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To improve the lengthy computation time of conventional variable structure interacting multiple model (VSIMM) algorithm and
increase the precision of target prediction and extrapolation, the target state and flight intent information captured by the
Automatic Dependent Surveillance-Broadcast (ADS-B) are used as the model’s prior information; combining this information
with VSIMM theoretical framework, we purpose an intent variable structure interacting multiple model (INT-VSIMM)
algorithm. Firstly, the motion pattern of the target in the flight phase of the flight path is decomposed, and complete sets of
motion models are established. Secondly, according to the principle of directed graph switching, a model set switching method
is designed, which is mainly based on “hard” switching and supplemented by “soft” switching. Finally, the INT-VSIMM
algorithm is used to track the trajectory of the target aircraft, and short-term trajectory extrapolation is performed based on
the target state estimation. The simulation results show that the target tracking performance computational time based on the
INT-VSIMM algorithm is superior to the comparative existing methods, and the extrapolated trajectory has less error in the
short term, which can satisfy the needs of conflict detection.

1. Introduction

With the rapid development of the global air transportation
business, the density of aircraft in airspace has posed a chal-
lenge to the handling capacity of air controllers, which will
inevitably increase the risk of accidents for aircraft in air-
space [1, 2]. To this end, enabling aircrew to take on some
of the conflict detection responsibilities through airborne
surveillance and communication technology can effectively
alleviate the workload of controllers and ensure the safety
of aircraft operation.

The advancement of air surveillance technology allows
the ownship to obtain flight states and intention informa-
tion of the target aircraft through Automatic Dependent
Surveillance-Broadcast (ADS-B) messages sent by the target
aircraft [3]. Based on this information, the aircraft has the
ability to track surrounding aircraft [4–6] and extrapolate

their flight trajectory [7] for the near future, and providing
data assistance for conflict detection. However, since the
intention information of the aircraft is difficult to capture
and discontinuous, the current research mainly extrapolates
the flight trajectory in the near future based on the historical
trajectory information of the target aircraft [8–10].

For conflict detection problems, the tracking and predic-
tion of targets depend on the assumptions of the target
motion model. Single-model estimation is a classic method
for target tracking research, which is characterized by simple
structure and easy implementation [11]. However, the tra-
jectory tracking and extrapolation problem of an aircraft
involves complex stochastic nonlinear mixed system state
estimation, resulting in single-model estimation that is
prone to cause a mismatch between aircraft’s motion pattern
and predicted model. Reference [12] proposes an interactive
multiple model (IMM) algorithm based on the Markov
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transformation coefficients. This algorithm divides the flight
actions into corresponding motion modes, such as uniform
motion, uniform acceleration motion, and uniform turning,
so that the aircraft can match one or more corresponding
motion models in each motion mode to describe aircraft
motion [13, 14]. Considering that actual noise generally con-
forms to colored noise processes, Singer proposed the Singer
model in 1970. Singer model is a global statistical model that
does not require detection during target tracking; therefore,
there is no time lag [15, 16]. The “current” statistical (CS)
model of manoeuvring target assumes that the mean acceler-
ation is a nonzero first-order time-dependent function, and
the “current” probability density of acceleration is expressed
by the modified Rayleigh distribution [17–19], which is
more in line with the actual aircraft flight situation.

Owing to the utilization of a fixed model set within the
IMM algorithm, to ensure a meticulous and precise depic-
tion of the target’s motion characteristics, a substantial
number of motion models need to be used to cover all pos-
sible manoeuvres of the target. As the proliferation of
models escalates, model mismatch caused by model compe-
tition can lead to a decrease in tracking accuracy [20]. For
this reason, reference [21] proposes a variable structure
interacting multimodel (VSIMM) architecture, which builds
a matching model set for each motion mode and uses the
observation data to select the optimal model set to describe
the current motion of the target [22–24]. Based on the
VSIMM architecture, reference [25] designed a fuzzy adap-
tive controller and introduced a nonlinear system to adjust
the self-adaptivity of parameters. Reference [26] introduces
a fuzzy membership function in the CS model for adaptive
regulation of target acceleration. In order to solve the prob-
lem of traditional tracking algorithm adaptive biases when
tracking strong manoeuvring target, reference [27] uses a
feedback network to monitor the matching degree between
different models and the actual motion of the target in
real-time. Although the above algorithms all utilize a pos-
teriori information to match the optimal model set for the
target’s current motion, which improves the tracking accu-
racy, none of them are able to use the prior information
to guide the switching of the model set. Thus, the target
tracking suffers from the issues of model set switching lag
and model set mismatch.

In summary, this research proposes a flight intent vari-
able structure interacting multiple model (INT-VSIMM)
algorithm, aiming to enhance the situational awareness of
the aircraft during the flight phase by utilizing the informa-
tion of the aircraft’s flight intent. The main contributions of
this research can be summarized as follows:

1. By integrating the ADS-B data transmitted by the tar-
get aircraft, we analysed the flight status and expected
flight intent of the target aircraft. On this basis, we
established a complete set of models composed of four
basic motion models to adapt to the motion patterns
of aircraft in various flight scenarios.

2. Based on the principle of model set switching of
directed graphs, we proposed a model set switching

method that mainly uses “hard” switching and sup-
plements with “soft” switching. This method helps
match the most suitable model set for the current
motion of monitoring targets, thereby improving the
computational accuracy and efficiency of multimodel
algorithms.

3. According to the one-step prediction result of the tar-
get’s current state, the target trajectory is extrapolated
in the short term, which helps to achieve accurate and
rapid conflict detection.

2. Modeling of Target Motion State

2.1. Problem Description. The airborne ADS-B out device
can encode the aircraft’s status information such as longi-
tude, latitude, altitude, speed, and heading, as well as the
intention information of selecting altitude and selecting
heading, and then broadcast them in the form of different
types of messages. The ownship can receive and decode
messages from surrounding airspace through the ADS-B
in device, so as to perceive the operation state of the sur-
rounding aircraft. As for the extrapolation of aircraft
trajectory, the completeness and accuracy of captured infor-
mation from other aircraft will directly affect the predicted
longitude of the trajectory. In this paper, by capturing air-
borne position message (APM), airborne velocity message
(AVM), target state, and situation message (TSSM), we
obtain the target aircraft’s position information (longitude,
latitude, and altitude information), speed and heading infor-
mation (east-west speed, north-south speed, and climb rate
information), and the flight intention information (selected
altitude and selected heading information). Based on the
target information, we utilize the VSIMM algorithm com-
bined with the Kalman filter for tracking and, finally,
extrapolate the short-term trajectory based on the motion
trend of the target aircraft.

2.2. Kinematics Model of Ownship. The motion state of air-
craft can be represented by the following discrete system
state equation:

X t + 1 =Φ t X t + Γ t w t 1

where Φ t represents state transition matrix, Γ t is the
system noise-driven matrix, w t ~N 0,Qt is the state
equation white noise, Q t is the process noise covariance,
and X t is the state vector of the system at time t.

Given that the Cartesian coordinate system causes a
divergence when illustrating ADS-B height data [28], the
geodetic coordinate system is chosen as the reference frame
for target tracking, and writing the state variables of the tar-
get aircraft in the form of three-phase components, the tar-
get state variable X t can be expressed as

X t = α t , β t , γ t

= x t , x t , x t , y t , y t , y t , h t , h t , h t
2
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Here, α t , β t , and γ t are the component of three
directions; x t , x t , and x t are the position, velocity,
and acceleration of the target aircraft in longitude direction
at time t, respectively; y t , y t , and y t are the position,
velocity, and acceleration of the target aircraft in latitude
direction at time t, respectively; h t , h t , and h t are the
displacement, velocity, and acceleration of the target aircraft
in altitude direction at time t, respectively.

2.2.1. Constant Velocity (CV) Straight Flight. Assuming that
the target moves uniformly, establish the CV motion model
for the target. During the cruise phase, aircraft are mostly in
a state of CV straight-line flight, so the CV model is the most
basic and commonly used flight model. This model is very
useful in theoretical research because it represents the basic
motion state of an aircraft under ideal conditions and can
serve as the basis for complex models.

The target state vector in the direction of longitude is
represented as α t = x t , x t T , and w t is Gaussian
white noise obeying 0, σ2 . For filtering and processing con-
venience, it is necessary to expand all motion models to the
maximum dimension of the model set. Given the fourth-
order state transition matrix of the turning model in the
model set, we need to expand the CVLNG model to four
orders, and the expanded dimensions should be filled with
0. The discrete equation of the CVLNG model is as follows:

α t + 1 =ΦCV
LNG t α t + ΓCV

LNG t w t 3

where state vector α t = x t , x t , 0, 0 T and ΦCV
LNG t =

1 T 0 0

0 1 0 0

0 0 0 0

0 0 0 0

is the transition matrix, ΓCV
LNG t =

T2/2

T

0

0
is the system noise-driven matrix, and T is the sampling
period.

Then, the target motion models along latitude direction
CVLAT and altitude direction CVQNE are similar with
CVLNG, therefore the discrete state equation of latitude and
altitude direction:

β t + 1 =ΦCV
LAT t β t + ΓCV

LAT t w t 4

γ t + 1 =ΦCV
QNE t γ t + ΓCV

QNE t w t 5

Here, β t = y t , y t , 0, 0 T and γ t = h t , h t , 0, 0 T

are the state vectors of latitude and altitude, respectively;

ΦCV
LAT t =ΦCV

QNE t =

1 T 0 0

0 1 0 0

0 0 0 0

0 0 0 0

; ΓCV
LAT t = ΓCV

QNE t =

T2/2

T

0

0

.

2.2.2. Constant Acceleration Straight Flight. The constant
accelerated (CA) model represents the flight state of an air-
craft under the influence of constant thrust. For example,
during takeoff and landing and accelerated cruising stages,
aircraft usually perform constant acceleration flight. The
CA model is very important for tracking and predicting
the maneuverability of aircraft.

Consistent with the modeling principle of the CV model,
the target’s CA motion is modeled in three directions, the
discrete form of state equation:

α t + 1 =ΦCA
LNG t α t + ΓCA

LNG t w t 6

β t + 1 =ΦCA
LAT t β t + ΓCA

LAT t w t 7

γ t + 1 =ΦCA
QNE t γ t + ΓCA

QNE t w t 8

Here, α t = x t , x t , x t , 0 T , β t = y t , y t , y t ,

0 T , and γ t = h t , h t , h t , 0 T
are the state vectors,

ΦCA
LNG t =ΦCA

LAT t =ΦCA
QNE t =

1 T T2/2 0

0 1 T 0

0 0 1 0

0 0 0 0

, ΓCA
LNG

t = ΓCA
LAT t = ΓCA

QNE t =

T2/2

T

1

0

.

2.2.3. Variable Acceleration Flight. The variable acceleration
model represents the flight state of an aircraft under the
influence of changing thrust. For example, in complex
weather conditions or when performing special manoeuvres,
such as avoiding obstacles, aircraft may perform variable
acceleration flight. This model is very common in actual
flight and is very useful for simulating and dealing with sud-
den flight conditions.

The variable acceleration motion in this article adopts the
CS model, which is a first-order time-dependent model with
nonzero mean acceleration, and the acceleration of the target
aircraft at the next moment is based on the neighbourhood of
the “current” acceleration. Despite the “current” model that
can represent the manoeuvring characteristics of the target
aircraft faithfully, the tracking effect is weak when the target
acceleration is outside the 4 − π/4 amax, amax and amin,
4 − π/4 amin intervals. Therefore, the “current” model is
not suitable for tracking less manoeuvring target aircraft.
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Assuming that the motion of the target in three direc-
tions follows variable acceleration, then establish the CS
model for the target based on the CS model, the discrete
state equation of the CSLNG model can be given by

α t + 1 =ΦCS
LNG t α t +ΨCS

LNG t â t + ΓCS
LNG t w t 9

β t + 1 =ΦCS
LAT t β t +ΨCS

LAT t â t + ΓCS
LAT t w t 10

γ t + 1 =ΦCS
QNE t γ t +ΨCS

QNE t â t + ΓCS
QNE t w t

11

where α t = x t , x t , x t , 0 T , β t = y t , y t , y t , 0 T ,

and γ t = h t , h t , h t , 0 T
represent the state vector

of three directions; ΦCS
LNG t =ΦCS

LAT t =ΦCS
QNE =

1 T λT + e−λT − 1/λ2 0

0 1 1 − e−λT /λ 0

0 0 e−λT 0

0 0 0 0

; ΨCS
LNG t =ΨCS

LAT t =

ΨCS
QNE t =

−T + λT2/2 + 1 − e−λT /λ/λ

T − 1 − e−λT /λ

1 − e−λT

0

are the system

input control matrixes; ΓCS
LNE t = ΓCS

LAT t = ΓCS
QNE t =

T2/2

T

1

0

; â t is the estimated value of current acceleration.

2.2.4. Constant Angular Velocity Turning Flight. The con-
stant turning (CT) model represents the aircraft turning at
a constant angular velocity during horizontal flight. In actual
flight, turning is a very common operation, such as in route
navigation, obstacle avoidance, and tactical manoeuvres. The
CT model is the basis of heading control in target tracking
models.

Unlike the models based on random processes, the CT
model is primarily dependent on the target’s kinematic char-
acteristics in order to more accurately describe the target’s
spatial trajectory. Considering that there are fewer cases of
civil aviation manoeuvring in the vertical direction when it
is cruising, this section adopts a two-dimensional model that
describes horizontal motion for the CT model and uses

CVQNE, CAQNE, and CSQNE models for tracking in the verti-
cal direction.

In addition, considering that the turning maneuver of
target is a nonlinear motion, the longitude and latitude
directions will be coupled while discretizing the state equa-
tions. Hence, we decoupled the longitude and latitude direc-
tions of the target motion state when establishing the
turning model of longitude and latitude direction. The dis-
crete state transition equation of the target aircraft can be
expressed as follows:

α t + 1 =ΦCT
LNG t α t + ΓCT

LNG t w t 12

β t + 1 =ΦCT
LAT t β t + ΓCT

LAT t w t 13

where α t = x, x, 0, 0 and β t = y, y, 0, 0 are state vector,

ΦCT
LNG t =ΦCT

LAT t =

1 sin τT/τ 0 0

0 cos τT 0 0

0 1 − cos τT/τ 0 0

0 sin τT 0 0

, ΓCT
LNG t =

ΓCT
LAT t =

T2/2

T

0

0

.

2.2.5. Prior Information of the Model. The prior information
used in this study includes the flight status information and
flight intention information of the target aircraft.

ADS-B is to broadcast the precise position generated by
the Global Positioning System (GPS) and the motion status
stored by the airborne flight management system (FMS).
Other communication terminals receive this broadcast
through data links and perform decoding analysis to achieve
airspace monitoring. By capturing and decoding the ADS-B
APM and AVM of the target aircraft, we obtained data on
the longitude, latitude, and altitude of the target aircraft, as
well as the magnitude and direction of flight speed. These
data reflect the current flight status information of the target
aircraft. In target tracking filtering, after preprocessing the
flight status information, the position, velocity, and acceler-
ation data of the target in three directions are sequentially
inserted into the observation matrix, thereby completing
the update of the current target aircraft position and velocity
status.

By capturing and decoding the TSSM, we can obtain
FMS-selected altitude and heading data, which can serve as
the flight intent information of the target aircraft, reflecting
the changing trend of altitude and heading of the target in
the near future. After decoding, this data is inserted into
the intent matrix and used to guide the system in adopting
“soft” or “hard” switching when updating the model set.
The structure of message and the meaning of each field
can be found in the RTCA DO-260B document [29]. The
structure of the 56-bit ME field in the message is shown in
Figure 1.
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In this way, the target aircraft’s longitude, latitude, and
altitude data can be acquired by decoding the APM and used
as the observation values to update target aircraft’s current
position state. Furthermore, the ground speed, heading,
and vertical speed parsed through the AVM can be trans-
formed into the speed information in three directions after
projection and used as the observation values to update tar-
get aircraft’s current velocity. The observation equation in
the geodetic coordinate system is

Z t =Η t X t + v t 14

Here, observation matrix Η t =
1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

; Z t is the observation

value; v t is the observation noise, obeying 0, Rt , and Rt
is the observation noise covariance matrix. Continuous cor-
rection of tracking errors using flight status information can
effectively improve tracking accuracy. In addition to the tar-
get position, this study also added observation inputs for tar-
get velocity, which can provide a more accurate estimation
of the current behaviour of the target.

Civil aircraft may send TSSM before and after scheduled
waypoints or ATC-designated waypoints, especially when
these points represent significant route changes or flight plan

updates. This message will contain information on aircraft’s
current state and flight intentions and will be broadcast at
random intervals that are uniformly distributed over the
range of 1.2 to 1.3 s, to ensure that other aircraft and ground
control stations can understand the aircraft’s anticipated
manoeuvres.

There are several fields in the TSSM message that are
dedicated to representing the intent information of the tar-
get aircraft. The FMS selects altitude and heading data that
reflect the expected trends in target altitude and heading
and therefore serves as the flight intent of the target aircraft.

The novelty of this study is to utilize the FMS-selected
altitude and selected heading data to serve as a pivotal basis
for model set switching. Since the target’s flight intent infor-
mation directly reflects the expected flight status of the air-
craft in the near future, it is evidently faster and more
accurate compared to the filtering estimation results. Using
flight intent as prior information to guide model set switch-
ing will undoubtedly greatly improve inherent delays and
enhance model tracking accuracy. This part of theory will
be elaborated upon with meticulous detail in the ensuing
section.

3. Model Set Adaptive Switching Algorithm

3.1. Model Set Based on Directed Graphs. The motion modes
of target are decomposed into straight and turning flight at
constant altitude, constant heading lift, and turning during
lift. The above four flight modes cover all the flight manoeu-
vres of a civil aviation aircraft in the normal flight, and each
flight mode is mathematically described by six submodels.
The corresponding relationship between model set and
model submodel is shown in Table 1.

Altitude: 12 bit Time: 1 bitType
code : 5 bit Surveillance

status : 2 bit : 1 bitNIC
supplement-B

CRP
format : 1 bit Encoded

latitude : 17 bit Encoded
longitude : 17 bit

(a) Airborne position message

Reserved: 1 bitType code:
5 bit Subtype: 3 bit

Intent
change

flag
: 1 bit NACV: 3 bit E/W

direction : 1 bit E/W
velocity : 10 bit N/S

direction : 1 bit N/S
velocity : 10 bit

Diff from
baro alt:

 7 bit

Diff from baro
alt sign:

1 bit
Reserved: 2 bitVert rate:

9 bit

Vert
rate
sign

: 1 bit
Vert
rate

source
: 1 bit

(b) Airborne velocity message

Type code:
5 bit

Subtype:
2 bit

SIL
supplement:

1 bit

Selected
altitude : 1 bit 

type

FMS
selected: 11 bit

altitude

Barometric
pressure setting:

9 bit

Selected
heading status:

1 bit

Selected
heading sign:

1 bit

Selected
heading:

8 bit

NACp: 4 bit

TCAS
operational:

1 bit

NICBaro: 4 bit

LNAV
mode : 1 bit

engaged

Reserved:
2 bit

Approach
mode:
1 bit

Reserved:
1 bit

Altitude
hold

mode
: 1 bit

VNAV
mode

engaged
: 1 bitAutopilot

engaged : 1 bit
Status

MCP/FCU: 1 bit
mode bit

Source
integrity : 2 bit

level

(c) Target state and status message

Figure 1: Message analysis result.
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The state judgment of the target adopts a combination of
event-driven and model probability-driven methods, fully
utilizing the prior information of the target to achieve better
tracking results. Adaptively, the current model set is that
switch from the previous model set to a model set that is
closer to the target motion state, after the state judgment.
Figure 2 depicts the directed diagram of the model set.

3.2. Model Set Switching Rules. The commonly used directed
graph switching method is to switch the current model set to
a new model set that is more suitable for the target motion
state based on the system’s judgment of the target motion
state at the last time. This model set switching method
essentially has a certain time lag, which means that adjust-
ments need to be made at the next moment when the target
undergoes manoeuvring. This paper decodes the TSSM to
extract flight intention information such as the selected alti-
tude and heading of the target aircraft. The flight intention
of an aircraft reflects its expected flight state in the near
future, which is obviously more accurate compared to the
predicted results of the model. Using flight intention as a
prior information to guide the switching of the model set
will undoubtedly enormously improve the tracking accuracy
of the model and improve the fixed time lag. Thereby, this
section integrates the heading and altitude flight intentions,
thereupon proposes a model set switching rule based on
the intent information to achieve fast and accurate model
set switching.

Flight intention driven is a “hard” switching rule, and
whereas it can simply and directly promote the computa-
tional efficiency and prediction accuracy of the model, the
acquisition of flight intention information is not continuous
in the process of tracking the target aircraft. For this reason,
it is necessary to provide a “soft” switching rule as a supple-
mentary means of model set switching. This section matches
the current optimal model by calculating the likelihood
probability of each model set, which can achieve “soft”
switching of the model set. The principle of model set
switching is shown in Figure 3.

Define flight intention driven as “hard” switching.
Whereas “hard” switching can simply and directly promote
the computational efficiency and prediction accuracy of the
model, the acquisition of flight intention information is not
continuous in the process of tracking the target aircraft.
For this reason, it is necessary to provide a “soft” switching
rule as a supplementary means of model set switching. This
section matches the current optimal model by calculating
the likelihood probability of each model set, which can
achieve “soft” switching of the model set.

Assuming that the system captures flight intention G
t = hs t , φs t at time t, where hs t represents the FMS-
selected altitude, φs t represents the FMS-selected heading,
and G t is the intention matrix. The “hard” switching rule
based on flight intention is as follows:

Mk =

U2, hs t = 0, φs t ≠ 0

U3, hs t ≠ 0, φs t = 0

U4, hs t ≠ 0, φs t ≠ 0

15

The above “hard” switching criterion can be used to acti-
vate an individual model set, whereas the time when to termi-
nate the model set depends on whether the target has
completed the expected action as the termination condition.
In other words, when the filtering result does not reach the
intended set value, it indicates that the target has not com-
pleted the expected action, and then, the filtering result will
be fused and output. In contrast, the filtering result has
reached the intention set value, which indicates that the tar-
get has completed the expected action, and intention-based
“hard” switching result will no longer be applicable; finally,
the likelihood-based “soft” switching method will be used
to solve the optimal model set.

The model set switching method based on the model set
likelihood probability has to filter and estimate all model sets
and then calculate the likelihood probability of the model set
on the basis of the residual and its covariance. Taking model
set U1 as an example, after model filtering and model prob-
ability update, the maximum likelihood probability of U1 is
calculated according to residuals and covariance and com-
pared with the maximum likelihood probability of all other
model sets. Subsequently, the model set with the maximum
likelihood probability is selected to be switched to the cur-
rent model set and eventually output the filtering results of
the optimal model set.

The advantage of this method over traditional VSIMM
algorithm is that the procedure of model set switching and

Table 1: The relationship between target motion states and model submodel.

Model set U Target motion states Submodel mi

U1 Straight flight under constant altitude CALNG, CVLNG, CSLNG, CALAT, CVLAT, CSLAT
U2 Turning flight under constant altitude CALNG, CTLNG, CSLNG, CALAT, CTLAT, CSLAT
U3 Climbing/descending flight under constant heading CALNG, CALAT, CAQNE, CSLNG, CSLAT, CSQNE
U4 Climbing/descending under turning flight CTLNG, CTLAT, CVQNE, CSLNG, CSLAT, CSQNE

U1

U4U3U2

Figure 2: Schematic diagram of directed graph.
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state estimation output can be accomplished by only one
filtering, which greatly reduces the computation time.
Assuming the model set likelihood probability ΛU i

is the
cumulative sum of the likelihood probability of each submo-
del Λmi

in that model set, denoted as

ΛUi
t =

∑mi∈Ui
Λmi

t

Ui

16

Λmi
t =

1
2πSi t

1/2 exp −
1
2
dTi t S−1i t di t 17

Among them, di t and Si t represent the residual vec-
tor and covariance at time t, respectively, and their mathe-
matical expressions are introduced in Section 4.

4. Tracking and Extrapolation of
Target Aircraft

4.1. INT-VSIMM-Based Filtering Algorithm. The model set
adaptive switching method discussed in Section 3 is incor-

porated into the model set sequence condition estimation
to recognize the motion pattern of the target aircraft. The
INT-VSIMM filtering algorithm proposed in this study
consists of four parts: building a complete model set, model
filtering estimation, selecting the optimal model set, and
fusion output. The diagram of the algorithm is shown in
Figure 4.

The specific steps of the INT-VSIMM algorithm are as
follows.

Step 1. Model initialization

1. Building model sets. Establish the complete model set
U that is sufficient to cover all possible movements of
the target aircraft.

2. Assign transfer probabilities to submodels. Assuming
that the set-model Mt contains n submodels at time
t, the matrix of model transfer probabilities from
model mi to mj mi ∈Mt ,mj ∈Mt :

pj i = P mj t mi t − 1 18

Terminate the current
model set
Make Mt = Ui, i = 1, 2 , 3, 4
Ui is the newly switched
model set

Model set filtering and
probability updating

Model set filtering
and probability

updating

Yes No

No

Yes

No

Yes

Yes

No

Model condition
initialization

Whether flight
intention G (t) is

detected?

‘‘Soft’’
switching rule

Switch the
current model

set?

Mt = Mt–1

Mt = Mt–1

Make Mt = Ui,
i = 1, 2, 3, 4
Ui is the newly
switched model set

Final fusion
output

Whether the
expected action

completed?

Whether activate
new model set?

‘‘hard’’
switching rule

Figure 3: Schematic diagram of model set switching.
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Then, the probability of transferring from model mi to
mj at moment t − 1 can be expressed as follows:

uj t − 1 = pj i · ui t − 1 19

Here, ui represents the probability that the system is
model mi at time t − 1.

Step 2. According to the “hard” switching rule introduced in
Section 3, select the model set for filtering estimation.

Step 3. Model filtering estimation

1. Filter initialization. The mixing probability from mi
to mj:

uj i t − 1 t − 1 =
1

cj t
· pj i · ui t − 1 20

Mixed state estimates for model mj at time t − 1:

x̂0j t − 1 t − 1 = 〠
n

i=1
x̂i t − 1 t − 1 uj i t − 1 t − 1 21

Mixed covariance estimation for model mj:

P0 j t − 1 t − 1 = 〠
n

i=1
uj i t − 1 t − 1 ·

Pi t − 1 t − 1 +

x̂i t − 1 t − 1 − x̂0j t − 1 t − 1 ·

x̂i t − 1 t − 1 − x̂0j t − 1 t − 1 T

22

Here, x̂i t − 1 t − 1 is the state estimation corresponding
to the filter output of model mi at moment t − 1, Pi t − 1
t − 1 is the covariance matrix corresponding to the filter
output of model mi at moment t − 1, x̂0j t − 1 t − 1 is the
state input of the filter corresponding to model mj at
moment t, which is calculated by weighted summation of
the state estimates output by each filter at time t − 1, and
the weight is the mixed probability of each submodel to
model mj; P0j t − 1 t − 1 is the covariance matrix input
of the filter corresponding to model mj at time k, which
is calculated by weighted summation of the covariance
matrix estimates of each filter output at time t − 1; uj i t −
1 t − 1 is the mixed probability that the model matches
mi at time t − 1 and mj at time t, conditional on the infor-
mation Z t :

Model condition
initialization

Mixed interaction

Filter bank

Yes

No

Xi (t–1), pi (t–1), i = 1, 2,···,n

Xoi (t–1), poi (t–1), i = 1, 2,···,n

Xi (t), pi (t), i = 1, 2,···,n

X (t), p (t)

Yes

No

Observed
value z (t)

Whether intent
information G (t)

is detected?

Current model
set update

Whether update
the model set?

Model set likelihood
probability
calculation

Mixing probability
calculation 𝜇j|i (t–1)

Posterior probability
update 𝜇i (t)

Target state estimation and
error covariance calculation

Figure 4: Diagram of VSIMM algorithm integrating flight intention.
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uj i t − 1 t − 1 = p mi t − 1 mj t , Z t =
pj i · ui t − 1

∑n
i=1pj i · ui t − 1

23

2. Model conditional filtering.

Due to the establishment of the linear motion equation
of the target in Section 2.2 and the modeling of system noise
as Gaussian white noise, under the assumptions of linear
system and Gaussian noise, the Kalman filter ensures that

the estimated value is as close to the true value as possible
by minimizing the mean square error. Of course, if the sys-
tem is assumed to be nonlinear or non-Gaussian noise, using
methods such as unscented Kalman is a better choice. In
addition, the Kalman filter only requires one iteration to
update the state estimation and has better speed and accu-
racy than other filtering methods in dynamic systems and
short-term prediction. Finally, the Kalman filter divides state
prediction and update into two steps, which makes the algo-
rithm structure clear and facilitates the implementation of
subsequent trajectory extrapolation work.

In this study, the nonlinear motion of the target is decom-
posed into linear motion in three directions: longitude,

Table 2: Model initial parameter.

Submodel direction Target initial state Initial model probability Initial model transition probability

Model set U1

Longitude direction α α 0 = x0, x0, 0, 0
T uαi = 0 3 0 4 0 3 pαj i =

0 8 0 1 0 1

0 1 0 8 0 1

0 1 0 1 0 8

Latitude direction β β 0 = y0, y0, 0, 0
T uβi = 0 3 0 4 0 3 pβj i =

0 8 0 1 0 1

0 1 0 8 0 1

0 1 0 1 0 8
Altitude direction γ — — —

Model set U2

Longitude direction α α 0 = x0, x0, 0, 0
T uαi = 0 2 0 6 0 2 pαj i =

0 8 0 1 0 1

0 1 0 8 0 1

0 1 0 1 0 8

Latitude direction β β 0 = y0, y0, 0, 0
T uβi = 0 2 0 6 0 2 pβj i =

0 8 0 1 0 1

0 1 0 8 0 1

0 1 0 1 0 8
Altitude direction γ — — —

Model set U3

Longitude direction α α 0 = x0, x0, 0, 0
T uαi = 0 5 0 5 pαj i =

0 8 0 2

0 1 0 9

Latitude direction β β 0 = y0, y0, 0, 0
T uβi = 0 5 0 5 pβj i =

0 8 0 2

0 1 0 9

Altitude direction γ γ 0 = h0, h0, 0, 0
T

uγi = 0 5 0 5 pγj i =
0 8 0 2

0 1 0 9

Model set U4

Longitude direction α α 0 = x0, x0, 0, 0 T uαi = 0 5 0 5 pαj i =
0 8 0 2

0 1 0 9

Latitude direction β β 0 = y0, y0, 0, 0
T uβi = 0 5 0 5 pβj i =

0 8 0 2

0 1 0 9

Altitude direction γ γ 0 = h0, h0, 0, 0
T

uγi = 0 5 0 5 pγj i =
0 8 0 2

0 1 0 9
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latitude, and altitude. In order to avoid confusing model pre-
dictions in different directions, the state input is filtered by
the Kalman filter in the three directions, respectively.

One-step prediction of the state and its covariance:

x̂ j t t − 1 =Φj t − 1 x̂0j t − 1 t − 1 24

Pj t t − 1 =ΦjP0j t − 1 t − 1 ΦT
j + ΓjQjΓ

T
j 25

The residual information dj t and its covariance Sj t :

dj t = Z t −H t x̂j t t − 1 26

Sj t =H t Pj t t − 1 HT t + R t 27

The gain matrix of the Kalman filter is as follows:

Kj t = Pj t t − 1 HT HPj t t − 1 HT + R
−1 28

Update the target state and covariance using observation
data:

x̂ j t t = x̂ j t t − 1 + K j t Z t −H t x̂j t t − 1 29

Pj t t = Pj t t − 1 − K j t H t Pj t t − 1 30

Step 4. Optimal model set switching.

1. Maximum likelihood probability update. The updated
expression for the model likelihood function Λj t is
given in Equation (22) and brings the model likeli-
hood function into Step 2 for model set switching.

2. Model probability update

uj t =
Λj t cj t

∑n
j=1Λj t cj t

31

Here, cj t =∑n
i=1pj i · ui t is the probability of transfer-

ring from another model to model mj.

3. Select the optimal model set. Select the optimal model
set according to the “soft” switching rules introduced
in Section 3.

Step 5. Fusion output.
The fusion output of the filter is the weighted value of

the filter estimation results after filtering each submodel in
the optimal model set. The weighted state estimation x̂ t t
and its covariance P t t are as follows:

x̂ t t = 〠
n

j=1
x̂ j t t · uj t 32
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Figure 5: Real trajectory and tracking trajectory.
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P t t = 〠
n

j=1
uj t Pj t t + δj · δ

T
j 33

where δj = x̂ j t t − x̂ t t is the filter correction error, which
eliminates the difference between the state filter estimate of
model mj and fusion output.

4.2. Trajectory Extrapolation Based on INT-VSIMM.
According to the calculation in Section 4.2, we can track
the motion state of the target aircraft at the current time,
but in order to predict potential flight conflicts in advance,
it is necessary to extrapolate the trajectory of the target.
Since the state estimation of the target is constantly updated
with observations, this section only performs short-term

extrapolation of the target trajectory to provide data support
for aircraft conflict detection.

As can be seen from Step 3, the one-step prediction
result of the model state is only related to the state vector
x̂ t , the variance P̂ t , and the model probability û t ,
whose update is independent of the observations. There-
upon, this study employs the estimated state filtering values
of a certain time model for one-step prediction, and the
extrapolation results will be used as inputs for the next
extrapolation calculations. Assuming that the current time
is t, the probability of Mj at time t + 1 can be obtained from
the full probability equation:

uj t + 1 = 〠
n

i=1
pj i · ui t 34
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Figure 6: Comparison of velocity tracking error.
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State prediction value and prediction filtering mean
square matrix of INT-VSIMM:

x̂ t + 1 = 〠
n

j=1
x̂ j t + 1 · uj t 35

P t + 1 = 〠
n

i=1
uj t · Pi t + x̂i t − x̂0j t · x̂i t − x̂0j t

T

36

Here, x̂ j t + 1 =Φj t x̂0j t is the estimated value of the
model mj at time t + 1.

5. Numerical Simulation

5.1. Simulation Environment and Parameter Setting. The fil-
tering data in this study is the ADS-B message of the aircraft
with flight number CXA8830 on December 5, 2022, which is
within 1400s of the climbing flight phase. Firstly, eliminate
the acquired message data that was duplicated or anomalous
to get 1209 trajectory points. Then, assume that the time
when received the air position message is t, and the next
time that received the air position message is t + 1; the dura-
tion of the discretization time step is T . Within the duration
of pheromones, the decoded position and speed information
is inserted into the observation matrix, and the decoded
intention information is inserted into the intention matrix.
According to the Nyquist sampling theorem, the sampling
frequency should be at least twice the highest frequency of
the signal. Therefore, this article sets T = 0 6 s.

The simulation was performed under AMD Ryzen 3
2200G processor, with 3.5GHz main frequency and 64-bit
Windows 10. The simulation results were compared with
the traditional VSIMM algorithm and the IMM algorithm,
and the initial parameter settings are shown in Table 2.

The process noise covariance and observation noise
covariance matrix of the respective models are set as follows:
Γ t = diag 0 12, 0 12, 0 12, 0 12 and R t = diag 2500,
2500, 2500,2000,2000,2000 .

5.2. Simulation Results and Analysis. In the case of the sim-
ulation in this study, the prior information of the conven-

tional VSIMM algorithm and IMM algorithms was tracked
using a single observation, while the INT-VSIMM algorithm
receives the intent data (select altitude 26,816 feet, select
heading 87.89 degrees) additionally when the target aircraft
runs up to 873 s. The comparison curves between the calcu-
lated trajectory of the three filtering algorithms and the real
trajectory are shown in Figure 5.

From Figure 5, it can be seen that all the three algorithms
are able to realize the target tracking effectively, and among
them, the conventional IMM and VSIMM algorithms do not
have much difference in the tracking effect when the target
changes motion pattern; however, the tracking effect of the
INT-VSIMM algorithm is obviously unquestionably supe-
rior to the first two, which is closer to the real trajectory.

Figure 6 shows the position tracking error curves and
velocity tracking error curves of the three filtering algo-
rithms, respectively. It can be seen that when the motion
mode of the target aircraft changes, the tracking error
curves of the three filtering algorithms will significantly
oscillate, which is basically the result from model mismatch
caused by the switching delay of the model set, as well as
submodel prediction confusion. The INT-VSIMM algo-
rithm received the target’s intention data at 873 s and used
it to modify the state’s heading and altitude. The maximum
errors of position and velocity have been improved by
42.44% and 22.01% compared to traditional IMM algo-
rithms and 13.54% and 8.87% compared to conventional

1 2 3 4

VSIMM algorithm
INT-VSIMM algorithm

Ac
ce
ss
in
te
nt
io
n
da
ta

Figure 7: Model set switching over time.

Table 4: Simulation time of trajectory tracking.

Filtering
algorithm

IMM
algorithm

VSIMM
algorithm

INT-VSIMM
algorithm

Calculative time (s) 3.522 4.900 4.308

Table 3: Performance comparison of position and velocity error.

Error type IMM algorithm VSIMM algorithm INT-VSIMM algorithm

Maximum position tracking error (m) 502.212 334.424 289.142

Maximum speed tracking error (m/s) 75.984 65.026 59.258

Mean position error (m) 44.692 34.157 31.822

Mean speed error (m/s) 13.077 11.985 9.768
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VSIMM algorithms, respectively. The mean errors of posi-
tion and velocity have been reduced by 23.57% and
25.30% compared to traditional IMM algorithms and
6.84% and 18.50% compared to conventional VSIMM algo-
rithms, respectively. The maximum tracking error and
mean error of the three filtering algorithms are shown in
Table 3, and all indicators of the INT-VSIMM algorithm
are optimal.

The VSIMM algorithm based on a multimodel set archi-
tecture has multiple model sets running at any time, so it has
an intrinsic increase in computation compared to fixed
structure IMM filters. To address this issue, the INT-
VSIMM algorithm proposed in this study reduces the filter-
ing computation of redundant model sets by using inten-
tional data and, in addition, optimizes the flow of the
filtering algorithm, which reduces the simulation computa-
tion time by 12.08% relative to the VSIMM algorithm. The
simulation time of the three filtering algorithms is shown
in Table 4.

Figure 7 depicts the trend of the INT-VSIMM algo-
rithm’s optimal model set at each instant. The black dashed
line in the figure represents the starting position of the target
aircraft’s motion, and the model set curve changes in a
clockwise direction. From the figure, it can be seen that
due to the guiding effect of intention data on model set
switching, the INT-VSIMM algorithm avoids repeated
model set switching during pattern recognition, thereby
improving model stability and adaptability.

The filtered output of t = 368 s is selected as the initial
state of an extrapolation of 160 s. Figures 8(a) and 6(b) show
the comparison and error curves between the extrapolated
trajectory and the real trajectory, respectively. It can be seen
that an extrapolated trajectory can obtain better prediction
results in the short term, although the extrapolation error

gradually increases with the extension of extrapolation time,
and the error has reached 1000m at 32 s and 7176m at 160 s.
Therefore, the short-term extrapolation trajectory of the
INT-VSIMM algorithm proposed in this study can be used
as the basis for conflict detection.

6. Conclusions

Aiming at the target tracking and short-term trajectory
extrapolation problems during the flight phase of the route,
this study fully considered the aircraft’s airspace situational
awareness ability, optimized the VSIMM architecture, and
proposed the INT-VSIMM filtering algorithm. A complete
set of motion models was established according to the target
motion pattern, the switching between each model set was
realized by using the target flight intention and the model
set likelihood probability, and the short-term trajectory
extrapolation was carried out based on the filtering estima-
tion results.

The simulation results prove that (1) the INT-VSIMM
algorithm improves the problems of model set switching
lag and submodel mismatch relative to the conventional
VSIMM algorithm and IMM algorithm and greatly
improves the target tracking accuracy and model stability,
(2) the computation time of the INT-VSIMM algorithm
reduces by 12.08% compared to that of the conventional
VSIMM algorithm, and (3) the extrapolation method can
better reflect the future trajectory of the target in the short
term, which serves as a guide for the conflict detection and
interval keeping works.

In this study, we mainly focus on the short-term precise
tracking and trajectory prediction of civil aircraft in the
flight phase. In the future, we will consider the real environ-
mental factors of the airspace where the target is located,
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Figure 8: Comparison of real trajectory and extrapolated trajectory.
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with the expectation of further improving the tracking accu-
racy of the target and extending the time for precise trajec-
tory prediction.
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