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Pumps are important components in aviation fuel hydraulic systems, and thanks to the development of sensor technology and
industrial intelligence technology, it is possible to achieve efficient state monitoring of pumps. However, when data quality is
poor or the amount of data is small, a single data-driven model may not be able to meet diagnostic accuracy. A condition
monitoring method for hydraulic gear pumps based on mechanism-data fusion is proposed. The method combines a
mechanism model based on the volumetric efficiency formula with a data-driven model based on vibration signals. First,
the parameters of volumetric efficiency are solved by fitting the pressure–flow relationship. Subsequently, a multichannel
fusion and multikernel function-weighted ensemble support vector classification (MCMK-SVC) is developed, to establish a
data-driven model. Finally, through data-level fusion, feature-level fusion, and decision-level fusion, a condition monitoring
model based on mechanism-data fusion is built. Experimental verification shows that the accuracy of the three levels of fusion
models exceeds 96.9%. Compared to the single data-driven model or other traditional data-driven models, the accuracy of the
proposed method has improved by 3% to 33%, demonstrating the effectiveness of the mechanism-data fusion model.
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1. Introduction

The swift advancement of artificial intelligence (AI) technol-
ogy has catalyzed a transformative wave in the industrial sec-
tor. With AI at its core, a myriad of data-driven approaches
for monitoring and anticipating equipment conditions have
been developed [1–3], showcasing their strengths in accu-
racy, efficiency, and proactive insights. These innovations
have played a pivotal role in augmenting production efficacy
and curtailing production costs [4].

Hydraulic gear pumps, celebrated for their compact
architecture and outstanding performance, act as the cor-
nerstone of hydraulic systems. They are broadly deployed
across various fluid transportation sectors, including avia-
tion. Once a hydraulic gear pump malfunctions, it can affect
the operation of the entire transmission system, so it is nec-
essary to detect its faults quickly. Research indicates that
component wear due to aviation fuel contamination is a pri-

mary factor affecting hydraulic systems’ reliability and
structural integrity [5]. Hence, delving into the issues of
hydraulic component wear and hydraulic pump failure
caused by oil pollution is crucial for ensuring the safe, stable,
and reliable operation of hydraulic pumps and the overall
equipment. This holds significant economic value and engi-
neering significance.

Mechanism modeling is a traditional method for condi-
tion monitoring and fault diagnosis that has strong interpret-
ability. Many scholars have conducted relevant research on
the mechanism of pumps. Bensaad et al. [6] constructed a
physical model of an axial piston pump and implemented
a new leakage measurement method through Kalman filter-
ing. Rituraj and Vacca [7] modeled the leakage flow rate of a
gear pump by bending and contracting the flow rate. Novak
et al. [8] investigated the effect of particle wear on hydraulic
pumps. Peng et al. [9] proposed a three-dimensional (3D)
reconstruction of wear particles using a multiview image
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sequence, to extract the 3D morphologies of wear particles.
Guan et al. [10] constructed a theoretical model of the
working characteristics of a spherical water pump and
conducted relevant validation experiments. Analyzing the
working characteristics of a pump through its signal is also
an effective mechanism modeling method [11, 12]. The
gear is an important part of pumps. Zharkevich et al.
[13] have used the finite element method to optimize the
gear pump casing, reducing the weight of the pump while
ensuring strength.

As the frontiers of intelligent condition recognition tech-
nologies expand, there is a growing trend among scholars
towards embracing data-driven strategies for effective condi-
tion monitoring of machinery [14]. In the specific context of
hydraulic pumps, numerous researchers have initiated their
exploration by focusing on the pump’s overall performance
metrics. Lan et al. [15] and Liu et al. [16] all used the
extreme learning machine (ELM) for the fault diagnosis of
hydraulic pumps. Zhu et al. [17] applied the improved
LeNet-5 and particle swarm optimization (PSO) to the intel-
ligent fault diagnosis method of hydraulic piston pumps.
The fault identification models based on convolutional neu-
ral networks (CNNs) have excellent performance [18–22].
Sun et al. [23] used an improved inverse Gaussian process
with random effects and measurement errors to predict the
remaining useful life (RUL) of the hydraulic piston pump.
Multisource fusion is increasingly being applied to pump
fault diagnosis [24]. When faced with insufficient samples,
semisupervised learning, unsupervised learning, and transfer
learning have become excellent choices for data-driven
models [25–28]. Monitoring the status of individual compo-
nents within a pump presents an alternative analytical per-
spective on the pump’s performance, with gears and
bearings being critical elements that influence the condition
of hydraulic gear pumps. Zhang et al. [29] have developed a
digital twin model for bearings. Zhang et al. [30] introduced
a multisource domain adaptive fault diagnosis technique,
substantiating its efficacy through validation with data from
both gears and bearings.

The preceding discussion has delineated two methodolo-
gies for equipment condition monitoring: mechanism
models and data-driven models. Mechanism models are
grounded in physical principles and offer robust interpret-
ability. Nonetheless, they are characterized by intricate equa-
tions, restricted applicability, and challenges in providing
real-time analysis, rendering them more apt for supplemen-
tary advisory roles. Conversely, data-driven models emerge
as a highly efficient, real-time capable, and moderately
adaptable monitoring technique. Despite this, they impose
stringent data quality and quantity requirements and tend
to function as a “black box,” which diminishes their capacity
for explanation. Combining the mechanism model and the
data-driven model can form complementary advantages
and obtain a more comprehensive and accurate condition
monitoring model.

Many scholars have verified the superiority of fusing
data-driven models and mechanism models. Wang et al.
[31] achieved mechanism-guided data to predict the loosen-
ing characteristics of bolted connections. Song et al. [32]

combined simulated signals and experimental data by using
multispectral equilibrium technology to realize the auto-
matic fault diagnosis of variable speed bearings. Zheng
et al. [33] proposed a capacity prediction framework for
lithium-ion batteries based on an empirical model and a
data-driven model, which achieves accurate capacity predic-
tion in the event of battery aging. Ni et al. [34] developed a
fast and accurate method to estimate the remaining capacity
of failed LiFePO4 batteries based on a mechanism and data-
driven fusion model. Li et al. [35] integrated knowledge fea-
tures and the data-driven model to achieve high-power die-
sel engine fault diagnosis based on progressive adaptive
spark attention learning. Dessena et al. [36] improved the
traditional data-driven structural health monitoring system
using the Loewner matrix.

Nevertheless, within the previously discussed research,
the fusion of mechanism models and data-driven models is
simplistic, lacking direct reflection of the equipment’s actual
physical state and exhibiting a marked dependency on the
quality and quantity of data. Given that real production
settings are often fraught with substantial noise that can
compromise data quality, such conventional methods might
be inadequate. To address this, an innovative method for
hydraulic gear pump condition monitoring that synergizes
the mechanism model with the data-driven model is pro-
posed. This technique incorporates the pump’s volumetric
efficiency as a mechanism model, harnesses empirical triax-
ial vibration signals for a data-driven framework, and
enhances the conventional support vector classification
(SVC) model. Through multilevel fusion, including data
level, feature level, and decision level, the data generated by
the mechanism model can serve as a supplement for the
data-driven model, and it achieves precise monitoring even
when data quality and quantity are less than ideal.

The main contributions of this paper are listed below.

1. A novel condition monitoring method based on mul-
tichannel fusion and multikernel function-weighted
ensemble support vector classification (MCMK-SVC)
is proposed. This approach integrates the predictions
of multiple channels through majority voting. Then,
it forms an ensemble SVC model by combining multi-
ple kernel functions with weighted combinations,
thus enhancing the performance and applicability of
the model.

2. A novel condition monitoring method for hydraulic
gear pumps based on the fusion of mechanism and
data is proposed, which combines the simulated
data generated by the volumetric efficiency formula
with the vibration signals. Using data-level fusion,
feature-level fusion, and decision-level fusion, the
MCMK-SVC condition monitoring model is estab-
lished to improve the accuracy of hydraulic gear
pump condition monitoring.

3. Based on the above, further compare the condition
monitoring results of different methods, analyze the
advantages and disadvantages of different methods,

2 International Journal of Aerospace Engineering



and confirm that selecting appropriate fusion methods
in different scenarios and conditions will achieve bet-
ter performance.

The rest of this paper is organized as follows. Section 2
introduces the methodology. In Section 3, the performance
of the proposed method is verified on the data collected by
the experimental platform of hydraulic gear pumps. Section
4 provides the conclusion.

2. Methodology

As shown in Figure 1, a multimodel condition monitoring
method based on mechanism-data fusion is proposed for
hydraulic gear pumps. The proposed method is imple-
mented from three aspects: mechanism modeling based on
volumetric efficiency, data-driven modeling based on
MCMK-SVC, and mechanism-data fusion modeling. Fusion
modeling includes data-level fusion, feature-level fusion, and
decision-level fusion.

2.1. Volumetric Efficiency of Hydraulic Gear Pumps. The vol-
umetric efficiency of hydraulic pumps refers to the ratio of

the actual flow rate to the leak-free flow rate. It can reflect
the performance of the hydraulic pumps: If the value is
small, it indicates that the actual flow of the pumps is small
and the leakage flow is large, which means that the clearance
between the moving pairs is large and the wear is severe. If
the value is large, the opposite is true.

In hydraulic pumps, hydraulic oil plays a variety of
roles such as transmitting medium, coolant, and lubricant,
and pollutants generated during the operation of hydraulic
pumps are also carried away by it. Therefore, the viscosity
of the oil directly affects the pumps’ efficiency [37]. The
viscosity of hydraulic oil is sensitive to changes in temper-
ature and pressure. The relationship between hydraulic oil
viscosity, temperature, and pressure can be expressed as
follows:

μ = μ0e
ap−b T−T0 1

where μ is the viscosity of hydraulic oil at the pressure of p
and the temperature of T , μ0 is the viscosity of hydraulic oil
at the pressure of 101.325 kPa and the initial temperature of
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Figure 1: Proposed mechanism-data fusion condition monitoring.
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T0, a is the pressure viscosity coefficient (Pa−1), and b is the
temperature viscosity coefficient (°C−1).

Ignoring the flow of compression loss, the relationship
between the leakage flow of hydraulic pumps and oil viscos-
ity [38] is as follows:

ΔQ =
K1Δpδ

3

μ
+
Δpbh3

6μSZ0
2

where ΔQ represents volumetric loss, K1 represents leakage
coefficient, Δp represents the pressure difference of the
pump body pressure chamber, δ represents the mesh gap
between the gear end face and the pump body end face, h
represents the radial gap between the tip of the tooth and
the shell, μ represents the dynamic viscosity of hydraulic
oil, Z0 represents the number of teeth in contact with the
tip of the tooth and the shell, and S represents the thickness
of the tooth tip.

Equation (2) can be simplified to obtain the following.

ΔQ =
Δp
μ

K1δ
3 +

bh3

6SZ0
3

Since all the terms of K1δ
3 + bh3/6SZ0 in Equation (3)

are constant, let

ΔQ = K
Δp
μ

4

where K is the leakage coefficient, determined by the struc-
ture of hydraulic gear pumps and other factors.

From Equations (1) and (4), it can be obtained that

ΔQ = K
Δp

μ0e
ap−b T−T0

5

The volumetric efficiency of hydraulic gear pumps can
be expressed as

ηv =
Q
QT

=
QT − ΔQ

QT
= 1 −

ΔQ
QT

6

where ηv is the volumetric efficiency of hydraulic pumps, Q
is the actual flow, and QT is the theoretical flow.

For hydraulic gear pumps, the theoretical flow QT is
approximated as

QT = 1 06 ∼ 1 12 × 2πzm2n 7

where z is the number of gear teeth; m is the modulus of the
gears; and n is the speed of the gears.

With simultaneous Equations (5)–(7), the relationship
between volumetric efficiency and pressure and temperature
can be expressed as

ηv = 1 −
K Δp/μ0eap−b T−T0

1 06 ∼ 1 12 × 2πzm2n
8

In the experiment on the wear of hydraulic pump pollu-
tion in this paper, the temperature is kept constant through
an oil cooler, so the temperature and its related items are set
as constant. Organizing Equation (8) yields

ηv = 1 −
b1p

eb2p+b3
9

where b1 = K/ 1 06 ~ 1 12 × μ0 × 2πzm2n is the hydraulic
oil viscosity and related parameters of the pumps, p is the
pressure of the pumps and it is a measured value, b2 = a
is the correlation coefficient with the pressure viscosity,
b3 = −b T − T0 is the correlation coefficient with the tem-
perature viscosity, and b1, b2, and b3 are the parameters to
be solved, which are constants.

2.2. Proposed Data-Driven Model

2.2.1. Data Preprocessing and Feature Engineering. Data pre-
processing and feature engineering are important methods
to improve data quality. The first step is data preprocessing,
which mainly includes signal dimensionality reduction and
noise reduction. In this paper, a method for reducing the
dimensionality of vibration signals was borrowed from
the energy perspective [39], which means that the energy
of the vibration signal is proportional to the square of its
amplitude:

E =
X2 + Y2

2
10

For signal denoising, complex signals are decomposed
into a set of intrinsic mode functions (IMFs) by ensemble
empirical mode decomposition (EEMD) [40]. Calculate the
series of autocorrelation coefficient of each IMF and the
raw signal, and then, calculate the correlation coefficient
between the series of the raw signal and the series of
IMFs. Add correlation coefficients larger than 0.5 to com-
plete signal reconstruction and noise reduction.

After data preprocessing, feature extraction is per-
formed, including features of the time, frequency, and
time–frequency domain.

The time-domain features are shown in Table 1, where
Fj represent the jth time-domain feature, x ⋅ represents
the time-domain signal, N represents the total number of
sampling points of the signal, and i represents the ith sam-
pling point, i = 1, 2,⋯,N .

Perform a fast Fourier transform (FFT) on time-domain
signals to obtain frequency-domain signals, and extract
frequency-domain features as shown in Table 2, where T j

represents the jth frequency-domain feature; u ⋅ represents
the frequency-domain signal; n represents the nth spectral
line, n = 1, 2,⋯,N ; and f n represents the frequency corre-
sponding to the nth spectral line.

The time–frequency-domain features are extracted
through wavelet packet decomposition. The raw signal x t

4 International Journal of Aerospace Engineering



is decomposed by m-layer wavelet packets to obtain 2m sub-
bands. The energy of each sub-band is as follows:

E xm,k t =
1

2−mN − 1
〠
2−mN

m=0
xm,k t

2
, k = 1, 2,⋯, 2m

11

The total energy of the raw signal is as follows:

Etotal = 〠
2m

k=1
Ek 12

The energy proportion of each sub-band is as follows:

pk =
Ek

Etotal
13

The energy entropy is as follows:

En = −〠
2m

k=1

Ek

Etotal
log

Ek

Etotal
14

In this paper, the vibration signal will be decomposed
into eight sub-bands using three-layer wavelet packet
decomposition, and the energy proportion of the eight sub-
bands and energy entropy will be extracted as time–frequency-
domain features.

Finally, 16 time-domain features, 6 frequency-domain
features, and 9 time–frequency-domain features are extracted,
totaling 31 features.

Excessive features may cause redundancy and increase
computational complexity; therefore, feature screening is
also necessary. In this paper, the importance of features will
be calculated using three algorithms: extremely randomized
trees, random forests, and AdaBoost. The importance of
each feature is sorted from highest to lowest and added.
When the sum is greater than 0.9, the features that partici-
pate in the accumulation are considered important and
retained. Then, obtain the weight of the features through lin-
ear SVC, and the features with a weight of 0 are removed.
Finally, draw a distribution map of the selected features,
and through manual inspection, if there are still some fea-
tures with a high degree of overlap, keep one of them.

2.2.2. Improved SVC-Based Multichannel and Multikernel
Functions. The principle of SVC [41, 42] is to find a hyper-
plane to distinguish data with different labels and at the
same time make the distance between different categories
as large as possible, to maintain a strong generalization
ability.

Given the training set D = x1, y1 , x2, y2 ,⋯ xm, ym ,
yi ∈ −1,+1 , the hyperplane can be expressed as follows:

〠
m

i=1
αiyixTi x + b = 0 15

where αi is the Lagrange multiplier and b is the distance
between the hyperplane and the origin.

The hyperplane is usually used to distinguish linear data.
For nonlinear data, the kernel function can be used for
transformation.

Table 2: Frequency-domain features.

Feature Equation

Centroid frequency T1 =〠N

n=1 f nu n /〠N

n=1u n

Mean frequency T2 = 1/n〠N

n=1u n

Mean square frequency T3 =〠N

n=1 f
2
nu n /〠N

n=1u n

Root mean square
frequency T4 = 〠N

n=1 f
2
nu n /〠N

n=1u n

Variance frequency T5 =〠N

n=1 f n − T1
2u n /〠N

n=1u n

Root variance frequency T6 = 〠N

n=1 f n − T1
2u n /〠N

n=1u n

Table 1: Time-domain features.

Feature Equation Feature Equation

Maximum value F1 = max x i Root mean square F9 = 1/N〠N

i=1 x i 2

Minimum value F2 = min x i Square mean root F10 = 1/N 〠N

i=1 x i
2

Peak value F3 = max x i Crest factor F11 =N max x i /〠N

i=1 x i

Peak to peak F4 = max x i −min x i Pulse factor F12 = max x i /F8

Mean value F5 = 1/N〠N

i=1x i Margin factor F13 = max x i /F8

Mean absolute value F6 = 1/N〠N

i=1 x i Waveform factor F14 = max x i /F8

Variance F7 = 1/ N − 1 〠N

i=1 x i − x 2 Kurtosis factor F15 =〠N

i=1 x i − F4
2/ N − 1 F3

6

Standard deviation F8 = 1/N〠N

i=1 x i − x 2 Skewness factor F16 =NF8 max x i /〠N

i=1 x i
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To better utilize the information of vibration data and
improve the performance of the data-driven model, a
MCMK-SVC method is proposed. The method first splits
the data according to different channels (dimensions) and
then trains multiple SVCs using different kernel functions
for each channel, including linear kernel, polynomial kernel,
Gaussian kernel, sigmoid kernel, and Laplacian kernel. Next,
the prediction results of multiple channels will be fused by
majority voting. If more than half of the predictions are cor-
rect, it is considered a successful prediction. Finally, the
weights of the corresponding SVCs for each kernel function
are calculated through the proportion of successful predic-
tions in different channels, and an ensemble SVC model is
obtained through weighted ensemble. The modeling process
of MCMK-SVC is shown in Figure 2.

2.3. Proposed Method of Mechanism-Data Fusion Modeling

2.3.1. Mechanism-Data Fusion Modes. Mechanism-data
fusion model refers to the fusion of the mechanism model
and the data-driven model in some way to form a new
model. According to the different subject models, the
mechanism-data fusion model can be divided into three
fusion modes: (a) the mechanism model is integrated into
the input layer, feature layer, algorithm layer, or decision

layer of the data-driven model, with the data-driven model
as the main and the mechanism model as the auxiliary;
(b) based mainly on the mechanism model, supplemented
by the data-driven model, utilizing the data-driven model
to modify and compensate for the parameters of the
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model

Data-driven
model

Input layer

Feature layer

Algorithm layer

Decision layer

Output

Fusing
into

Figure 3: Schematic diagram of fusion mode with data-driven
model as the main body.
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Figure 2: The modeling process of MCMK-SVC.
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mechanism model; and (c) fusion modeling of the mecha-
nism model and the data-driven model.

The proposed method uses the fusion mode of the data-
driven model as the main part and the mechanism model as
the auxiliary part of the model. This mode means that the
output of the mechanism model is integrated into the input
layer, feature layer, algorithm layer, decision layer, and other
processes of the data-driven model, as shown in Figure 3.

2.3.2. Levels of Mechanism-Data Fusion. Different fusion
modes can derive different levels of fusion. The fusion mode
with the data-driven model as the main body and the mech-

anism model as the auxiliary can be divided into four fusion
levels: data-level fusion, feature-level fusion, algorithm-level
fusion, and decision-level fusion [43]. The proposed
methods are based on three other fusion levels besides
algorithm-level fusion.

2.3.2.1. Data-Level Fusion. Data-level fusion [44] means that
the output of the mechanism model is taken as the input of
the data-driven model, or the output of the mechanism
model is taken as the data subset, which together forms the
dataset with the data subset of the data-driven model.
Data-level fusion should first define the data types required

New dataset

Dataset concatenation

Feature set

Fault diagnosis model for hydraulic
gear pump based on SVC

Performance testing

Input

Volume efciency formula

Data from
mechanism model

Flow data
Volume

efciency
data

Up-sample

Mechanism dataset

New vibration
signals data

Vibration signals

Data from data-
driven model

Down-sample

Mechanism data

Mechanism features

Vibration signals data

Signal features

Feature screening and
concatenation

Feature engineering
Data preprocessing

&
feature engineering

Figure 4: Proposed data-level mechanism-data fusion modeling.
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for modeling, such as vibration, temperature, or pressure,
and establish the corresponding mechanism models. Second,
verify the accuracy of the mechanism model and fine-tune
the parameters of the mechanism model. Finally, the output
of the mechanism model is used as the data required for
data-driven modeling.

The proposed data-level fusion combines the flow rate
and volumetric efficiency data obtained from the mechanism
model with the vibration signals collected from the hydraulic
gear pump pollution loss test to form a dataset. The specific
process is shown in Figure 4. The main steps are follows:

a. The flow data and the volumetric efficiency data are
obtained as mechanism data from the optimized vol-
umetric efficiency formula of the hydraulic pump, and
then, the mechanism data are upsampled through
interpolation for subsequent feature extraction.

b. Downsampling the vibration signals to match the
mechanism data and then combining them to form
a new dataset.

c. The restructured data require preprocessing, feature
extraction, and feature selection. The mechanism data
are obtained from the mechanism formula, so there is
no need for data preprocessing, and only time-
domain features are extracted. When selecting fea-
tures, it is necessary to ensure consistency between
mechanism features and signal features.

d. Finally, the features are inputted into the data-driven
model, and the classification results and the model
metrics are used as the data-level fusion results.

Data-level fusion can solve the problems of insufficient
data (small sample) and poor data quality (multinoise). Rel-
evant research shows that data-level fusion has gradually
become a popular way to acquire data for uncomplicated
systems or devices, such as some methods for multisource
data fusion [45].

2.3.2.2. Feature-Level Fusion. Feature-level fusion [46–48]
means that the output of the mechanism model is processed
(or not) to form subsets of features, which together with the
subsets of feature of the data-driven model form sets of fea-
ture. The mechanism model reflects the internal operating
law of the equipment, and its feature curve often represents
the state and performance changes of equipment. Compared
to features extracted from the data-driven model, features
extracted from the mechanism model often have better per-
formance. Therefore, based on the features extracted from
the data-driven model and mechanism model, the combina-
tion of features obtained will be more representative, and the
final output results will be more accurate.

The proposed feature-level fusion will extract and screen
the features of the mechanism data and then form a new fea-
ture set together with the extracted features from vibration
data. The new set of features is again subjected to feature
selection and becomes the input of the data-driven model.

Figure 7: Hydraulic gear pump test bench.

Table 3: Test data of hydraulic gear pump at an oil temperature of
50°C and a no-load flow rate of 37.7 L/min.

Number of
tests

Pressure
(MPa)

Steady
flow (L/min)

Volumetric
efficiency

1 1 37.57 0.9965

2 4 37.14 0.9853

3 7 36.67 0.9729

4 10 36.16 0.9591

5 13 35.59 0.9439

6 16 34.96 0.9272

7 19 34.26 0.9087

8 22 33.50 0.8885

9 25 32.66 0.8663

10 28 31.74 0.8419

11 31 30.74 0.8153

12 34 29.64 0.7863

13 37 28.46 0.7546

14 40 27.15 0.7201

15 43 25.73 0.6824

16 46 24.17 0.6415

17 49 22.51 0.5971

18 52 20.69 0.5488

19 55 18.71 0.4964

20 58 16.57 0.4396

21 61 14.25 0.3781

22 64 11.74 0.3115

23 67 9.03 0.2394

24 70 6.09 0.1615

25 73 — —
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The specific process is shown in Figure 5. The main steps are
as follows:

a. The flow data and volumetric efficiency data are
obtained from the optimized volumetric efficiency
formula of the hydraulic pump, and upsample them.
And then, extract and screen the time-domain fea-
tures of the mechanism data.

b. Perform data preprocessing, feature extraction, and
feature screening on the vibration signal to obtain its
features.

c. Combine the mechanism features and signal features
into a feature set and then perform feature selection
again to ensure consistency of the features.

d. Finally, the features are inputted into the data-driven
model, and the classification results and the model
metrics are used as the results of the feature-level
fusion.

2.3.2.3. Decision-Level Fusion. Decision-level fusion [49]
means combining the results (evaluation metrics) of the
mechanism model and the data-driven model into a new
result in some way. This combination method can be imple-
mented by weighted decision-making, classical reasoning,
Bayesian inference, or Dempster-Shafer method. In this
paper, the weighted combination method will be used in
the experiment. The decision-level fusion method first
reduces the uncertainty caused by the evaluation indicator
of a single model, that is, whether the indicator of a single
model can 100% reflect the current equipment state. Second,
the proportion distribution of each evaluation indicator
among all indicators is considered. The division is more rea-

sonable, which helps improve the accuracy and credibility of
the model and makes the results more convincing.

The proposed decision-level fusion will combine the
metrics of the two models through weighted calculation,
and the specific calculation method is as follows:

Cri y =w1Out y1 +w2Out y2

s t
wi ≥ 0, i = 1, 2

〠
n

i=1
wi = 1

16

where Cri · is the weighted calculation result; wi, i = 1, 2, is
the assigned weight value; and Out y1 and Out y2 repre-
sent the output value of the mechanism model and the
data-driven model, respectively.

The final metric is the weighted calculation of Out y1
and Out y2 . The decision-level fusion modeling process is
shown in Figure 6.

3. Experimental Verification

3.1. Modification of Parameters of the Volumetric Efficiency
Mechanism Model. To solve and modify the parameters of
Equation (9), a hydraulic gear pump oil pollution wear test
is carried out to collect relevant test data and modify the
parameters of the hydraulic gear pump oil pollution wear
mechanism model.
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Figure 8: Fitting of pressure and volumetric efficiency curve for the hydraulic gear pump at an oil temperature of (a) 50°C and (b) 60°C.

Table 4: Fitting degree of volumetric efficiency data at different oil
temperatures.

Oil temperature Fitting degree (R2)

50°C 0.9918

60°C 0.9966
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The hydraulic gear pump pollution and wear test bench
consist of oil tank, hydraulic gear pump, oil cooler, flow
meter, particle pollutant detector, oil filter, loading valve,
pressure gauge, and other equipment. The test bench is
shown in Figure 7. First, prepare the equipment and set
the temperature and working pressure. Second, perform
no-load and pollution-free operation on the hydraulic gear
pump, obtain the no-load flow rate of the hydraulic gear
pump, and set the volumetric efficiency threshold. Then,
inject contaminated particles into the hydraulic fluid, start
the experiment, and record the relevant data. Finally, based
on the recorded data, calculate the volumetric efficiency of
the hydraulic gear pump, where volumetric efficiency =
stable flow/no − load flow. The experiment was carried out
at two temperatures: 50°C and 60°C, and the temperature
was basically constant through the oil cooler. Each experi-
ment was carried out in 25 groups, with the pressure
adjusted from 1 to 73MPa, and flow data and pressure data
were recorded at an interval of 3MPa. Partial test data are
shown in Table 3.

The volumetric efficiency in Table 3 is calculated. Plot a
scatter plot based on pressure and volumetric efficiency data
and perform curve-fitting on the data using Python to solve
the parameters b1, b2, and b3 in Equation (9). The fitting
results are shown in Figure 8(a). Similarly, processing the
volumetric efficiency data at a temperature of 60°C yields
the results shown in Figure 8(b).

According to the fitting curve and Equation (9), obtain
the following:

1. When the temperature is 50°C, the values of parame-
ters in (9) are b1 = 0 00292963, b2 = 0 01791409, and
b3 = 0 15426435, and the volumetric efficiency can
be expressed as follows:

ηV = 1 −
0 00292963p

e0 01791409p+0 15426435 17

2. When the temperature is 60°C, the values of the
parameters are: b1 = 0 01136614, b2 = 0 00831262,

b3 = 0 45241057, and the volumetric efficiency can
be expressed as:

ηV = 1 −
0 01136614p

e0 00831262p+0 45241057 18

To ensure the accuracy of the volumetric efficiency
mechanism model parameters, the determination coefficient
R2 is used to evaluate the fitting effect of the volumetric effi-
ciency data. R2 can be expressed as follows:

R2 = 1 −
∑n

i=1 yi − ŷi
2

∑n
i=1 yi − y 2 19

where yi and ŷi i = 1, 2⋯,n represent actual and fitted
values, respectively, and y represent the mean of the actual
values. The fitting degree of the volumetric efficiency data
is shown in Table 4.

As shown in Table 4, the volumetric efficiency data at
both temperatures have a fitting degree greater than 0.99,
indicating a good fitting effect and a confidence level of
99% that the data obtained from the mechanism model are
reliable. However, the volumetric efficiency data provided
is a priori and static, unable to reflect the real-time state of
the hydraulic pump, while the data-driven model pays more
attention to the pump state data.

3.2. Condition Monitoring Model Based on MCMK-SVC

3.2.1. Dataset Construction. The experimental object is an
LR025CLS hydraulic gear pump, and vibration signals are
collected through a triaxial accelerometer installed directly
above the meshing of the two gears of the pump. The sensor
model is CT1000SLFP, and the installation position is shown
in Figure 9. Then, the vibration signals are collected through
software named FluMoSLightV01.50. The sampling fre-
quency is 10,000Hz, with each sampling period lasting 1 s
and a total of 43 samples taken. Among them, there are 24
groups of data at 50°C and 19 groups of data at 60°C.

The collected vibration signal time sequence diagram is
shown in Figure 10.

Figure 9: Installation location of the triaxial accelerometer.
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Compare the signals when the pump is working normally
and when it fails, as shown in Figure 11, and it can be seen
that the fault signal is more chaotic than the normal signal.

3.2.2. Condition Monitoring Modeling. After completing the
collection of vibration signals, data preprocessing and fea-
ture engineering are performed following Section 2.2. Due
to the poor quality of the vibration signal in the X-direc-

tion, it was removed. Using the method of Equation (10),
the remaining two directions of the signals are reduced
and recombined to obtain the sequence E. Then, the new
data is denoised through EEMD, and finally, outlier process-
ing and normalization are performed to complete data
preprocessing.

The 31 features of the signal in the time domain, fre-
quency domain, and time–frequency domain were extracted
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Figure 10: Signal timing diagram of X, Y , and Z three-way vibration sensors with an (a–c) oil temperature of 50°C and (d–f) oil temperature
of 60°C.
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by feature engineering, and then, 13 features were selected
by feature screening, including maximum value, square
mean root, waveform factor, energy proportion of sub-
band 1, energy proportion of sub-band 3, kurtosis factor,
skewness factor, energy proportion of sub-band 6, energy
proportion of sub-band 8, centroid frequency, mean square
frequency, energy entropy, and variance frequency. Plot
the distribution of these features into a curve, as shown in
Figure 12. From Figure 12, it can be seen that there is almost
overlap between energy proportion of sub-band 1, energy
proportion of sub-band 3, energy proportion of sub-band
6, and energy proportion of sub-band 8, so only energy pro-
portion of sub-band 3 is retained, because of its high infor-
mation proportion, shown in Figure 13.

Divide the data into 43 groups, each containing 3 sam-
ples, and then, divide them into training and testing sets,
where the training set contains 27 groups, and the test set
contains 16 groups, as shown in Table 5.

Design a data-driven condition monitoring model base
on the proposed MCMK-SVC. The data are split into three
channels according to vibration signals in three different
directions, and the data of each channel is trained through
SVCs based on five different kernel functions, and the hyper-
parameters are optimized using the PSO algorithm. Due to
the small amount of data, the average result of fivefold
cross-validation is used to calculate the metrics of the valida-
tion set, resulting in Table 6.

The formulas for calculating each metric in Table 6 are
shown in Table 7, where accuracy represents the propor-
tion of correctly predicted samples among all samples; pre-
cision reflects the model’s ability to distinguish between
negative and positive samples and is defined as the ratio
of correctly predicted positive samples to the total number
of predicted positive samples; recall indicates the propor-
tion of correctly predicted positive samples among all
actual positive samples, thus reflecting the model’s ability
to identify positive samples; and F1-score is a comprehen-
sive measure of precision and recall, calculated by taking

the harmonic mean of the two. It is used to evaluate the
performance of the model. The successful proportion rep-
resents the proportion of groups for which the prediction
results of the three channels are still correct after the voting
mechanism, out of all the training sample groups. This
value is equivalent to the accuracy of the prediction after
the vote.

The weights of each SVC based on different kernel func-
tions in the ensemble will be calculated according to the
principle of negation. As shown in the table above, the num-
ber of groups for which the five SVCs failed to predict is 2, 5,
4, 4, and 4, respectively. The proportion of each SVC in all
failed groups is calculated separately, resulting in 2/19, 5/
19, 4/19, 4/19, and 4/19, respectively. The kernel function
with the highest success rate should be assigned the highest
weight. Therefore, the corresponding weights of the five
SVCs are 5/19, 2/19, 4/19, 4/19, and 4/19, respectively.

The performance of the data-driven model is tested
using the test set, and the results of five SVCs and MCMK-
SVC for the three channels after voting mechanism are
shown in Table 8 and Figure 14.

Although MKMC-SVC is not the best performing
model, its performance surpasses that of most single-kernel
function SVCs. Due to weighted averaging, its performance
is also slightly better than the average performance. In addi-
tion to the performance improvement brought about by
multikernel function weighting, multichannel fusion also
demonstrates superiority. As shown in Figure 15, the perfor-
mance of linear kernel SVC in each channel fully utilizes
information and improves the performance of the model
through complementarity with each other.

Although the data-driven model based on MCMK-SVC
has improved its performance compared to most single-
kernel function SVC models, it still cannot meet the require-
ments in terms of various metrics. By combining the mech-
anism model with it and using high-confidence mechanism
data, the performance of the data-driven model can be fur-
ther improved.
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Figure 11: (a) Normal signal and (b) fault signal of the vibration in Y-direction.
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3.3. Condition Monitoring Model Based on Mechanism-Data
Fusion. Based on the above theory, a fusion model is pro-
posed with the data-driven model as the main and a mech-

anism model as the auxiliary. Through three different
fusion levels, data level, feature level, and decision level,
MCMK-SVC condition monitoring models are established
to achieve condition monitoring of hydraulic gear pumps
and explore the applicable occasions of different fusion level
modeling methods.

3.3.1. Data-Level Fusion Modeling. Construct the data-level
mechanism-data fusion model according to the method
introduced in Section 2.3. The flow data and volumetric effi-
ciency data are obtained from the volumetric efficiency for-
mula (Equations (17) and (18)). In order to extract
features, it is necessary to enrich mechanism data through
upsampling. Using the volumetric efficiency formula, inter-
polate the experimental data with an interval of 3MPa into
the simulated data with an interval of 0.1.

To match the mechanism data with the vibration data, it
is necessary first to find the corresponding pressure at which
the mechanism data transitions from normal to faulty. Then,
on the basic of this pressure, the vibration signal needs to be
downsampled. Taking the mechanism formula at 50°C as an
example, a matching can be achieved with an interval of
3MPa in the mechanism data. At this interval, the average
flow rate change per 3MPa is 0.0141 L/s and the sampling
frequency of the vibration signal is 10000Hz. Therefore,
the number of sampling points should be 141 0 0141 ∗
10,000 . Similarly, the sampling point for the data at 60°C
is 154.

Finally, the mechanism data and the downsampled
vibration data are concatenated into a new dataset for data
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Table 5: Results of dataset split.

Dataset
Training set

(normal/abnormal)
Testing set

(normal/abnormal)

50°C 15 (8/7) 9 (5/4)

60°C 12 (6/6) 7 (4/3)

Total 27 (14/13) 16 (9/7)
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Figure 12: The performance of 13 features filtered from the Y-direction signal.
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preprocessing and feature engineering. Among them, the
mechanism data does not require data preprocessing and
only extracts time-domain features. The vibration data are
processed according to the method in Section 2.2. When
selecting features, in order to ensure consistency, it is neces-
sary to select features that are common to both types of data,

and the resulting features include skewness factor, kurtosis
factor, root mean square, peak value, square mean root, peak
factor, pulse factor, maximum, and standard deviation. Since
the flow rate and volumetric efficiency data are combined,
the number of channels input to the MCMK-SVC is
increased to five. Input the dataset composed of these nine
features into MCMK-SVC condition motoring model, train-
ing, parameters tuning, ensemble modeling, and testing
according to the methods in Section 3.2, and finally, obtain
the results shown in Figure 16 and Table 9.

3.3.2. Feature-Level FusionModeling.According to themethod
introduced in Section 2.3, a feature-level mechanism-data
fusion model is constructed. Mechanism data are obtained
through the same approach as in data-level fusion. Subse-
quently, the mechanism data and vibration data are matched

Table 6: Results of cross-validation of SVC models.

Kernel Channel Hyperparameters Accuracy Precision Recall F1-score Successful proportion

SVC1 linear kernel

Y C = 3 8103 0.8519 0.9 0.75 0.8182

25/27
Z C = 5 8700 0.8889 0.8462 0.9167 0.8800

E C = 2 733 0.8889 0.8462 0.9167 0.8800

Voted / 0.9259 0.9167 0.9167 0.9167

SVC2 polynomial kernel

Y
C = 8 2511
d = 3 500 0.7407 0.7273 0.6667 0.6957

22/27
Z

C = 1 7373
d = 1 9390 0.8889 0.8462 0.9167 0.8800

E
C = 2 8616
d = 2 9501 0.8519 0.7857 0.9167 0.8462

Voted / 0.8148 0.7692 0.8333 0.8

SVC3 Gaussian kernel

Y
C = 1 4473
g = 2 2788 0.8519 1.0 0.6667 0.8

23/27
Z

C = 8 7536
g = 0 8481 0.8889 0.8462 0.9167 0.8800

E
C = 8 4516
g = 0 9665 0.8519 0.8333 0.8333 0.8333

Voted / 0.8519 0.8333 0.8333 0.8333

SVC4 sigmoid kernel

Y
C = 2 8702
g = 0 2025 0.8519 0.8333 0.8333 0.8333

23/27
Z

C = 6 4887
g = 0 6342 0.9259 1.0 0.8333 0.9091

E
C = 6 0889
g = 0 4463 0.8519 0.8333 0.8333 0.8333

Voted / 0.8519 0.8333 0.8333 0.8333

SVC5 Laplacian kernel

Y
C = 1 3046
g = 5 7483 0.8148 0.8889 0.6667 0.7619

23/27
Z

C = 6 6986
g = 6 9284 0.8519 0.8333 0.8333 0.8333

E
C = 3 7093
g = 3 2495 0.8889 0.8462 0.9167 0.8800

Voted / 0.8519 0.8333 0.8333 0.8333

Table 7: Formula of metrics.

Metrics Formula

Accuracy Accuracy = TP + TN/TP + TN + FP + FN

Precision Precision = TP/TP + FP

Recall Recall = TP/TP + FN

F1-score F1 = 2 × precision × recall/precision + recall
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Table 8: Test results of different SVCs.

Metric
SVC1 linear

kernel
SVC2 polynomial

kernel
SVC3 Gaussian

kernel
SVC4 sigmoid

kernel
SVC5 Laplacian

kernel
SVC6

MCMK-SVC

Accuracy 1.0 0.8125 0.8125 0.875 0.9375 0.9375

Precision 1.0 0.8333 0.8333 1.0 1.0 1.0

Recall 1.0 0.7143 0.7143 0.7143 0.8571 0.8571

F1-score 1.0 0.7692 0.7692 0.8333 0.9231 0.9231
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Figure 14: Confusion matrix of test results.
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according to their label. Then, feature engineering is per-
formed on the mechanism data to extract mechanism fea-
tures. The vibration signal continues to undergo data
preprocessing and feature engineering using the method pro-
posed in Section 2.3, resulting in the same set of features as
described in Section 3.2.

Concatenate the mechanism features and signal features
to a new feature set, and then, perform another feature selec-
tion to ensure the consistency of the features, ultimately
obtaining six features including maximum value, skewness
factor, kurtosis factor, square mean root, root mean square,
and waveform factor. Input this new feature set into five-
channel MCMK-SVC for training, parameter tuning,
ensemble modeling, and testing, and obtain the results
shown in Figure 17 and Table 9.

3.3.3. Decision-Level Fusion Modeling. Decision-level fusion
is achieved by integrating the metrics of the mechanism
model and the data-driven model. The metric of the mecha-
nism model is the determinability coefficient R2. In the

experiment in Section 3.1, it was known that it is 0.99, so
the output value Out y1 of the mechanism model is taken
as 0.99. The metrics of the data-driven model were obtained
in the experiment in Section 3.2, shown in Table 8, and the
accuracy of every SVC is used as the output value Out y2
of the data-driven model. By comparing the metrics of the
two models, the confidence level of the results of the mech-
anism model is better than that of the data-driven model.
Therefore, the results of the mechanism model are believed
to be more important and should have a higher weight, with
a weight of 0.6, while the weight of the data-driven model is
0.4. The final results are shown in the Table 9.

3.3.4. Conclusion of Mechanism-Data Fusion Modeling. In
comparison to single data-driven models, the performance
of mechanism-data fusion models has been improved under
various kernel functions.

a. For data-level fusion, thanks to the high accuracy of
mechanism data, the accuracy rate reached 100% in
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Figure 15: Test results of different channels of the linear kernel SVC.
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most SVCs. However, if only the channel with vibra-
tion data is considered, the prediction accuracy
decreases due to the loss of effective information
caused by downsampling of vibration data. Fortu-
nately, by fusing two channels of mechanism data,
as long as one of the remaining three channels can
predict correctly, the final result is likely to be correct.

b. For feature-level fusion, except for the polynomial
kernel SVC and the sigmoid kernel SVC, the accuracy
of other models also reached 100%. Compared to the
single data-driven model and the data-level fusion
model, the feature-level fusion model uses fewer fea-
tures due to an additional feature screening process,
which may result in slightly lower prediction accu-
racy. For example, the performance of sigmoid kernel
SVC is not as good as that of data-level fusion, but it
can further reduce computational complexity and
improve prediction efficiency, and it also improves
the final prediction results of MCMK-SVC.

c. Decision-level fusion obtains a more comprehensive
evaluation result by fusing the indicator R2 of the
mechanism model with the indicators of the data-
driven model. Considering that the value of the deter-
mination coefficient R2 of the mechanism model is
0.99, which means there is a 99% confidence level that
the results of the mechanism model are correct, this
result is highly accurate. Therefore, a higher weight
can be assigned to the mechanism model, here taking
a value of 0.6, while the weight of the metrics of data-
driven models is set at 0.4, and the resulting metrics
are all excellent.

d. Through the results of mechanism-data fusion
models at different fusion levels, the applicable sce-
narios for each fusion level can be determined. The
conclusions are shown in Table 10.

When the data types of two models are different, data-
level fusion usually requires downsampling, which may
result in the loss of some useful information. For hydraulic
pump condition monitoring, data-level fusion is the most
appropriate if the sampling frequency of the flow data
obtained by simulation is equivalent to vibration signals.
Feature-level fusion is a good approach when data-level
fusion does not perform well, as it can retain effective data
as much as possible, even if features are still reduced in
secondary screening, but its impact will be smaller than
reducing raw data. The performance comparison between
data-level and feature-level fusion in different channels of
linear kernel SVC is shown in Figure 18. It is evident from
the analysis that, despite the similar performance achieved
after multichannel fusion, feature-level fusion demonstrates
superior efficacy when considering the performance within
the three original channels of the data-driven model.
Decision-level fusion usually performs well when the
mechanism data have high accuracy and are suitable for
application scenarios that rely on final metrics for deci-
sion-making.

3.4. Comparative Analysis of Different Methods. To validate
the effectiveness of the proposed method and the superiority
of mechanism-data fusion, it will be compared with several
other methods, including the following:

• Method 1: SVC with single channel and single Lapla-
cian kernel function;

• Method 2: SVC with single channel and multiple ker-
nel functions;

• Method 3: SVC with multiple channels and single
Laplacian kernel function;

• Method 4: Proposed MCMK-SVC;

• Method 5: Data-level fusion;

Table 9: Test results of SVC models at different fusion levels.

Fusion
level

Metrics
SVC1linear

kernel
SVC2polynomial

kernel
SVC3Gaussian

kernel
SVC4Sigmoid

kernel
SVC5Laplacian

kernel
SVC6MCMK-

SVC

Data level

Accuracy 1.0 0.9375 1.0 1.0 1.0 1.0

Precision 1.0 0.875 1.0 1.0 1.0 1.0

Recall 1.0 1.0 1.0 1.0 1.0 1.0

F1-score 1.0 0.9333 1.0 1.0 1.0 1.0

Feature
level

Accuracy 1.0 0.9375 1.0 0.9375 1.0 1.0

Precision 1.0 0.875 1.0 1.0 1.0 1.0

Recall 1.0 1.0 1.0 0.8571 1.0 1.0

F1-score 1.0 0.9333 1.0 0.9231 1.0 1.0

Decision
level

Accuracy 0.9940 0.9190 0.9190 0.9440 0.9690 0.9690

Precision 0.9940 0.9273 0.9273 0.9940 0.9940 0.9940

Recall 0.9940 0.8797 0.8797 0.8797 0.9368 0.9368

F1-score 0.9940 0.9017 0.9017 0.9273 0.9632 0.9632
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Figure 17: Confusion matrix of feature-level mechanism-data fusion.
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Table 10: Applicable scenarios of different fusion levels.

Fusion level Applicable scenarios

Data level The data types of the two models are similar, such as the data have the same sampling frequency

Feature level The types of features of the two models are similar or when data-level fusion performs poorly

Decision level High-precision indicators are needed to assist decision-making
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Figure 18: Continued.
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• Method 6: Feature-level fusion;

• Method 7: Decision-level fusion;

• Method 8: ELM;

• Method 9: Backpropagation (BP) neural network;

• Method 10: CNN.

The compared results are shown in Table 11. The metrics
of each model in Table 11 show that from Method 1 to
Method 4, the improvements of SVC by multichannel fusion
and weighted ensemble of multiple kernel functions have
been validated, demonstrating the superiority of ensemble
learning. Compared to single-data-driven models, the
mechanism-data fusion models shown from Method 5 to
Method 7 have achieved varying degrees of improvement
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Figure 18: Metric comparison of linear kernel SVC models across various channels under data-level and feature-level fusion, where Channel
1 represents flow data, Channel 2 represents volumetric efficiency data, Channel 3 represents the vibration signals in the Y-direction,
Channel 4 represents the vibration signals in the Z-direction, and Channel 5 represents sequence E.
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on this basis. Finally, by comparing the proposed method
with some traditional hydrostatic pump data-driven condi-
tion monitoring methods such as Method 8 to Method 10,
it is evident that all prove that mechanism-data fusion
models have higher predictive accuracy and generalization
performance.

4. Conclusions

A novel approach for hydraulic gear pump condition moni-
toring that synergizes the mechanism model and the data-
driven model has been introduced. This method integrates
a volumetric efficiency-based mechanism model with an
MCMK-SVC data-driven model at three distinct levels of
fusion, data, feature, and decision levels, thereby enhancing
the accuracy significantly, particularly in scenarios marred
by data deficiencies or inferior quality. Furthermore, this
approach can be coupled with digital twin technology for
application in aviation fuel production lines, offering valu-
able guidance for fault monitoring during actual production
processes.

However, certain limitations need to be acknowledged.
The data-driven model is not sufficiently advanced and lacks
transferability. Future considerations will include adopting
more sophisticated and complex models, as well as exploring
the potential for applying this method across varying opera-
tional conditions. Furthermore, we are dedicated to tackling
intricate issues to integrate our method into operational
workflows, propelling the smart evolution of aviation fuel
production lines.
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