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Flight delays are a major concern for both travelers and airlines, with significant financial and reputational consequences.
Accurately predicting flight delays is crucial for enhancing customer satisfaction and airline revenues. In this paper, we
leverage the power of artificial intelligence and machine learning techniques to build a framework for accurately predicting
flight delays. To achieve this, we collected flight information from September 2017 to April 2023, along with weather data, and
performed extensive feature engineering to extract informative features to train our model. We conduct a comparative analysis
of various popular machine learning architectures with distinctive characteristics, aiming to determine their efficacy in
achieving optimal accuracy on our newly proposed dataset. Based on our evaluation of various architectures, our findings
demonstrate that CatBoost outperformed the others by achieving the highest test accuracy and the lowest error rate in the
challenging use case of Saudi Arabia. Moreover, to simulate real-world scenarios, our framework evaluates the best-performing
model that has been selected for deployment in a web application, which provides users with the ability to accurately forecast
flight delays and offers a user-friendly dashboard with valuable insights and analysis capabilities.

1. Introduction

Air travel is a favored transportation mode for many indi-
viduals. However, flight delays represent a significant chal-
lenge for both air travelers and airline operators. Flight
delays can generate both short-term and long-term negative
impacts on airlines, including financial losses and various
other issues involving passenger dissatisfaction, reputational
harm, and additional crew expenses. According to the FAA/
Nextor, the estimated annual costs of delays, including direct
costs to airlines and passengers, lost demand, and indirect
costs, amounted to 28 billion USD in 2018 [1]. On the other
hand, for travelers, flight delays may prompt them to seek
alternative airlines or other modes of transportation. Vari-
ous factors contribute to flight delays, including weather
conditions, air traffic congestion, technical difficulties, and
connecting flights. As such, it is critical for airline operators

to accurately estimate flight delays, as this could help
improve customer satisfaction and airline revenues.

Flight delays represent a worldwide challenge, and Saudi
Arabia is not immune to this issue. In this work, we take
Saudi Arabia as a case study to investigate flight delays, with
a specific focus on Saudi’s domestic flights. In January 2022,
Saudia Airlines and Flynas Airlines recorded on-time depar-
ture rates of 67.50% and 54.60%, respectively [2]. The
observed ratio of on-time flights to delayed flights in Saudi
Arabia is 60% to 40%, which presents a significant challenge
in accurately predicting future delays. It is noteworthy that
according to the United States Federal Aviation Administra-
tion (FAA), a flight is considered not on time (delayed) once
the actual departure/landed time exceeds 15 minutes beyond
the scheduled departure/landed time [3].

Artificial intelligence (AI) and machine learning (ML)
techniques, in particular, have achieved great success in
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resolving various real-world problems. They are increasingly
being used to tackle the issue of flight delays in the aviation
industry. ML-based approaches involve using historical
flight data to build predictive models that can predict poten-
tial delays. These models can take into account a variety of
factors, such as weather patterns, air traffic congestion, and
maintenance issues, to generate more accurate predictions.

The primary objective of this paper is to develop a super-
vised machine learning model capable of accurately classify-
ing flights as either “On-time” or “Delayed.” Additionally, in
the event that a flight is classified as delayed, the model
should accurately predict the duration of the delay in
minutes. To achieve this objective, we initially collected data
from three distinct sources and applied data mining tech-
niques to preprocess the data. The preprocessing techniques
included combining the data from the various sources into
a unified dataset, addressing missing values, resolving incon-
sistencies in the data, and selecting relevant features based on
their impact on the classification and regression tasks. Specif-
ically, we collected a comprehensive dataset comprising all
domestic flights in Saudi Arabia over the past five years,
along with relevant weather data, to facilitate our analysis.

We then investigate various prominent machine learning
models including CatBoost [4], XGBoost [5], LightGBM [6],
random forest [7], and deep learning models such as multi-
layer perceptron (MLP) [8] with the aim of assessing their
suitability for achieving optimal accuracy in predicting flight
delays on our newly proposed dataset. Our analysis indi-
cated that, among the various machine learning architec-
tures evaluated, CatBoost demonstrated the highest test
accuracy in classifying flights as either delayed or on time,
achieving a score of 76%. Moreover, CatBoost exhibited
the lowest error value when predicting the duration of flight
delays, achieving a mean absolute error (MAE) of 12.19.
These results suggest that CatBoost may be a promising
machine learning technique for addressing challenges
related to the proposed dataset.

This paper presents three main contributions that signif-
icantly advance the field of flight delay prediction:

(i) Comprehensive dataset: we introduce a comprehen-
sive dataset comprising domestic flight records in
Saudi Arabia over the past five years. This dataset
is derived from three diverse sources, including
weather data, resulting in a rich and extensive col-
lection of information for analysis. By incorporating
a wide range of variables, we provide a more holistic
view of the factors influencing flight delays in the
region

(ii) Advanced feature engineering: our study employs
extensive feature engineering techniques to extract
informative features from the dataset. This process
enhances the model’s predictive capabilities by cap-
turing the underlying patterns and relationships
within the data. Furthermore, we conduct a compar-
ative analysis of various popular machine learning
architectures, each possessing unique characteristics.
This analysis enables us to identify the most effective

architecture for achieving optimal accuracy on the
newly proposed dataset

(iii) Practical deployment: to simulate real-world scenar-
ios, we select the best-performing model and deploy
it in a user-friendly web application. This application
empowers internal users by providing them with the
ability to forecast flight delays. By making our solu-
tion accessible and practical, we aim to enhance
decision-making processes for aviation stakeholders
and improve the overall user experience

The remainder of this paper is organized as follows. Sec-
tion 2 presents an overview of previous works that have uti-
lized machine learning techniques to predict flight delays
across various regions around the world. Section 3 outlines
our proposed solution for predicting Saudi flight delays.
Section 4 includes implementation details and experimental
results. The paper concludes in Section 5 with a summary of
the findings and a discussion of future research directions.

2. Related Work

Machine learning models are increasingly being used to
tackle a range of complex problems across various domains,
including image recognition [19], speech recognition [20],
natural language processing [21], and other predictive ana-
lytics. These models can be broadly categorized into super-
vised, unsupervised, and reinforcement learning, as well as
specialized architectures designed for specific applications.
The selection of an appropriate machine learning model
depends on various factors, including the nature and size
of the dataset, the type of inputs and outputs, and the desired
performance metrics [22].

The prediction of flight delays is a significant undertak-
ing in aviation research and related applications. Recent
technological advancements have enabled the increasing
application of machine learning techniques to this task,
resulting in promising outcomes. This section presents a
comprehensive overview of prior research on machine learn-
ing techniques for predicting flight delays, across diverse
regions globally.

To begin with, Alharbi and Prince [9] employed a hybrid
approach that utilized machine learning as a data mining
tool to predict flight delays using a deep learning classifica-
tion algorithm. They tested three predictive models: logistic
regression, decision tree, and multilayer perceptron (MLP)
with principal component analysis (PCA). The authors
utilized two sources of data, the General Authority of Civil
Aviation (GACA) in Saudi Arabia and the Kaggle dataset.
The hybrid model, which is MLP with PCA, achieved the
highest testing accuracy of 0.8957 for the GACA dataset
and 0.9843 for the Kaggle dataset. While the model demon-
strated good performance for Saudi Arabian data, the lim-
ited size of the dataset and the relatively small number of
features may prevent its ability to generalize well for real-
world scenarios.

Furthermore, Khan et al. [10] utilized various machine
learning algorithms, including random forest, decision tree,
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Naive Bayes, K-nearest neighbor, and multilayer perceptron,
to predict flight delays using a publicly available Kaggle data-
set of United States domestic air traffic data from 2015.
While the authors demonstrated satisfactory results in their
work, the dataset that they used only covered a single year.
We believe that extending the dataset to encompass multiple
years may improve the model’s predictive capabilities. In
addition, Zhang and Ma [11] presented a flight delay predic-
tion model for forecasting the departure delay of Newark
Liberty International Airport using the CatBoost algorithm.
They used a dataset containing 226k records and 11 features.
The presented model achieved a prediction accuracy of 0.77.
Similarly, Ding [12] conducted an evaluation of three algo-
rithms, namely, Naive Bayes, C4.5, and multiple linear
regression, to estimate flight delays. The results indicated
that the multiple linear regression algorithm achieved a
higher accuracy rate of approximately 80% compared to
the other two algorithms. Like other previous work, the
dataset that they used only covered a single year.

Moreover, Yiu et al. [13] utilized five distinct machine
learning algorithms, including decision tree, random forest,
K-nearest neighbors, Naive Bayes, and artificial neural net-
works (ANN), for predicting flight delays. The data utilized
in this study comprised flight data from Hong Kong Interna-
tional Airport between March 31, 2018, and April 30, 2018,
with parameters such as airline, actual airtime, aircraft size,
weekday of departure, weekday of arrival, departure delay
status, and arrival delay status. They achieved above 80%
accuracy using the ANN. However, the dataset utilized in
the study was limited in scope, comprising only one airport’s
data for a single month. In addition, Tang [14] applied seven
machine learning algorithms to a dataset consisting of
28,820 rows of flight data departing from JFK Airport
between November 2019 and December 2020. The highest
accuracy rate of 97% was achieved using the decision tree
algorithm. Additionally, Khan et al. [23] propose a
parallel-series model and an adaptive bidirectional extreme
learning machine (AB-ELM) method for predicting and
analyzing flight delays. The study focuses on understanding
the causes of flight delays, particularly the IATA-coded flight
delay subcategories, and shows that the proposed methods,
along with proper sampling approaches, are effective in
uncovering hidden patterns and achieving a high accuracy
of 80.66% using Hong Kong’s international airlines.

Additionally, Hatıpoğlu et al. [15] applied gradient
boosting techniques, specifically XGBoost, LightGBM, and
CatBoost, to flight data from a Turkish airline company.
The dataset used consisted of only 18,148 international
flights. They achieved 96.9% accuracy with the XGBoost
algorithm. Moreover, Al-Tabbakh and El-Zahed [16] evalu-
ated eight classification algorithms using the open-source
software Weka. The study employed a dataset of 512 records
obtained from EGYPTAIR. In addition, Kiliç and Sallan [17]
utilized machine learning and artificial intelligence tech-
niques to predict flight delays in the US airport network.
Their results demonstrate that the gradient boosting
machine model outperformed other models in terms of pre-
dictive accuracy, making it an effective solution for predict-
ing arrival flight delays in the US airport network.

Lastly, Birolini and Jacquillat [24] develop predictive and
prescriptive analytics models to forecast primary delays and
optimize day-ahead aircraft routing, resulting in improved
robustness of airline operations and reduced delay costs.
The models achieve a mean absolute error of 7-8 minutes
in predicting delays and demonstrate the benefits of creating
shorter aircraft rotations and strategically allocating sched-
ule slack to mitigate delays.

Table 1 shows a comparison between all the mentioned
related works according to the region of the airlines, the
selected classifier, the number of obtained features in the
dataset, and, lastly, the number of samples in the dataset.

3. Methodology

This section outlines our proposed framework for predicting
flight delays. Firstly, we describe the overall pipeline of our
approach. Secondly, we detail every step of the pipeline
including the Saudi flight dataset that we gathered for our
experiments, documenting the processes of data preprocess-
ing, feature engineering, and dataset partitioning. Finally, we
present our web application, which simulates real-world sce-
narios for users by providing them with forecasted informa-
tion regarding the status of their future domestic flights in
Saudi Arabia.

3.1. Overall Pipeline. The overall pipeline adopted in our
paper involves a series of sequential steps to construct the
overall framework including data collection, data integra-
tion, data preprocessing, feature engineering, data splitting,
model training, model evaluation, and choosing the best-
performing model. Figure 1 illustrates the complete pipeline.
Each step in the pipeline is explained thoroughly in the fol-
lowing sections.

3.1.1. Saudi Flight Dataset. As previously stated, the scope of
this paper is to investigate the issue of flight delays in Saudi
Arabia. To the best of our knowledge, no prior research has
been conducted on this scope, and there is currently no pub-
licly available dataset suitable for exploration. Consequently,
we collected our own dataset consisting of all domestic
flights in Saudi Arabia over the last five years, totaling
775,000 domestic flights. The collected flights cover the
period from September 2017 to April 2023. We collect the
data from three different sources, as follows:

(i) Flightradar24 [25]: flight data was collected for this
study from the Flightradar24 website, spanning
from September 2019 to April 2023, comprising
469k samples. The collected data consisted of vari-
ous features, including flight number, origin airport,
destination airport, flight date, scheduled time of
departure, scheduled time of arrival, actual time of
departure, actual time of arrival, flight status
(landed, diverted, canceled), aircraft type, and tail
number

(ii) FlightEra [26]: flight data spanning from September
2017 to August 2019, comprising 306k samples,
were collected for this study from the FlightEra
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website and included the same features collected
from the Flightradar24 website

(iii) Visual Crossing [27]: weather data ranging from
September 2017 to April 2023 were obtained from
the Visual Crossing website. The obtained data con-
sisted of multiple features, including temperature,
humidity, dew point, precipitation, snow, wind gust,
wind speed, wind direction, pressure, visibility,
cloud cover, and condition

Ultimately, the data collected from the aforementioned
sources were merged to create a final dataset comprising
775k data samples and 22 features.

3.1.2. Data Preprocessing and Feature Engineering. We pre-
processed our original dataset such that we removed the
samples that miss important features, such as origin airport,
destination airport, scheduled time of departure, actual time
of departure, and scheduled time of arrival, accounting for
around 1% of the original 775k dataset. Moreover, any data

samples with origin or destination airports outside of the 27
Saudi airports were also removed. Instances with the same
airport as both origin and destination were also excluded
as they represented a small percentage of the data. Regarding
weather features, we observed that the wind gust and pres-
sure features had a significant number of null values,
accounting for 70% and 40%, respectively. Given their low
correlation and importance, we decided to remove these fea-
tures from the dataset. Notably, no significant outliers were
detected in the dataset. Additionally, we ensured that all
times were valid and correctly formatted, with zero-
padding hours to align with the Python datetime format.

We add more features to our dataset via feature engi-
neering. Feature engineering refers to the process of trans-
forming raw data into meaningful information (i.e., more
features) that can be used to improve the framework’s pre-
dictive performance. As a result, in this phase, we extracted
the airline feature from the flight ID and calculated the
straight-line distance between the origin and destination air-
ports, adding distance as a feature. To enhance time-related
features, we replaced the date feature with year, month, and

Table 1: Comparative study among the mentioned related work in terms of the region, the classifier, the number of features, and the size of
the dataset.

Country Algorithm #features #samples

[9] Saudi Arabia MLP with PCA 14 15,668

[10] United States MLP 19 3,000,000

[11] United States Categorical Boosting 11 226,234

[12] China Multiple linear regression 25 100,000

[13] Hong Kong Artificial neural networks 7 25,074

[14] United States Decision tree 23 28,820

[15] Turkey XGBoost 19 18,148

[16] Egypt Rules.PART 9 512

[17] United States Gradient boosting machine 36 5.6 million

[18] China CatBoost 12 25,000

Data management AI models

Data collection

Model training
Model

evaluation
Pick the

best model

Data splitting

Data
integration

Data
preprocessing

Feature
engineering

Train data

Test data

Figure 1: The overall employed methodology entails a series of sequential stages aimed at constructing the flight delay prediction
framework.
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day of the month. Subsequently, we extracted the day of the
week and day of the year from these features and computed
the Hijri date from the Gregorian date, creating the features
Hijri year, Hijri month, Hijri day of the month, and Hijri
day of the year. Hijri date refers to the Islamic calendar sys-
tem, which is a lunar calendar consisting of 12 months in a
year of 354 or 355 days. The start of each month is based on
the sighting of the new moon. The Hijri calendar is com-
monly used in Islamic countries and is also used to deter-
mine important Islamic events and holidays.

Moreover, to account for instances where airport con-
gestion causes flight delays, we incorporated features to
identify special days in the year that might cause an increase
in passenger traffic. Thus, we add the following features: Is_
weekend, Is_vacation, Is_holiday, and Is_Hajj. Also, we add
other features such as the number of flights on the same day
and the rate of delays for the same flight in the previous
month.

As a result, the final preprocessed dataset comprised of
765k data samples and 38 features. Table 2 shows the final
features that we use in this paper including the engineered
features.

On the other hand, the data-splitting process is very
important for our evaluations, and thus, we have meticu-
lously crafted a well-designed split, carefully considering
the dataset’s size and the date information. The data-
splitting process is aimed at dividing the available data into
subsets that can be used for training, validation, and testing
purposes. The validation subset helps to evaluate the perfor-
mance of the model during the training phase. Therefore, we
split our data into a ratio of 90/5/5, whereby 90% of the data
was used for training, 5% was used for validation, and 5%
was used for testing. Furthermore, we have ensured that
each class, year, and month is proportionally represented
in each subset, as this can facilitate the training of a model
on a diverse and comprehensive dataset, reflective of the
underlying patterns and trends present in the data over time.
This approach optimizes the utilization of the considerable
amount of data available to us, while guaranteeing that the
data is equally distributed across the various subsets.

3.2. Air-Aware App. We have developed a user-friendly web
application that utilizes our overall pipeline to predict flight
delays and ultimately serves as a real-scenario case. The
application entails an accurate flight status forecasting sys-
tem that is designed to enhance the user experience.
Figure 2 shows samples of the implemented web application.
It shows our developed user-friendly web application that
leverages machine learning algorithms to accurately predict
domestic flight delays in Saudi Arabia. It also shows our
implemented dashboard that provides a detailed analysis of
the Saudi flight dataset, presenting various visualizations
and insights to facilitate easy interpretation and decision-
making.

4. Experiments

This section presents the experiments conducted to evaluate
the performance of our proposed framework for predicting

flight delays. We begin by describing the evaluation metrics
used to assess the performance of machine learning models.
We then present the experimental settings, which include
the tools that we use in our implementation process. After
that, we present the experimental results obtained from the
evaluation of our approach, highlighting the performance
of our models in predicting flight delays. Overall, the exper-
iments are aimed at demonstrating the effectiveness of our
framework in enhancing the accuracy of flight status fore-
casting and improving the overall user experience. Finally,
we show our analysis of feature importance in the model
for predicting flight delays.

4.1. Evaluation Metrics. The present study incorporates both
classification and regression models in its analysis. As these
models are designed with distinct objectives and perfor-
mance measures, it is essential to employ appropriate evalu-
ation metrics for each modeling paradigm. The use of
appropriate evaluation metrics is critical for accurate model
performance assessment, the identification of areas for
improvement, and informed decision-making regarding
model selection and deployment.

In order to evaluate the performance of our classification
model, We adopt five evaluation metrics for the classifica-
tion part: accuracy, recall, precision, F1-score, and area
under the ROC curve (AUC), which provide insights into
the model’s ability to correctly classify instances into differ-
ent categories. Details of these metrics are described below.

First, the recall is the ratio of the true positives to the
sum of the true positives and false negatives:

recall = tp
tp + fn 1

Second, the precision is the ratio of the true positives to
the sum of the true positives and false positives:

precision = tp
tp + fp 2

Third, the accuracy is the ratio of the number of correct
predictions to the total number of predictions:

accuracy = tp + tn
tp + tn + fp + fn 3

Fourth, the F1-score is the harmonic mean of precision
and recall:

F1 − score = 2 · precision · recall
precision + recall , 4

where tp represents the number of true positives, tn repre-
sents the number of true negatives, fp represents the number
of false positives, and fn represents the number of false
negatives.

Fifth, AUC represents the area under the receiver operat-
ing characteristic (ROC) curve. The ROC curve plots the
true positive rate against the false positive rate at various
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classification thresholds. AUC provides a measure of the
model’s ability to discriminate between positive and negative
instances, with a higher AUC indicating better performance.

On the other hand, in order to evaluate the performance of
our regression model, we also adopt three evaluation metrics
for the regression part: the mean absolute error (MAE), the
mean squared error (MSE), and the root mean squared error
(RMSE), which provide a measure of the model’s ability to
accurately predict continuous values (i.e., flight delay time in
minutes). Details of these metrics are described below.

First, the mean absolute error (MAE) is calculated as

MAE = 1
n
〠
n

i=1
yi − ŷi , 5

where n is the number of samples, yi represents the true
value of the target variable for the i-th sample, and ŷi repre-
sents the predicted value of the target variable for the i-th
sample.

Table 2: The list of all the features included in the preprocessed dataset.

Feature name Description Data type

Airline The airline company code String

Flight The flight number Integer

Origin The IATA code that represents the airport of the flight’s departure String

Destination The IATA code that represents the airport of the flight’s arrival String

STD The scheduled departure time of the flight, expressed in minutes of the day Integer

ETA The scheduled arrival time of the flight, expressed in minutes of the day Integer

Distance The straight-line distance from the origin airport to the destination airport Float

Year The Georgian year Integer

Hijri_year The Hijri year Integer

Month The Georgian month Integer

Hijri_month The Hijri month Integer

Day The Georgian day of year Integer

Hijri_day The Hijri day of year Integer

DOW The day of week Integer

Is_weekend Whether the departure date is a weekend Integer

Is_vacation Whether the departure date is a school vacation Integer

Is_holiday Whether the departure date is a national or Islamic holiday Integer

Is_Hajj
Whether the departure date is within Hajj days and departs from or

arrives at either Jeddah, Medina, or Taif airports
Integer

Duration The expected flight duration Integer

Timestamp The timestamp of the departure date and time Integer

#flights The number of scheduled flights on the same day Integer

Delay_rate The frequency of flight delays for the same flight number during the previous month Float

Org_temp The temperature in the origin airport Float

Org_dew The dew point in the origin airport Float

Org_hum The humidity in the origin airport Float

Org_percip The precipitation in the origin airport Float

Org_vis The visibility in the origin airport Float

Org_wspeed The wind speed in the origin airport Float

Org_cloud The cloud cover in the origin airport Float

Org_cond The weather condition in the origin airport Integer

Des_temp The temperature in the destination airport Float

Des_dew The dew point in the destination airport Float

Des_hum The humidity in the destination airport Float

Des_percip The precipitation in the destination airport Float

Des_vis The visibility in the destination airport Float

Des_wspeed The wind speed in the destination airport Float

Des_cloud The cloud cover in the destination airport Float

Des_cond The weather condition in the destination airport Integer
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Second, the mean squared error (MSE) is calculated as

MSE = 1
n
〠
n

i=1
yi − ŷi

2, 6

where n is the number of samples, yi represents the true
value of the target variable for the i-th sample, and ŷi repre-

sents the predicted value of the target variable for the i-th
sample.

Third, the root mean squared error (RMSE) is calculated
as

RMSE = 1
n
〠
n

i=1
yi − ŷi

2, 7

(a) The user-friendly web application

(b) The dashboard

Figure 2: (a) The user-friendly web application that we have implemented to predict domestic flight delays in Saudi Arabia. (b) We have
also provided a dashboard with a detailed analysis of the data in the Saudi flight dataset, presenting various visualizations and insights.
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where n is the number of samples, yi represents the true
value of the target variable for the i-th sample, and ŷi repre-
sents the predicted value of the target variable for the i-th
sample.

4.2. Experimental Setup. In order to conduct our experimen-
tal study and evaluate the proposed approach, we utilized
Python programming language for implementation pur-
poses. Specifically, we leveraged the Selenium library to col-
lect our flight data from relevant websites. Additionally, we
employed the TensorFlow [28] library to develop and imple-
ment our multilayer perceptron (MLP) model, while the
scikit-learn library [29] was utilized for implementing other
models such as CatBoost and XGBoost. For training our
models, we utilized Colab [30], a cloud-based platform that
provides free access to GPUs, with the following configura-
tions: GPU-T4 and 12.7GB of RAM. The use of Colab
ensured that our models were trained in an efficient and
timely manner. Overall, the experimental settings allowed
us to effectively evaluate the performance of our proposed
framework and choose the best-performing model.

4.3. Experimental Results. This section presents the experi-
mental results of our study. Specifically, we focus on the
outcomes of two distinct parts of our approach: the classi-
fication part, which predicts whether a flight will be on
time or delayed, and the regression part, which forecasts
the delay duration in minutes if a flight is delayed. The
following subsections provide detailed analyses of the
results obtained from each of these parts.

4.3.1. The Classification Model. This section shows the clas-
sification of domestic flights in Saudi Arabia by our multiple
models, distinguishing them as either on time or delayed. It
is worth noting that based on our observation, the ratio of
on-time flights to delayed flights stands at 60% to 40%. This
finding underscores the considerable difficulty inherent in
accurately forecasting future delays. Table 3 presents a com-
parison of the performance results obtained by various
machine learning models on the test dataset for our classifi-
cation task. The models evaluated include CatBoost,
XGBoost, LightGBM, MLP, and random forests. The metrics
used to evaluate the models’ performance include accuracy,
recall, precision, F1-score, and AUC.

From the table, it is evident that CatBoost achieved the
highest accuracy score of 76%, followed closely by XGBoost
and LightGBM, which scored 73.1% and 73.2%, respectively.
In terms of recall, CatBoost again outperformed the other
models, achieving a score of 74.8%, while XGBoost and
LightGBM scored 71.6% and 71.7%, respectively. CatBoost
also scored the highest precision score of 75.6%, followed
by XGBoost and LightGBM with 72.6%. However, the F1
-score metric indicated that CatBoost was the best-
performing model with a score of 75.1%, while the other
models scored below 72%.

Overall, the results suggest that CatBoost is the best-
performing model, outperforming the other models in most
of the evaluation metrics. However, it is worth noting that
the differences in performance between the models are not

significant, with most models scoring within a 2-3% range
of each other. These findings can be used to guide the selec-
tion of an appropriate machine learning model for predict-
ing flight delays.

4.3.2. Confusion Matrix Comparison. Confusion matrices
provide a visual representation of the performance of each
model in terms of correctly and incorrectly classified
instances across different classes. By comparing the patterns
and distributions in the confusion matrices, we can gain
insights into the strengths and weaknesses of each model
in predicting different classes.

Figure 3 displays the confusion matrices for each model,
where the rows in each figure represent the actual classes
and the columns represent the predicted classes. The values
in the table represent the count of instances that fall into
each combination of actual and predicted classes. Once
again, CatBoost demonstrates superior performance based
on the confusion matrix, with XGBoost and MLP following
closely behind. These findings are consistent with the previ-
ous results.

4.3.3. The Regression Model. Table 4 presents the perfor-
mance comparison results of various machine learning
(ML) models, namely, CatBoost, XGBoost, LightGBM, and
MLP, for the regression task in our study. The evaluation
metrics used for the comparison are mean absolute error
(MAE), mean squared error (MSE), and root mean squared
error (RMSE), which are widely used measures for evaluat-
ing regression models. The results indicate that CatBoost
achieved the lowest MAE (12.19), followed closely by
XGBoost (12.45), LightGBM (12.83), and MLP (12.8). Simi-
larly, CatBoost also obtained the lowest MSE (605.61) and
RMSE (24.6) values, outperforming the other models. In
contrast, MLP had the highest MSE (657.4) and RMSE
(25.64) values among the four models. Overall, the results
suggest that CatBoost, again, outperforms the other models
in terms of MAE, MSE, and RMSE and is the most suitable
ML model for our task.

4.3.4. Feature Importance. Feature importance in the Cat-
Boost algorithm refers to a metric that quantifies the relative
contribution of each feature in predicting the target variable.
It helps identify the most influential features that signifi-
cantly affect the model’s performance and prediction out-
comes. The feature importance in CatBoost is typically
calculated based on the frequency and magnitude of feature

Table 3: Comparison of performance results of different ML-based
models on our test dataset for our classification task.

CatBoost XGBoost LightGBM MLP
Random
forests

Accuracy 76 73.1 73.2 72.5 71.3

Recall 74.8 71.6 71.7 71.1 69.8

Precision 75.6 72.6 72.6 71.8 70.6

F1-score 75.1 71.9 72 71.4 70.1

AUC 0.74 0.72 0.72 0.71 0.7
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(a) CatBoost confusion matrix
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(b) XGBoost confusion matrix
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(c) LightGBM confusion matrix

Figure 3: Continued.
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usage during the training process. Higher feature impor-
tance values indicate greater relevance and impact on the
model’s predictions, while lower values suggest lesser signif-
icance. This information aids in understanding which fea-
tures are driving the model’s decision-making process and
can assist in feature selection, interpretation, and improving
the overall model performance.

The analysis of feature importance in our machine learn-
ing model for predicting flight delays reveals valuable
insights. Among the top 7 features deemed most influential

are flight delay rate in the previous month, flight number,
flight duration, the Georgian day of the year, timestamp,
the Hijri day of the year, and the scheduled hour of depar-
ture. Notably, our findings indicate that weather data does
not rank among the top 20% of influential features that sig-
nificantly impact the model’s performance. This observation
may be attributed to the prevailing climatic conditions in
Saudi Arabia, characterized by infrequent occurrences of
extreme weather phenomena such as snow, heavy rain, and
tornadoes, thereby minimizing the weather’s influence on
flight delays.

5. Conclusion

Flight delays have become a widespread issue that affects both
travelers and operators, yet there is a lack of research related to
the use of machine learning (ML) techniques to solve this
problem. Overall, ML has the potential to revolutionize the
aviation industry and help address the challenge of flight
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(e) Random forest confusion matrix

Figure 3: The results of the confusion matrices, which provide a visual representation of the performance of each model in terms of
correctly and incorrectly classified instances across our different classes (on time and delayed).

Table 4: Comparison of performance results of different ML-based
models on our test dataset for our regression task.

CatBoost XGBoost LightGBM MLP

MAE 12.19 12.45 12.83 12.8

MSE 605.61 618.31 635.82 657.4

RMSE 24.6 24.86 25.21 25.64
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delays in a more proactive and effective way. Therefore, we
propose a ML-based system that predicts flight delays for
domestic flights in Saudi Arabia. We carefully investigate var-
ious machine learning models and deploy the most accurate
one into our proposed framework. The system employs flight
and weather data as inputs to generate predictions, which were
initially collected for the purpose of this work.

We believe that our proposed approach has the potential
to make a positive impact on the aviation industry. By
reducing flight delays, this work is aimed at improving the
travel experience for passengers and increasing the efficiency
of airline operations. Furthermore, we put significant effort
into collecting and cleaning the data from various sources,
which ultimately facilitates the path for future researchers
working on similar problems.

Our framework can practically assist airlines and other
aviation stakeholders in their decision-making processes,
specifically in the following points:

(i) Decision support: our model provides accurate pre-
dictions of key aviation metrics such as flight delays.
This information can be utilized by airlines to opti-
mize their operational planning, including crew
scheduling, resource allocation, and maintenance
activities. Additionally, airport authorities can use
these predictions to efficiently manage ground oper-
ations, gate assignment, and capacity planning

(ii) Proactive measures: By predicting potential delays or
disruptions in advance, our model enables airlines to
take proactive measures to minimize the impact on
passengers and operations. This includes providing
early notifications to affected passengers, rebooking
or rescheduling flights, and implementing contin-
gency plans to mitigate the consequences of delays
or cancellations

(iii) Customer experience: by reducing flight delays and
cancellations, our model contributes to enhancing
the overall customer experience. This fosters cus-
tomer loyalty, improves customer satisfaction rat-
ings, and positively impacts an airline’s reputation
in the highly competitive aviation industry

Several potential directions for extending this work may
be considered. One such direction involves collecting more
flight data from additional years, potentially spanning over
a decade, to enhance the accuracy and robustness of the
trained model. Furthermore, another direction involves
gathering additional features from airlines and airports, such
as maintenance records, runway congestion, and staffing
records, to further enhance the model’s accuracy. Finally,
expanding the scope of the study to encompass international
flights, including those in other countries, may improve the
model’s generalization and scalability.
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