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The flexible parallel mechanism is widely utilized in precision instruments, thanks to its numerous advantages, such as high
precision, frictionless operation, and seamless movements. The establishment of the motion equations for this mechanism is
crucial for designing, analyzing, controlling, and simulating parallel mechanisms. While the existing inverse kinematics
solution theory is comprehensive, developing a forward solution model is challenging due to the nonlinear nature of the
attitude equation. To address this issue, a new method based on the transfer matrix approach is proposed in this research to
calculate the forward kinematics of parallel mechanisms. The proposed method is applied to analyze the forward kinematics
and workspace of both planar and spatial flexible mechanisms. Simulation calculations and experiments are conducted to
verify the method’s effectiveness. The results demonstrate that the error is approximately 2%, indicating the feasibility and
accuracy of the calculation method.

1. Introduction

The flexible parallel mechanism, which uses the flexible
deformation of the structure to transmit motion and force,
has become a new type of high-sensitive transmission mech-
anism. Compared with parallel mechanisms using traditional
rigid kinematics pairs, the flexible parallel mechanism has the
advantages of small size, no friction loss, smooth movement,
and no gaps. And it undoubtedly plays a vital role in preci-
sion instruments [1–3]. For this reason, a large number of
researches and applications on flexible parallel mechanisms
have been carried out in recent years. As we all know, the
expression of the solution equation is highly nonlinear with
respect to the pose variable of the moving platform, generally
multiple which leads to solutions. This makes solving the for-
ward kinematics problem of the parallel platform often more
complicated than solving the inverse kinematics problem.
The forward kinematics solution is the basic theoretical sup-
port for controlling the motion of the mechanism and plays

an important guiding role in further improving the motion
performance of the parallel mechanism points and under-
standing and analyzing the dynamic behavior of the system.
So research on it has always been of top priority.

Huang et al. proposed a method to solve the forward
kinematics of the 3-PRS parallel mechanism by combining
D-H method and graphic visualization [4]. Wang et al. cal-
culated the positive motion solution of the 3-RUS/RRR plat-
form by designing equivalent spherical joints and adding
position sensors to the joints of the constraint chain [5].
Ye et al. used the Sylvester dialysis elimination method and
the symmetric elimination method of the 2-UPU/SP PM
mechanical structure to obtain the closed solution of the for-
ward kinematics of the 2-UPU/SP-RR five-degree-of-free-
dom hybrid robot [6]. Masouleh et al. studied the
formulation of the forward kinematics problem of 5-RPUR
parallel mechanism through the application of the result
method and the linear implicit algorithm in the seven-
dimensional motion space [7]. Zhang et al. use BP neural
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network based on position compensation to effectively solve
redundant 2-RPU-2-SPR parallel mechanisms [8]. Mazare
et al. used geometric constraints to obtain the positive solu-
tion equation of the 3-[P2(US)] mechanism through simpli-
fication and elimination [9]. Mingchao et al. proposed to use
the current function value to replace the Jacobian matrix
that needs to be constructed in the iterative process and to
use the quasi-Newton method to solve the forward kinemat-
ics of the parallel mechanism [10]. Gallardo-Alvarado solved
the forward kinematics problem of the 3-RRS mechanism
using the Newton-homotopy continuation method [11]. It
can be seen that the methods for solving the forward kine-
matics solution are mainly numerical, analytical, and neural
network and other methods. The characteristic of the
numerical method is that the mathematical model is simple
to establish, but the amount of calculation is large, the speed
of calculation is slow, and the results of calculation may not
converge. The characteristic of the analytical method is that
the calculation result is not sensitive to the initial value and
can obtain all the solutions, but the mathematical derivation
process is complicated. Therefore, in view of the above prob-
lems, this paper proposes a theoretical method for the for-
ward motion analysis of parallel mechanisms based on the
multibody system transfer matrix method (MSTMM). The
MSTMM method was originally used to study the dynamics
of multibody systems with transfer matrices [12]. In this
paper, it is applied to the forward kinematics solution of
the parallel mechanism. The modeling is flexible, concise,
and operable.

2. Theoretical Modeling Analysis

The parallel mechanism is a closed-loop mechanism with
multiple branches in parallel, and its topology diagram is
shown in Figure 1. We can clearly understand the internal
connection of the parallel mechanism from this figure, pro-
viding the basis for establishing the kinematics analysis
model below. “m” represents the branch chain number of
the mechanism, and “n” represents the component number
of each branch chain. Sn,m represents the component “n”
located in branch “m.” And Sout represents the terminal out-
put platform of the flexible parallel mechanism.

2.1. Forward Kinematics Analysis. Contrary to the inverse
solution of kinematics, the process of solving the forward
kinematics solution of a parallel mechanism refers to the
process of solving the changes in the position and orienta-
tion of the end platform by knowing the length changes of
each branch chain of the mechanism or the motion param-
eters. Therefore, the key to analyzing the forward kinematics
solution of the mechanism is how to establish the functional
relationship between the changes in the end platform’s pos-
ture q = x, y, z, θx, θy, θz and the changes in the motion
parameters of each joint L = L1,L2, ⋯ Li . To realize the con-
trol, calibration, and motion planning of the parallel mecha-
nism, it is necessary to solve the forward kinematics
problem.

To solve the positive motion solution, it is first necessary
to establish the extended state vectors Zn,m and Zout. Zn,m is

the state of each unit in each branch chain. Zout is the state
vector of the output platform at the end of the mechanism.
Zi,n and Zo,n represent the input and output state vectors
of unit n, respectively. The state vector includes the displace-
ment and force vector information of the unit and also
reflects the change in the branch chain length of the mecha-
nism [13–15].

Zo,n = X, Y , Z,Θx,Θy ,Θz ,Mx,My ,Mz , Fx, Fy, Fz, ΔLm
T
n
,

Zi,n = X, Y , Z,Θx,Θy ,Θz ,Mx,My,Mz , Fx, Fy, Fz, ΔLm
T
n

1

Secondly, the transfer matrix/equation of each character-
istic unit in the mechanism should be established. For the
establishment of common rigid body and flexible unit trans-
fer matrix/equation, please refer to “Transfer matrix method
for multibody systems: theory and applications” [12].

It should be noted that, because the transfer matrix is
established on the premise of dynamic analysis, when used
in the kinematics analysis of parallel mechanisms in this
article, the frequency term “ω” is equal to zero or infinitely
close to zero. In addition, what needs to be emphasized here
is the establishment of the transfer matrix of the moving pair
in the parallel mechanism (taking the planar case as an
example).

Figure 2 is a schematic diagram of the translational joint
with an initial length of L and a variation of ΔL. “I” is the
input point, and “O” is the output point. The coordinate sys-
tem is established with point “I” as the origin of coordinate
[16]. From the geometric relationship, the rotation angle of
“O” around the Z-axis is the same as that of “I,” and the

Sout

Sn, 1
Sn, 2

S2, 2

S1, 2

Sn–1, 2

S2, 1

S1, 1

Sn–1, 1

Sn, m–1

Sn–1, m–1

Sn–1, m

Sn, m

S2, m–1

S1, m–1

S1, m

S2, m

Figure 1: Topological relationship diagram of parallel mechanism.
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Figure 2: Schematic diagram of the translational joint (in plane).
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displacement of “O” can be represented by the displacement
of “I” and the angular displacement of “I” around the Z-axis.
Considering that the rotation angle around the Z-axis is
relatively small, and θZ,I < <1, the relationship can be
obtained:

xO = xI − byθZ,I ,
yO = xI + bxθZ,I ,
θZ,O = θZ,I

2

According to the force balance formula,

FO,x = FI,x,
FO,y = FI,y,
MZ,O =MZ,I − byFI,x + bxFI,x,

3

where bx, by is the coordinate of output point “O” relative
to point “I” and bx = L + ΔL. Further, the above formula is
written in matrix form:

ZO =UZI 4

Here, the transfer matrix of the translational joint can be
divided into two parts: U =U1 +U2. U1 is the basic transfer
matrix including the excitation force “F,” which is consistent
with the transfer matrix of common rigid body elements:

U1 =

1 0 0 0 0 0 0
0 1 L 0 0 0 0

0 1 0 0 0 0
0 0 0 1 0 L f41

0 0 0 0 1 0 f x

0 0 0 0 0 1 f y

0 0 0 0 0 0 1

, 5

where f41 =mz + f x y − by − f y bx − x . f x and f y are the
components of the translational joint under the action of
the simple excitation force F = f x, f y

T and moment mz at
point x, y .

U2 is the displacement transfer matrix including the var-
iation ΔL of the translational joint:

U2 =

zeros 1, 2 zeros 1, 1 zeros 1, 2 zeros 1, 1 A

zeros 1, 2 ΔLm zeros 1, 2 zeros 1, 1 zeros 1, 1
zeros 1, 2 zeros 1, 1 zeros 1, 2 zeros 1, 1 zeros 1, 1
zeros 1, 2 zeros 1, 1 zeros 1, 2 ΔLm zeros 1, 1
zeros 3, 2 zeros 3, 1 zeros 3, 2 zeros 3, 1 zeros 3, 1

6

It should be noted here that when the driving mode is
displacement, A = 1; when the driving mode is force, both
A and ΔL are 0. The establishment of the transfer matrix/
equation for the moving pair in a spatial state is similar to
that of a planar matrix, which also includes the same basic
transfer matrix U1 as traditional rigid body elements, as well
as the displacement transfer matrix U2 with displacement
increments.

Figure 3: Pseudo-flexible body model.

Figure 4: Pseudorigid body model.

U2 =

zeros 1, 4 zeros 1, 4 zeros 1, 4 zeros 1, 4 zeros 1, 4 zeros 1, 4 A

zeros 1, 4 zeros 1, 4 ΔLm zeros 1, 4 zeros 1, 4 zeros 1, 4 zeros 1, 4
zeros 1, 4 ΔLm zeros 1, 4 zeros 1, 4 zeros 1, 4 zeros 1, 4 zeros 1, 4
zeros 4, 4 zeros 1, 4 zeros 1, 4 zeros 4, 4 zeros 1, 4 zeros 1, 4 zeros 1, 4
zeros 1, 4 zeros 1, 4 zeros 1, 4 zeros 1, 4 zeros 1, 4 ΔLi zeros 1, 4
zeros 1, 4 zeros 1, 4 zeros 1, 4 zeros 1, 4 ΔLm zeros 1, 4 zeros 1, 4
zeros 4, 4 zeros 4, 4 zeros 4, 4 zeros 4, 4 zeros 4, 4 zeros 4, 4 zeros 4, 4

7
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According to the relationship between each unit, a trans-
fer equation is used to establish the connection between the
branch chain neutron unit and the branch chain, and finally,
the branch chain transfer matrix is spliced into a unified par-
allel mechanism transfer matrix/equation. The state vector
at the end of each branch chain can be obtained by multiply-
ing each subunit together.

Zout,m =Un,m ⋯U2,mU1,mZstart,m 8

Zstart,m represents the state vector of the starting unit in
branch chain m, that is, Z1,m. Zout,m represents the output
state vector of the end unit in branch chain m. Un,m repre-
sents the transfer matrix of unit n in branch chain m.

The state vector at the end of the final moving platform
is as follows:

Zout =Uout E1Zout,1 + E2Zout,2+⋯+EmZout,m , 9

Eout,1Zout,1 = Eout,2Zout,2, 10

Eout,1Zout,1 = Eout,mZout,m, 11

where

E1 =
eye 13

zeros 7 m − 1 , 13
, 12

Input: The change value of the mobile pair in each branch chain
Output: The state vector of the mechanism-driven platform
1 Set A=1, ω=0.0001; F=0
2 for Min ≤ΔL1 ≤ Max (start length to to end length)
3 for Min ≤ΔL2 ≤ Max (start length to to end length)
4 for Min ≤ΔLm ≤ Max (start length to to end length)
5 Build a mathematical model of the organization ((1)–(18))
6 if θMain ≤ hinge angle ≤θmax
7 Output the state vector of the moving platform to the aggregate
8 end
9 end
10 end
11 end
12 Plot the state vectors satisfying the condition in space

Algorithm 1: Calculate the orientation workspace of the flexible four-bar mechanism.
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Figure 5: Flexible four-bar mechanism.
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E2 =
zeros 13, 6 zeros 13, 7
zeros 7, 6 eye 7

zeros 7 m − 2 , 6 zeros 7 m − 2 , 7
, 13

Em − k =

zeros 13, 6 zeros 13, 7
zeros 7 m − k − 2 , 6 zeros 7 m − k − 2 , 7

zeros 7, 6 eye 7
zeros 7k, 6 zeros 7k, 7

,

14

Em =
zeros 13 + 7 m − 2 zeros 13 + 7 m − 2 , 7

zeros 7, 6 eye 7
,

15

where k <m,

Eout,1 = eye 6  zeros 6, 7 , 16

Eout,m =
eye 3 −Li, out m zeros 3, 7

zeros 3, 3 eye 3 zeros 3, 7
, 17

Li, outm =
0 −a3 a2

a3 0 −a1
−a2 a1 0

, 18

where a1, a2, a3 is the coordinates of the output point of
branch chain m relative to the input point of branch chain
1. “zeros a, b ” represents a matrix of zeros in row a and col-
umn b. “eye a ” represents the a × a identity matrix.
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Figure 6: Output result of the moving platform with the change of translational joints: 3∗sin(t).
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Finally, the results are postprocessed for the total trans-
fer equation. Through this method, we can conduct a simple
and efficient analysis of parallel mechanisms, with good
operability and easy programming.

For the rigid parallel mechanism, we can equivalently
replace the rigid kinematics pair with a flexible hinge to
establish a “pseudoflexible model” (see Figure 3) and further
use this method to perform forward kinematics calculations
according to the actual situation. The pseudorigid body
model (see Figure 4) uses rigid mechanism theory to analyze
the compliant mechanism, whereas the pseudoflexible model
is just the opposite [17].

2.2. Position Inverse Solution. The inverse kinematics of the
parallel mechanism is to solve the changes of each joint

through the pose of the end platform, and its calculation
method is very well developed. The most common method
for solving the motion inverse solution of the mechanism is
to use the rod length formula and coordinate changes. Regard-
ing this aspect, this article will no longer analyze [18–21].

2.3. Workspace. The working range to which the end of the
moving platform of the parallel mechanism can run is the
working space of the parallel mechanism. Because it is
affected by the length of the rod, the deformation range of
the hinge, and the internal interference, the analysis of the
working space is also an important consideration in reflect-
ing the mechanism’s execution ability [22]. Due to the com-
plexity of solving the forward solution of motion, methods
such as the three-dimensional (3D) boundary/polar
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Figure 11: Output result (6-Dof) of the moving platform with the change of translational joints: 5∗sin(t).
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coordinate search method [23–25], which were used previ-
ously, are based on the condition of the inverse solution
equation and Monte Carlo method [26, 27]. Based on the
above forward kinematics solution, this paper uses the for-
ward numerical calculation method to obtain the state vector
of each hinge and the position coordinates of the corre-
sponding end platform by limiting the elongation range of
the translational joint of each branch chain. Finally, output
the position coordinates of all end-moving platforms that
meet the specified conditions, in order to obtain the working
space of the mechanism (See Algorithm 1).

3. Planar Mechanism—Flexible Four-
Bar Mechanism

3.1. Forward Kinematics. As we all know, the parallel
mechanism with definite motion should satisfy the condi-
tion that the number of degrees of freedom is less than or
equal to the number of driving. However, the specific
number of degrees of freedom of the underconstrained
mechanism is actually greater than the number of
branches and the number of driving. This causes the Jaco-

bian matrix of the mechanism to be a non-full-rank
matrix, which affects the stability of the mechanism. When
the length of the rod remains constant, there are multiple
solutions for the position, and a rigid four-bar linkage
serves as such a structure [28, 29].

In order to consider changing the matrix from a nonfull
rank to a full rank, under the condition that the displacement
constraint has been added, we need to restrict it through
other constraints, such as force constraints. Therefore, the
unique elastic deformation properties of flexible materials

Table 1: Specific parameters of SLC-1720 actuator.

Parameter Value

Dimensions(mm×mm×mm) 22 × 17 × 8 5
Max. lift force F (N) >1.5
Trval (mm) ±6
Scan resolution (nm) <1
Step width (nm) 1-150

Max. frequency (kHz) 18.5
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Figure 13: Working space of 3-UPU mechanism.
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can be exploited to increase force constraints. By replacing
the rigid kinematics pair in the uncertain mechanism with
the flexible hinge, the Jacobian matrix of the mechanism is
satisfied with full rank, the unique solution of the mechanism
motion is realized, and the problem of uncontrollability of
the uncertain kinematics mechanism is solved.

The kinematics and other related analyses of the flexible
four-bar mechanism will be carried out below. Figure 5 is a
3D diagram of the flexible four-bar mechanism and a sche-
matic diagram of each branch unit.

From the above formulas ((1)–(18)), the transfer matrix/
equation (plane) can be derived ((A.5)–(A.7) in Appendix A):

By substituting various parameter values and solving the
equation, the state vector at the end of the parallel platform
can be obtained, with the following result:

Figures 6 and 7 show that the curve trends of the simu-
lation and calculation results of the flexible four-bar mecha-
nism under two input conditions are consistent. Figure 6
shows that the translation error of the moving platform in
the main direction Y between the two results is 0.9%. The
error in the X direction is 0.3%, and the rotational error in
the Z direction is negligible. Figure 7 shows that the errors
in the X, Y , and Z directions between the two results are
within 3%, 0.1%, and 10%, respectively. The main reasons
for the discrepancy between the two are as follows: (1) there
is an error in the processing of the flexible unit in the kine-
matics simulation software and (2) the stress concentration
area is not taken into account in the calculation model.

According to the calculation model, we can also under-
stand the rotation and force of each hinge simply and quickly,
as shown in Figure 8. This method facilitates our modeling
process and provides great convenience to understand the
inner operating mechanism of the parallel mechanism.

3.2. Workspace. According to the above description of the
mechanism’s working range algorithm, Figure 9 shows the
working range of the mechanism before and after consider-
ing constraints. The focus here is to illustrate the feasibility
of this mathematical model for solving the mechanism
workspace, so the constraints are directly assumed to be as
follows:

(1) The moving pair variation range is ±5

(2) The hinge deformation range is ±2pi/180 rad (In the
actual calculation process, the calculation should be
carried out according to the maximum deformation
formula of the hinge)

Results are obtained according to the algorithm in Section
2.2. It can be clearly seen that the working range in Figure 9(b)
is significantly smaller than the range in Figure 9(a) without
considering the hinge, indicating that the working range of
the hinge also directly affects the working range of the output
platform at the end of the mechanism.

Laser probe Displacement meter
controller

Actuator
controller

Actuator
interfaceMechanism

(a) Experimental measurement device

2

Laser 1 Laser 2

ΔL1

ΔL1 ΔL2

ΔL2

L =
ΔL1+ΔL2

LD

|ΔL1| + |ΔL2|

Laser 2Laser 1

LD

� = arctan ( )

(b) Experimental measurement principle

Figure 14: Diagram of experimental measurement device.

Uall Zall = 0,

Uall =
U16E1U15 1U14 1 ⋯U2 1U1 1 U16E2U15 2U14 2 ⋯U2 2U1 2 −eye 7

Eout,1U15 1U14 1 ⋯U2 1U1 1 −Eout,2U15 2U14 2 ⋯U2 2U1 2 zeros 3, 7
Zall =

Zstart,1

Zstart,2

Zout

19
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4. Space Mechanism—3-UPU Mechanism

After the analysis of the planar mechanism in the previ-
ous chapter, we can clearly find the feasibility and accu-
racy of calculating the parallel mechanism based on the
improved transfer matrix method. In this chapter, we will
analyze again through the space mechanism to further
prove the generality of the method proposed in this
paper [30–32].

4.1. Forward Kinematics. The 3-UPU structure, as a typical
platform with a full-rank matrix of mechanisms, has a defi-
nite trajectory and was taken here as an example. According
to the analysis steps of this calculation method, 3-UPU is
divided and numbered according to the branch chain it
belongs to, as shown in Figure 10.

According to the formulas (1)–(18), the total transfer
matrix/equation of the 3-UPU mechanism can be obtained
((B.5)–(B.8) in Appendix B):

Table 2: Translational principal direction measurement.

Translational joint
MSTMM

Experiment
First Second Third

1 2 Point 1 Point 2 Error Point 1 Point 2 Error Point 1 Point 2 Error

μm μm rad μm μm — μm μm — μm μm —

0 0 0 0 0 — 0 0 — 0 0 —

1 1 1172.3 1161.8 1160.9 -0.93% 1161.1 1160.4 -0.99% 1161.4 1160.4 -0.97%

2 2 2343.9 2310.9 2327 -1.06% 2321.9 2325.5 -0.86% 2316.3 2326 -0.97%

3 3 3515 3458.6 3473.3 -1.40% 3468.8 3470.1 -1.30% 3462.1 3470.8 -1.38%

4 4 4685.4 4599.1 4618.4 -1.64% 4608.2 4615.4 -1.57% 4600.3 4616.7 -1.64%

5 5 5855.3 5730.6 5760.5 -1.87% 5744.9 5755.9 -1.79% 5736.4 5756.9 -1.86%

4 4 4685.4 4596.5 4619 -1.66% 4605.2 4618.2 -1.57% 4596.7 4619.2 -1.65%

3 3 3515 3456 3472.3 -1.45% 3463.9 3472.9 -1.33% 3456.7 3473.6 -1.42%

2 2 2343.9 2308.9 2326.7 -1.11% 2316 2327.5 -0.95% 2328.3 2328.3 -0.67%

1 1 1172.3 1159.2 1160.9 -1.04% 1163.2 1163.5 -0.76% 1164.5 1164.5 -0.67%

0 0 0 -1.2 -0.6 — 2.3 0 — -5.1 0.5 —

-1 -1 -1173 -1161.7 -1175.6 -0.37% -1167.6 -1170.7 -0.33% -1172 -1173.5 -0.02%

-2 -2 -2346.6 -2343.9 -2354 0.10% -2333.7 -2350.9 -0.18% -2339.6 -2352.2 -0.03%

-3 -3 -3521.1 -3522 -3541.3 0.30% -3517 -3538.7 0.19% -3523.6 -3540 0.30%

-4 -4 -4696.3 -4716.1 -4738.6 0.66% -4701.7 -4736.5 0.49% -4712.5 -4736.8 0.60%

-5 -5 -5872.4 -5915.1 -5948.5 1.01% -5910.3 -5945.4 0.94% -5918.5 -5945.6 1.02%

-4 -4 -4696.3 -4706.5 -4740.4 0.58% -4701.7 -4739.1 0.51% -4710.2 -4738.8 0.60%

-3 -3 -3521.1 -3519.2 -3543.3 0.29% -3512.3 -3542.5 0.18% -3521.6 -3542.3 0.31%

-2 -2 -2346.6 -2340.6 -2356.3 0.08% -2326.8 -2355.7 -0.23% -2336 -2355.2 -0.04%

-1 -1 -1173 -1159.6 -1175.9 -0.45% -1158.9 -1176.8 -0.44% -1168.4 -1175.8 -0.08%

0 0 0 0.8 -0.8 — 12.5 -1.5 — 2 -0.5 —

UallZall = 0

Uall =

U18E1U17,1U16,1 ⋯U2,1U1,1 U18E2U17,2U16,2 ⋯U2,2U1,2 U18E3U17,3U16,3 ⋯U2,3U1,3 −eye 13

−Eout,1U17,1U16,1 ⋯U2,1U1,1 Eout,2U17,2U16,2 ⋯U2,2U1,2 zeros 6, 13 zeros 6, 13

−Eout,1U17,1U16,1 ⋯U2,1U1,1 zeros 6, 13 Eout,3U17,3U16,3 ⋯U2,3U1,3 zeros 6, 13

,

Zall =

Zstart,1

Zstart,2

Zstart,3

Zout

20
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By substituting various parameter values and solving
the equation, the state vector at the end of the parallel plat-
form can be obtained. The results are shown in Figures 11
and 12.

It can be seen from Figures 11 and 12 that this method is
still feasible for the forward kinematics analysis of space-
flexible parallel mechanisms. In the case of different rod
lengths, the curve trends of the simulation and calculation
results are still consistent. Figure 11 shows that the error
between the two results of the mechanism under translation
is at the micron level, and the error is within 1%. Figure 12
shows that the translational errors in the X, Y , and Z direc-
tions between the two results are around 8.7%, 1.1%, and
17%, respectively, and the rotational errors are around
0.3%, 10%, and 8%, respectively. The reasons for the error
between the two are the same as above: (1) there is a process-
ing error of the flexible unit in the kinematics simulation
software and (2) the stress concentration area is not consid-
ered in the calculation model.

4.2. Workspace. According to the algorithm in Section 2.2,
the working range of the 3-UPU mechanism can still be
solved simply and quickly (regardless of the mechanism
pose). Figure 13 only shows the working range under the
constraint of considering the change of the translational
joint.

5. Verification Experiment

In this paper, the flexible four-bar mechanism is taken as an
example to carry out experiments. The mechanism material
is 7075-T6 aluminum alloy, with an elastic modulus of
71.7GPa, a density of 2.81 kg/m3, a tensile yield strength of
503MPa, and a Poisson’s ratio of 0.33. This mechanism uses
the SLC-1720 product of SmarAct (German) to drive the
RPR branch chain, and the specific parameters are shown
in Table 1.

In the experimental research, two laser displacement
sensors (CL-P070, from Keyence Company) are used to
measure the output displacement and angle of the platform,
and the specific experimental device is shown in Figure 14.

The results of the experimental tests recorded the main
movement direction of the mechanism (see Tables 2 and 3).
It can be seen from the table that the test results are highly
consistent with the calculation results, and the error between
the two is maintained at 1%, which fully proves the feasibility
and accuracy of the method. Themain causes of errors include
mechanism processing and assembly errors, as well as calcula-
tion errors caused by stress concentration.

6. Conclusion

In this paper, a mathematical method that can be used to
solve the forward kinematics of flexible parallel mechanisms

Table 3: Rotational principal direction measurement.

Translational joint
MSTMM

Experiment
First Second Third

1 2 Point 1 Point 2 Error Point 1 Point 2 Error Point 1 Point 2 Error

μm μm rad μm μm — μm μm — μm μm —

0 0 0 0 0 — 0 0 — 0 0 —

1 -1 0.0173 680.9 -511.3 1.33% 678.1 -512 1.15% 677.6 -512 1.11%

2 -2 0.0346 1402.6 -991.5 1.71% 1395.7 -990.7 1.39% 1396.2 -991 1.42%

3 -3 0.0519 2130.9 -1436.5 0.99% 2124.5 -1435.1 0.77% 2124 -1435.1 0.76%

4 -4 0.0694 2900.2 -1853.2 0.56% 2892.8 -1851.1 0.36% 2892 -1850.6 0.33%

5 -5 0.0869 3702.3 -2246.2 0.41% 3694.8 -2244.1 0.25% 3694.3 -2244.4 0.24%

4 -4 0.0694 2887.7 -1844.5 0.11% 2880.7 -1842.4 -0.08% 2880.7 -1842.4 -0.08%

3 -3 0.0519 2109.4 -1425.5 0.07% 2102.7 -1423.1 -0.19% 2103.5 -1423.6 -0.15%

2 -2 0.0346 1371.9 -976.7 -0.22% 1366 -974.9 -0.55% 1366 -974.9 -0.55%

1 -1 0.0173 662.3 -499.5 -1.25% 655.8 -497.9 -1.94% 656.3 -498.2 -1.87%

0 0 0 -12 2.5 — 19.2 5.1 — -19 4.9 —

-1 1 -0.0173 -660.2 547 2.61% -664.9 547.6 3.06% -663.1 546.8 2.84%

-2 2 -0.0346 -1273.4 1111 1.30% -1279.8 1112.8 1.65% -1280 1112.8 1.66%

-3 3 -0.0519 -1862.9 1704.7 1.00% -1870.6 1707 1.28% -1869.9 1706.7 1.25%

-4 4 0.0694 -2279.7 2337 -2.32% -2436.4 2345.2 1.16% -2436.1 2344.7 1.14%

-5 5 -0.0869 -2963 3010.8 0.83% -2972.7 3015.2 1.07% -2972.5 3014.9 1.06%

-4 4 0.0694 -2417.2 2334.7 0.53% -2424.9 2337.5 0.75% -2425.9 2338 0.78%

-3 3 -0.0519 -1850.6 1703.6 0.62% -1858.4 1706.2 0.91% -1858.4 1705.7 0.90%

-2 2 -0.0346 -1257.5 1095.4 -0.04% -1264.9 1098 0.39% -1266 1098.5 0.46%

-1 1 -0.0173 -637.7 532.4 -0.55% -645.2 534.8 0.30% -645.2 534.8 0.30%

0 0 0 8.9 -2.9 — 1.2 -0.5 — 1.5 -0.8 —
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is proposed. This method can solve all parallel mechanisms’
forward kinematics and working space range. In addition, it
can also easily calculate the deformation and stress of each
component in the mechanism, guiding practical applications.

(1) Taking the flexible planar four-bar mechanism and
the spatial 3-UPU mechanism as examples, the feasi-
bility and accuracy of this method for flexible mech-
anism analysis are verified through kinematics
forward solution analysis and solution of the work-
ing space range

(2) A “pseudoflexible model” is proposed. The specific
measure is to replace the rigid joints in the rigid par-
allel mechanism with flexible hinges to establish an
equivalent pseudoflexible model of the rigid mecha-
nism. Neglecting the maximum deformation of the
hinge, the method in this paper can be used to ana-
lyze the forward motion of a rigid parallel mechanism

(3) The addition of flexible hinges not only brings move-
ment displacement constraints to the mechanism
but also adds force constraints to the mechanism.
There is no longer a simple geometric relationship
between the elements in the Jacobian matrix of the
mechanism, but also force balance conditions.
Therefore, flexible hinges can be used to add force
constraints to ensure the full rank of the Jacobian
matrix of the rigid uncertain mechanism, thereby
achieving the purpose of stabilizing and determining
the motion of the rigid uncertain mechanism

The establishment of the forward kinematics mathemat-
ical model of the parallel mechanism provides a reference for
control in actual engineering. In future work, we will focus
on dynamic characteristic analysis to establish a unified
mathematical model of parallel mechanisms.

Appendix

A. Modeling of flexible four-bar mechanism

The establishment process of the total transfer matrix equa-
tion of the flexible four-bar mechanism is as follows:

State vector output from the end of branch 1:

Zout,1 =U15,1U14,1U13,1U12,1U11,1U10,1U9,1U8,1U7,1
U6,1U5,1U4,1U3,1U2,1U1,1Zstart,1

A 1

State vector output from the end of branch 2:

Zout,2 =U15,2U14,2U13,2U12,2U11,2U10,2U9,2U8,2U7,2
U6,2U5,2U4,2U3,2U2,2U1,2Zstart,2

A 2

State vector at the end of the mechanism:

Zout =U16E1Zout,1 +U16E2Zout,2,
Eout,1Zout,1 = −Eout,2Zout,2

A 3

Integrating the above formulas is as follows:

Enter boundary conditions:

Zstart,1 = 0, 0, 0, Fx, Fy,Mz , L1
T
start,

Zstart,2 = 0, 0, 0, Fx, Fy,Mz , L1
T
start,

Zout = X, Y ,Θz , 0, 0, 0, L1 + L2
T

A 7

Organize the above data and solve equation (A.4) to get
the result.

B. Modeling of 3-UPU mechanism

The establishment process of the total transfer matrix equa-
tion of the flexible four-bar mechanism is as follows:

State vector output from the end of branch 1:

Zout,1 =U15,1U14,1U13,1U12,1U11,1U10,1U9,1U8,1U7,1U6,1U5,1
U4,1U3,1U2,1U1,1Zstart,1

B 1

UallZall = 0, A 4

Uall =
U16E1U15,1U14,1 ⋯U2,1U1,1 U16E2U15,2U14,2 ⋯U2,2U1,2 −eye 7
Eout,1U15,1U14,1 ⋯U2,1U1,1 −Eout,2U15,2U14,2 ⋯U2,2U1,2 zeros 3, 7

, A 5

Zall =
Zstart,1

Zstart,2

Zout

A 6
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State vector output from the end of branch 2:

Zout,2 =U15,2U14,2U13,2U12,2U11,2U10,2U9,2U8,2U7,2
U6,2U5,2U4,2U3,2U2,2U1,2Zstart,2

B 2

State vector output from the end of branch 3:

Zout,3 =U15,3U14,3U13,3U12,3U11,3U10,3U9,3U8,3U7,3
U6,3U5,3U4,3U3,3U2,3U1,3Zstart,3

B 3

State vector at the end of the mechanism:

Zout =U18E1Zout,1 +U18E2Zout,2 +U18E3Zout,3,
Eout,1Zout,1 = −Eout,2Zout,2,
Eout,1Zout,1 = −Eout,3Zout,3

B 4

Integrating the above formulas is as follows:

Enter boundary conditions:

Zstart,1 = 0, 0, 0, Fx, Fy,Mz , L1
T
start,

Zstart,2 = 0, 0, 0, Fx, Fy,Mz , L1
T

start,

Zstart,3 = 0, 0, 0, Fx, Fy,Mz , L1
T
start,

Zout = X, Y ,Θz , 0, 0, 0, L1 + L2 + L3
T

B 8

Organize the above data and solve equation (B.5) to get
the result.

Data Availability

All relevant data are within the paper.

Additional Points

Highlights. (i) A new method for solving forward kinematics
of parallel mechanisms is proposed. (ii) The pseudoflexible
model is proposed in this article. (iii) The mechanism’s
Jacobian matrix becomes fully rank by increasing force
constraints.
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