0 ≤ t < 5,
0 5, t ≥ 5,

ρ2i =
1, 1, 1 , 0 ≤ t < 5,
0 6, 0 8, 0 9 , t ≥ 5,

i = 1, 2, 3

69

The external disturbances are assumed as

d1 = 0 1 sin t , 0 1 sin t , 0 1 sin t T ,
d2 = 0 2 cos t , 0 2 cos t , 0 2 cos t T

70

The comparison results of the developed VGESO and
traditional ESO are presented in Figure 3, where the blue
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Figure 4: Actuator LOE fault factor estimations.
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lines define the observation error of VGESO and the red
lines represent that of traditional ESO. From Figure 3, it
can be observed that despite the traditional ESO has the abil-
ity of estimating disturbances, the so-called initial peaking
phenomenon is unavoidable, which is unfavorable to the
transient performance of the system. As a contrast, the
developed VGESO overcomes the shortcoming by selecting
a small gain at the initial phase and increasing gradually to
a high value. Furthermore, to validate the feasibility of the

proposed adaptive fault observer, LOE fault factors are
selected as ρ1 = 0 5, ρ21 = 0 6, ρ22 = 0 8, and ρ23 = 0 9. Since
the output of the adaptive fault observer is the reciprocal
of ρ1 and ρ2i, actual estimation values should be â1 = 2,
â21 = 1 67, â22 = 1 25, and â23 = 1 11. From Figure 4, it
can be concluded that the adaptive fault observer can esti-
mate the unknown actuator fault with both high accuracy
and speed. Meanwhile, the norms of the NN weight matrix
are displayed in Figure 5 and the corresponding control
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inputs are presented in Figure 6, respectively, which indicate
that all of the simulation results are convergent and vary
within reasonable limits.

The trajectory tracking results under the proposed finite-
time antidisturbance FTC tactics are shown in Figure 7.
From Figure 7, we can see that all states of quadrotor UAVs
follow the desired trajectories, indicating the efficacy of the
developed algorithm. Moreover, the comparative position

tracking results under different control methods are pre-
sented in Figure 1, where trajectory A is the tracking result
under the presented method, trajectory B is the tracking
result under ESO-based backstepping sliding mode control-
ler, trajectory C is the tracking result without handling the
disturbance and fault, and trajectory D is the tracking result
under PID controller. From Figure 8, if the negative effects
derived from unknown disturbance and fault cannot be
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Figure 7: Tracking results with robust FTC scheme.
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eliminated in time, the desired trajectory cannot be tracked.
Meanwhile, compared with the ESO-based backstepping
sliding mode controller and PID controller, the given
method can ensure that the quadrotor UAV has better track-
ing accuracy and faster convergence speed. To sum up, the
developed robust adaptive finite-time FTC scheme guaran-
tees satisfactory performance of the quadrotor UAV suffer-
ing from actuator faults and external disturbances.

5. Conclusions

In this study, a finite-time FTC strategy based on the
VGESO technique has been established to solve the trajec-
tory tracking problem of quadrotor UAV with actuator
faults and unknown disturbances. Firstly, a quadrotor
UAV nonlinear model has been established. Then, the
VGESO has been designed to estimate unknown distur-
bances. Subsequently, combined with the Lyapunov stability
theory, the adaptive fault observer combined with RBFNNs
has been employed to estimate the fault factors. Finally, the
fault-tolerant tracking controller with finite-time conver-
gence capability has been proposed. Simulation results indi-
cate that the developed method has superior fault tolerance

and antidisturbance properties. In the future, the proposed
control algorithm will be tested through quadrotor UAV
flight experiments.
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