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Online identification of aerodynamic parameters of experimental rockets was completed based on unscented Kalman filtering
(UKF). Numerical simulation, hardware-in-the-loop (HIL) simulation, and flight tests were conducted. The identification error
of aerodynamic force in numerical simulation and HIL simulation is within 2%. For flight test data, trajectory reconstruction
was performed using the identified aerodynamic forces, and the results showed that the identification results were more
accurate than the interpolation table calculation results. The flight test identification results show that the identification
method can complete parameter online identification under the conditions of limited performance of onboard computers, real
sensor errors, and servo response. The approximate linear correlation between α and δe and the reason for their formation
from the moment balance were analyzed. It was pointed out that when the recognition sampling period is long, this
phenomenon will affect the identification of parameters, and a solution is proposed.

1. Introduction

Aerodynamics is one of the main forces acting on rockets
during flight, and accurate calculation of aerodynamic
parameters is beneficial for improving the guidance accuracy
of rockets. In the preliminary design stage, numerical cal-
culations [1] and wind tunnel tests [2] are often used in
engineering to obtain the aerodynamic characteristics of
the aircraft and provide them in the form of interpolation
tables. Therefore, aerodynamic parameter identification
based on flight test data has important engineering appli-
cation value. The existing parameter identification algo-
rithms mainly include the least squares method, maximum
likelihood method, Kalman filtering, and intelligent algo-
rithms. The following will introduce the research progress
of these methods in the field of aerodynamic parameter
identification.

The least squares method has a simple form and fast
convergence speed and is widely used in aerodynamic
parameter identification. Mohamed et al. [3] introduced a

total least squares method based on SVD decomposition
and applied it to aerodynamic parameter identification.
Shaghoury et al. [4] proposed a batch least squares identifier
to estimate the parameters of aircraft in icing. Wang et al. [5]
proposed a segmented parameter identification approach,
using the least squares method to obtain high-precision
identification results of lateral aerodynamic parameters.
However, the least squares method did not consider the
internal noise of the system and did not estimate the system
state variables.

The maximum likelihood method, proposed by Fisher,
has the characteristics of unbiased, asymptotic consistency,
and good convergence. It is a classic identification algo-
rithm for aerodynamic parameter identification. Kumar
and Rao [6] used the output error method in the maxi-
mum likelihood method to identify the stability derivative
of the aircraft and combined it with the cross-validation
method to analyze the identification accuracy. Lichota
et al. [7] used the maximum likelihood method to achieve
aerodynamic identification of rotating projectiles in the
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wavelet domain, and the results were superior to those in
the time domain. However, the maximum likelihood
method uses iterative algorithms and takes a long time
to calculate, so it is not suitable for online parameter
identification.

Kalman filtering can significantly improve the sensor
measurement noise output after filtering [8]. Kalman filter
can only be used for state estimation of linear systems at
first and then developed extended Kalman filter (EKF)
and UKF which can be used for state estimation and
parameter estimation of nonlinear systems. Ahmad et al.
[9] designed a state-dependent Kalman filter (SDKF) based
on quasilinear decomposition for unmeasurable state esti-
mation of underground coal gasification. The conventional
Taylor series expansion method can be inadequate in case
of arbitrary operating points, but this algorithm can accu-
rately approximate nonlinear systems at any operating
point. Majeed and Indra [10] used adaptive unscented
Kalman filtering to study the identification results of aero-
dynamic parameters under different process noises. When
changing the statistical characteristics of noise, adaptive
unscented Kalman filtering outperformed UKF in terms
of convergence speed and accuracy. Sun and Xin [11] used
high-order volumetric Kalman filtering to estimate the
state of hypersonic reentry vehicles and compared it with
extended EKF and UKF. Its estimation accuracy and con-
vergence speed were better than those of EKF and UKF.
Seo et al. [12] solved aerodynamic parameter identification
under abnormal flight conditions using UKF, considering
hysteresis effects. Muhammad and Ahsan [13] used UKF
for aerodynamic parameter identification of airships and
compared it with the identification results of EKF, indicat-
ing that the identification accuracy of UKF is better than
that of EKF.

Traditional identification methods require parameter
modeling, and it is almost impossible to establish a
completely accurate parameter model, resulting in modeling
errors. The advantage of intelligent algorithms for parameter
identification is that they do not require the modeling of
parameters, thereby eliminating modeling errors. In recent
years, they have been increasingly applied. Marques and
Anderson [14] proposed a method for aerodynamic
parameter identification using multiple functionals and
FIR neural networks. Roudbari and Fariborz [15] used
artificial neural networks to model and identify the aero-
dynamic system of highly maneuverable aircraft without
requiring prior information about the system. Yang and
Xia [16] proposed an improved particle swarm optimiza-
tion algorithm that eliminates the need for actuator
observations and avoids the influence of model coupling
during identification, and its identification accuracy is
superior to traditional particle swarm optimization algo-
rithms. However, intelligent algorithms do not fully utilize
the prior information of the system, which may lead to
overfitting.

EKF is the most widely used state estimation algorithm
for nonlinear systems at present, but it has some defects such
as large computation and low estimation accuracy. Com-
pared to EKF, UKF does not require the calculation of the

system’s Jacobian matrix and has a second-order or higher
accuracy. Because they are suitable for computer recursive
calculation, they can be used for online identification of
aerodynamic parameters. However, existing research often
uses simulation data for offline identification. The measure-
ment errors in actual flight tests and the response of the
servo are difficult to fully simulate, and the performance of
onboard computers also differs from those used by
researchers. To verify the engineering application value of
UKF, this paper designed a small solid rocket and imple-
mented online identification of aerodynamic parameters
using UKF.

2. Modeling

Selecting the unpowered segment of rocket flight for online
identification of aerodynamic parameters, considering that
the rocket’s motion is basically within the launch plane,
the motion equation in the longitudinal plane is used to
describe the rocket’s motion. Figure 1 shows the motion
model of rockets. The detailed expressions of these equations
are as follows:

h
·
= V sin α,

V
·
= −

D
m

− g sin φ − α ,

φ
· = ωz ,

α
· = ωz −

L
mV

−
V
r
−

g
V

cos φ − α ,

ωz =
Mz

Iz

1

h is the flight altitude. V is the flight speed. α is the
angle of attack. D is the aerodynamic drag. L is the aero-
dynamic lift. g is the gravitational acceleration. φ is the
pitch angle. ωz is the angular rate of pitching. r = h + ae,
where ae is the average radius of the earth. M is the pitch-
ing moment. Iz is the moment of inertia. m is the mass of
the rocket.

D = 1
2 ρV

2SrefCd ,

L = 1
2 ρV

2SrefCl,

Mz =
1
2 ρV

2SrefLrefCm

2

ρ is the density of air. Sref is the reference area. Lref is
the reference length. Cd is the drag coefficient. Cl is the lift
coefficient. Cm is the pitching moment coefficient.

Based on the integrated navigation equipment on the
rocket, real-time rocket motion information can be obtained,
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and the observation model required for identification can be
established as shown in the following equation:

ax =
L sin α −D cos α

m
+ εax ,

ay =
L cos α +D sin α

m
+ εay ,

h = h + εh,

V = V + εV ,

ωz = ωz + εωz

3

ax is the axial acceleration. ay is the normal acceleration. ε
is the noise.

The model structure used for aerodynamic parameters is
as follows:

Cl = Cα
l α + Cδe

l δe,

Cd = Cd0 + Cα2

d α2,

Cm = Cα
mα + Cδe

mδe + Cωz
m
ωzL
V

4

δe is the elevator angle. δe = δ1 + δ2 − δ3 − δ4 /4. ωz =
ωzL/V , and ωz means dimensionless pitch angular rate. Cα

l ,
Cδe
l , Cd0, Cα2

d , Cα
m, Cδe

m , andCωz
m are the parameters to be

identified.

3. The Unscented Kalman Filter

UKF accurately captures the mean and covariance up to the
second order of Taylor series expansion for any nonlinear
system [17]. The core of UKF is to recursively update the
state and covariance of a nonlinear model through a nonlin-
ear transformation—unscented transformation (UT). The
principle of UT is to take certain point sets, called sigma
points, from the original state distribution according to a

certain rule to characterize the input distribution or some
statistical characteristics, that is, to make the mean and
covariance of these points equal to the mean and covariance
of the original state distribution. UKF algorithm can be
divided into two steps: the prediction step and the correction
step. In both steps, the same UT is used for the system state
model and measurement model.

Consider a nonlinear system as shown in the following
equation:

x
·
t = f x t , u t +w t ,

z t = h x t , u t + v t
5

x t is the state vector, z t is the observation vector, and
u t is the control input. w t is system noise, v t is obser-
vation noise, they are zero mean Gaussian white noise, and
their covariance matrix is Q and R.

UT requires generating 2n + 1 sampling points based on
sampling rules, as well as their weights of mean value and
variance. n is the dimension of the state vector. The detailed
expressions of these equations are as follows:

χ0,k−1 = xk−1,

χi,k−1 = xk−1 + n + λ Pk−1
i
, i = 1, 2,⋯, n,

χj,k−1 = xk−1 − n + λ Pk−1
j
, j = n + 1, n + 2,⋯, 2n,

ω0
x =

λ

λ + n
,

ω0
c =

λ

λ + n
+ 1 − α2 + β ,

ωi
x =

1
2 λ + n ,

ωi
c =

1
2 λ + n ,

6
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Figure 1: Diagram of the rocket.
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χi,k−1 is the sampling point,ωi
c is variance weight, andω

i
x is

mean weight, where λ = α2 L + κ and L is a scaling parame-
ter. α determines the spread of the sigma points around x
and is usually set to a small positive value (e.g., le − 3). κ is a
secondary scaling parameter which is usually set to 0, and β
is used to incorporate prior knowledge of the distribution of
x (for Gaussian distributions, β = 2 is optimal).

The time-update equations are as follows:

χi,k = f χi,k−1 ,

xk k−1 = 〠
2n

i=0
χi,kω

i
x,

Pk k−1 = XkWcX
T
k

7

xk k−1 and Pk k−1 are the predicted values of the system state
variables and covariance matrix. And the measurement-update
equations are as follows:

Zi,k = h Xk,k−1 ,

zk k−1 = 〠
2n

i=0
Ziω

i
x,

Pzz,k k−1 = ZkWcZk
T ,

Pxz,k k−1 = Xk k−1WcZk
T ,

K = Pxz,k k−1Pzz,k k−1
−1,

xk k = xk k−1 + K zk − zz z−1 ,

Pk = Pk−1 − KPxz,k k−1
T ,

8

where Xk = χ0 − xk k−1, χ1 − xk k−1,⋯, χ2n − xk k−1 , Wc =
diag ωc

0, ωc
1,⋯, ωc

2n , Pzz,k k−1 and Pxz,k k−1 are the predicted
values of the covariance matrix, K is the Kalman filtering gain,
and xk k and Pk are system state and covariance estimates.
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Figure 2: The flight profile.
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4. Identification Examples

In this section, simulation examples, HIL simulations, and
flight test data were identified to verify the effectiveness of
parameter identification. The problem in identification was
discussed. The flight profile is shown in Figures 2(a)–2(c).
The flight trajectory of numerical simulation, HIL simula-
tions, and flight test is similar. The maximum altitude of
rocket flight is approximately 1800m. In the unpowered
flight segment selected for parameter identification, the
maximum overload of the test rocket is 2 g.

4.1. Numerical Simulation. The aerodynamic force is inter-
polated by the aerodynamic coefficient interpolation table
obtained from the numerical calculation, and the six degrees
of freedom trajectory of rocket simulation is carried out.
Expanding the parameters to be identified into the system
state vector, the state vector is shown as follows.

x = hV φ αωz C
α
l C

δe
l Cd0 C

α2

d C
α
m Cδe

m Cωz
m 9

Using equation (1) as the state equation of UKF and
equation (3) as the observation equation, the parameters
can be identified by updating the estimation of x based on
UKF.

Add Gaussian white noise to the simulation value to
simulate the observation value of integrated navigation.
The sampling frequency is consistent with the flight test,
which is 10Hz. Figures 3(a)–3(c) show the identification
curve of the simulation data, and Figures 4(a) and 4(b) show
the percentage error in identification of simulation data.
As shown in Figure 3(c), under closed-loop control, the
pitching moment coefficient oscillates around 0, making
identification difficult. This paper will not discuss the
identification of pitching moment. The lift coefficient and
drag coefficient are identified well. Since part of the refer-
ence value of the lift coefficient is near 0, a large value will
appear when calculating the percentage error, but most of
the errors are within 1%, so the identification accuracy is
high. The percentage error of drag coefficient identifica-
tion is less than 5%, and after filtering is stable, it is less
than 1%.
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Figures 5(a)–5(d) show the identification curves of aero-
dynamic parameters. The reference value is the result of the
least squares fitting of aerodynamic force according to equa-
tion (4). The identification error of aerodynamic parameters
is larger than the error of aerodynamic coefficients, which is
caused by modeling error. The identified aerodynamic
parameters are near the reference value, with a deviation of

no more than 6% from the reference value except for Cδe
l .

The control system has a certain degree of robustness, and
the identified aerodynamic parameters meet the accuracy

requirements. The identification error of Cδe
l is significant,

and this problem will be discussed in Section 4.4.
Simulation examples show that the identification scheme

proposed in this paper is feasible.

4.2. HIL Simulation. To ensure the normal operation of the
identification program on the rocket, this experiment designed

the HIL simulation. Figures 6 and 7 show the real-time simu-
lation platform and communication diagrams of the HIL sim-
ulation. The HIL simulator and rudder provide discrete and
analog signal inputs, which are then calculated by the identifi-
cation computer and output to the data storage device.

Figures 8(a) and 8(b) and 9(a) and 9(b) show the identifi-
cation curve and percentage error of the HIL simulation data.
The starting time for identification is 7 seconds, and after 15
seconds, which is 7 seconds after filtering, the identification
error is within 5%. Except for the time when the guidance pro-
gram switches at 25 seconds, the error does not exceed 2%.
The identification error is within an acceptable range.

Figures 10(a)–10(d) show the identification curves of
aerodynamic parameters. The identification errors of Cd0
and Cα2

d are within an acceptable range. The identification

errors of Cα
l and Cδe

l are significant, and this problem will
be discussed in Section 4.4.
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The example of the HIL simulation verifies the identifi-
cation ability of the identification program under the condi-
tions of using an onboard computer and the presence of
servo response.

4.3. Flight Test. The equipment used in the flight test is con-
sistent with the HIL simulation, but the navigation data is
provided by the integrated navigation equipment.
Figures 11(a)–11(f) show the identification curves of the
flight data. There is a certain deviation between the aerody-
namic coefficient filtering results and the reference value, but
the trend of change is consistent. The identification method
used in this article is still effective and the filtering results
will not diverge under real navigation error conditions.
However, since the reference values are interpolated based
on the aerodynamic coefficient table and there are also cer-

tain errors in the numerical calculation of the aerodynamic
coefficient table, this article uses trajectory reconstruction
to evaluate the identification effect of aerodynamics.

Figures 12(a)–12(h) show the comparison of recon-
structed trajectory using identified aerodynamic forces with
simulation and telemetry trajectories. Figures 11(e) and
11(f) show that the filtering tends to stabilize after 16 s.
When reconstructing the trajectory, the identified aerody-
namic force is only used after 16 s, and the aerodynamic coef-
ficient interpolation table is still used before 16 s. Compared
to the simulated trajectory, the reconstructed trajectory is
closer to the flight trajectory. To avoid the accumulation of
errors before 16 s, Figures 12(e)–12(h) show the change of
flight state after 16 s, and the comparison effect is more obvi-
ous. From the results of trajectory reconstruction, the identi-
fication results are effective and superior to the interpolation
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Figure 7: The communication diagrams of the HIL simulation.
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results of the aerodynamic coefficient table. The identified
aerodynamic forces are closer to the real aerodynamic char-
acteristics than numerical calculations.

4.4. Problem and Solution. From the previous identification
analysis, it was found that the errors in the identification

of Cα
l and Cδe

l are significant. Figures 13(a)–13(c) show the
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attack angle and rudder angle curves. It was found that there
is an approximately linear relationship between the angle of
attack and the rudder angle:

α ≈ −2δe 10

Substitute equation (10) into equation (4):

Cl ≈ Cα
l −

1
2C

δe
l α 11

Due to the approximate linear correlation between Cα
l

and Cδe
l , there are difficulties in identification.

The rotational motion of rockets is a short period
motion, and the sampling period in this article is relatively

long, which is 0.1 seconds. Then, the instantaneous equilib-
rium assumption is satisfied:

Mα
zα +Mδe

z δe = 0 12

Mα
z and Mδe

z are the derivatives of the pitching moment
on the angle of attack and rudder angle. Their values vary
within a small range, so

α

δe
= −

Mδe
z

Mα
z
≈ const 13

To solve this problem, it can be considered to increase
the sampling frequency to capture the time history of A
and F changes more accurately. In this flight test, the
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identification computer was equipped with a trajectory plan-
ning program, which requires a large amount of computa-
tion. Therefore, the sampling frequency is set to 10Hz. In

addition to increasing the sampling frequency, Cα∗
l = Cα

l −
1/2 Cδe

l can be used for identification, and δe can be con-
sidered to vary with α, which will be effective in control. Fol-
lowing this approach, data stored on storage devices can be
used to identify. The results are shown in Figures 14(a)–
14(e). From the identification results of Cα∗

l , it shows that
the proposed problem can be solved through this strategy.

5. Conclusions

This paper applied the UKF algorithm to the online identifi-
cation of rocket aerodynamic parameters, completed the

identification of aerodynamic parameters from numerical
simulation data, installed the identification program on the
rocket computer, and completed online identification of
aerodynamic parameters in HIL simulation and flight tests:

(1) The HIL simulation and flight test identification
results show that the identification method is effec-
tive and can complete parameter online identifica-
tion under the conditions of limited performance
of onboard computers, real sensor errors, and servo
response. The engineering application value of the
UKF algorithm has been verified

(2) Trajectory reconstruction was completed, and the
reconstruction results showed that the identified aero-
dynamic force was closer to the real aerodynamic
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Figure 13: Attack angle and rudder angle curves.
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characteristics than the aerodynamic force calculated
by the interpolation table, which can be used to correct
aerodynamic forces

(3) The approximate linear correlation between α and δe
and the reason for their formation from the moment
balance were analyzed. It was pointed out that this
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Figure 14: Identification curve using Cα∗

l .

14 International Journal of Aerospace Engineering



phenomenon has a significant impact on parameter
identification when the identification sampling

period is long, and a strategy of hiding Cδe
l in Cα

l is
proposed to solve this problem

Nomenclature

h: Flight altitude (m)
V : Flight velocity (m/s)
α: Angle of attack (rad)
D: Drag (N)
L: Lift (N)
g: Gravitational acceleration (m/s2)
φ: Pitch angle (rad)
ae: Average radius of the earth (m)
r: Geocentric distance (m)
M: Pitching moment (N·m)
Iz : Moment of inertia (kg·m2)
m: Mass of the rocket (kg)
ρ: Density of air (kg/m3)
Sref : Reference area (m2)
Lref : Reference length (m)
Cd : Drag coefficient
Cl: Lift coefficient
Cm: Pitching moment coefficient
ax : Axial apparent acceleration (m/s2)
ay : Normal apparent acceleration (m/s2)
ε: Noise
δe: Elevator angle (rad)
ωz : ωz = ωzL/V dimensionless pitch

angular rate

Cα
l , C

δe
l , Cd0, Cα2

d , Cα
m,

Cδe
m , Cωz

m :

Aerodynamic parameter (see equa-
tion (4))

Mα
z : Derivatives of the pitching moment

on the angle of attack (N·m)

Mδe
z : Derivatives of the pitching moment

on the elevator angle (N·m).
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