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The traditional Kalman filter assumes that all measurements can be obtained in real time, which is invalid in practical engineering.
Therefore, a variational Bayesian- (VB-) based Gaussian sum cubature Kalman filter is proposed to solve the nonlinear tracking
problem of multistep random measurement delay and loss (MRMDL) with unknown probability. First, the measurement model
with MRMDL is modified by Bernoulli random variables. Then, the expression of the likelihood function is reformulated as a
mixture of multiple Gaussian distributions, and the cubature rule is used to improve the estimation accuracy under the
framework of Gaussian sum filter in the process of time update. Finally, by constructing a hierarchical Gaussian model, the
unknown and time-varying measurement delay and loss probability are estimated in real time with the state jointly using the VB
method in the measurement update stage. The algorithm does not need to calculate the equivalent noise covariance matrix so as to
avoid the possible division by zero operation, which improves the stability of the algorithm. Simulation results for a target tracking
problem show that the proposed algorithm has a better performance in the presence of MRMDL and can estimate the unknown
measurement delay and loss probability accurately.

1. Introduction

Kalman filter (KF) has been widely used in target tracking
and integrated navigation system. As a real-time recursive
state estimator, KF provides the analytical solution for min-
imum mean square error estimation of linear systems under
Gaussian noise assumption [1, 2]. KF assumes that all mea-
surements are obtained at the current time. However, when
the signal transmission network is blocked or affected by the
complex environment, the measurement data may be
randomly delayed and lost [3–5], affecting the estimation
accuracy of KF.

To deal with this situation, many improved KFs for mea-
surement delay and loss are proposed. In [6], the extended
KF (EKF) and unscented KF (UKF) have been generalized
to one-step randomly delayed system by rewriting the mea-
surement equation into a Gaussian mixture of the updated
measurement and one-step delayed measurement. In [7],
the augmented state KF (AS-KF) and augmented state

probabilistic data association filter (AS-PDA) are developed
to scenarios devoid of clutter or involving clutter with
multistep random measurement delay, in which multistep
random delay is processed by state augmentation. In [8],
modified adaptive EKF is proposed by reorganizing the state
update equation and combining the adaptive estimation
algorithm, which avoids the augmentation of state variable
or measurement equation. In [9, 10], the Gaussian approxi-
mate filters and smoothers are proposed for systems with
one-step randomly delayed measurements. In [11], a modi-
fied likelihood cubature Kalman filter (MLCKF) is proposed
to modify the likelihood function by marginalizing the delay
variables, and the modified likelihood function is in the form
of Gaussian mixture. When the measurement loss is known,
the problem can be solved by using the intermittent KF
(IKF) [12, 13]. In IKF, measurement loss is treated as a case
where the measurement noise variance is infinite. The upper
and lower bounds of the estimated error covariance are
given in [12], and the stability is analyzed in [13]. In [14],
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particle filter is applied to the system with one-step random
delay and measurement loss by modifying the expression of
particle weights. Then, particle filter is used for multistep
delay system [15]. In [16], an optimal linear filter is derived
based on the known probability under the linear minimum
variance criterion. However, in the above methods, the delay
and loss probability is known and constant. In practice, the
probability of measurement delay and loss is often unknown
and time varying. Therefore, the estimation accuracy of the
above algorithms suffers severely when inaccurate prior
probability is used.

In order to deal with the problem of unknown probabil-
ity, some methods have been proposed to identify the
probability of delay and loss. In [17, 18], the expectation
maximization (EM) approach is used to obtain the estima-
tion of delay probability. However, because they are based
on the smoothing framework, they cannot identify the
time-varying probability accurately. In [19], a risk-sensitive
KF (RSKF) is proposed by minimizing the expectation of
the accumulated exponential quadratic error for system with
one-step randomly delayed measurement with unknown
probability and uncertain model. In recent years, the use of
variational Bayesian (VB) method to identify unknown
parameters has been widely studied [20–23], such as the
identification of Student’s t noise parameters [24–26]. In
[27], an improved KF with one-step randomly delayed
measurement is proposed. And the improved UKF (IUKF)
version is presented in [28]. In a similar way, a VB-based
adaptive KF with lost measurement (VBAKFLM) is pro-
posed to achieve the estimation of a linear system with
unknown and time-varying probability of measurement loss
[29]. These filters use a Bernoulli variable to indicate
whether the measurement is delayed or lost, and the likeli-
hood function is transformed into a hierarchical Gaussian
state model. Then, the VB method is used to estimate the
probability. However, these methods cannot simultaneously
estimate the state of nonlinear system with unknown and
time-varying multistep delay and loss probability of mea-
surements. In addition, there is a risk of division zero when
obtaining the equivalent augmented measurement noise
covariance matrix, which may cause the filter to crash.

In this article, we proposed a novel VB-based Gaussian
sum cubature Kalman filter (CKF) for nonlinear system to
estimate the state and identify the unknown delay and loss
probability. By introducing two Bernoulli random variables,
the measurement model with MRMDL is modified and the
expression of the likelihood function is reformulated as a
Gaussian mixture distribution. Therefore, the state estima-
tion problem with MRMDL can be solved in the framework
of Gaussian sum filter (GSF) while the cubature rule is used
to improve the estimation accuracy. By constructing a
hierarchical Gaussian model, the nonconjugated Gaussian
mixture model is modified to conjugate exponential multi-
plication form by the introduced Bernoulli random vari-
ables. Then, the unknown and time-varying measurement
delay and loss probability are estimated in real time with
the state jointly using the VB method. Different from other
VB-based filters, the proposed algorithm uses the estimated
probability to update the weights without augmenting the

measurement vector, which avoids the division by zero
operation that may be involved in obtaining the equivalent
noise covariance matrix, which improves the stability of
the algorithm.

The remainder of this paper is listed as follows. In
Section 2, the problem formulation is given. In Section 3, a
hierarchical Gaussian state-space model for nonlinear sys-
tem with MRMDL is constructed, and the VB method for
joint posterior probability distribution function (PDF) is
provided. In Section 4, simulation results and comparisons
are shown. In Section 5, conclusions are given.

2. Problem Formulation

Consider the following discrete-time nonlinear dynamical
system with MRMDL:

xk = f xk−1 +wk−1,
zk = ρkh xk + vk,

yk = 〠
I

i=0
λikzk−i,

1

where xk ∈ℝn is the n-dimensional state vector; zk ∈ℝm is the
m-dimensional measurement vector at time index k; f · and
h · are the known nonlinear state and measurement equation
functions, respectively; and wk ∈ℝn and vk ∈ℝm are the zero
mean process noise and measurement noise with known
covariancesQk andRk, respectively. ρk is a random binary var-
iable which has a Bernoulli distribution, and ρk = 0 indicate
that the measurement is lost, while ρk = 1 represents that a
measurement is obtained by the sensor. Because of the unreli-
ability of the communication link, the measurement received
by the filter, yk, is different from the sensor’s output zk. I is
the maximum number of delay, and λik is an unknown binary
variable in the set λk of which only one element is equal to 1 at
time index k. In this paper, ρk = 1 and λ0k = 1 imply that the
current measurement is received at time k, while ρk = 1 and
λik = 1indicate that the measurement with i-step delay is
received. The probability of measurement loss can be expressed
as p ρk = 0 = γk, and the probability of receiving the mea-
surement zk−i is represented by p yk = zk−i ρk = 1 = μi

k; then,
we have

p ρk γk = γk
1−ρk 1 − γk

ρk , 2

p λk μk =
I

i=0
μik

λik 3

3. VB-Based Gaussian Sum Cubature
Kalman Filter

3.1. Modification of the Likelihood Function. Since the mea-
surement obtained by the filter comes from yk rather than
zk, through Bayesian rules, we have
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p x1 k y1 k = p yk x1 k p xk xk−1
p yk y1 k−1

× p x1 k−1 y1 k−1 4

Due to the fact that the yk is related to xk, xk−1,⋯, xk−I ,
the likelihood function can be written as p yk x1 k = p yk
xk, xk−1,⋯,xk−I . To obtain the posterior probability p xk
y1 k , (4) is marginalized as follows [11]:

p xk y1 k = 1
p yk y1 k−1 xk−I

⋯
xk−1

p xk xk−1 p yk xk, xk−1,⋯,xk−I

× p xk−1,⋯,xk−I y1 k−1 dxk−1dxk−I

5

Therefore, consider the following augmented system:

Xk = F Xk−1 + Bwk−1,
yk = vk or yk = h CiXk + vk−i,

6

where Xk = xTk , xTk−1,⋯xTk−I
T
, F Xk−1 = f xk−1

T , xTk−1,
⋯xTk−I

T , CiXk = xk−i, B = In, 0,⋯, 0 T , and In is the n
-dimensional identity matrix. Then, the likelihood function
can be rewritten as

p yk Xk = 〠
I

i=0
p yk, λik, ρk = 1 Xk + p yk, ρk = 0 Xk

= 〠
I

i=0
p yk λ

i
k, ρk = 1, Xk p λik ρk = 1 × p ρk = 1

+ p yk ρk = 0, Xk p ρk = 0

= 〠
I

i=0
1 − γk μikN yk ; h CiXk , Rk−i + γkN yk ; 0, Rk

7

It can be seen that the likelihood function is a mixture of
multiple Gaussian distribution, so the posterior probability
can be updated in the way of GSF. The prior probability of
the augmented state is approximated to be a single Gaussian
distribution as

p Xk−1 y1 k−1 =N Xk−1 ; X̂k−1 k−1, Pk−1 k−1 , 8

and the prediction PDF can be obtained through the
Chapman-Kolmogorov equation as

p Xk y1 k−1 =
Xk−1

p Xk Xk−1 p Xk−1 y1 k−1 dXk−1 9

According to the Bayesian rules, the augmented state poste-
rior density p Xk y1 k can be received through GSF, i.e.,

p Xk y1 k = p yk Xk p Xk y1 k−1
p yk Xk p Xk y1 k−1 dXk

= 〠
I+1

i=0
τ ikN Xk ; X̂

i
k k, Pi

k k ,
10

where X̂
i
k k and Pi

k k are the mean and covariance of state,

respectively, which can be obtained through KF, and τ ik is the
weight of Gaussian components at time index k, which is calcu-
lated by

τik = 1 − γk μikN yk ; h CiX̂k k−1 , Rk−i , i = 0,⋯, I,

τik = γkN yk ; 0, Rk , i = I + 1,
11

τ ik =
τik

∑I+1
i=0τ

i
k

, 12

where X̂k k−1 represents the prediction state. When the
probability of measurement delay and loss is time varying and
unknown, it will inevitably lead to poor accuracy of state esti-
mate if inaccurate prior probability is used for approximation.
Therefore, we use the VB approach to obtain the measurement
delay and loss probability while estimating the state. However,
the Gaussianmixture model of (7) is a nonconjugated prior dis-
tribution. In order to use the VB method to jointly estimate the
state and parameter, we construct a Gaussian hierarchical
model; that is, the likelihood function (7) is modified into the
form of exponential multiplication by using the random vari-
ables λk and ρk, which represent measurement delay and loss,
respectively, i.e.,

p yk Xk, ρk, λk = N yk ; 0, Rk
1−ρk

×
I

i=0
N yk ; h CiXk , Rk−i

λik

ρk

13

3.2. The Variational BayesianMethod. In order to infer the state
Xk together with the Bernoulli random variable ρk, the binary
random variable λk, the loss probability γk, and the delay prob-
ability μk, the joint PDF p Θk y1 k needs to be calculated
recursively which satisfies

p Θk y1 k = p yk Θk p Θk y1 k−1
p yk y1 k−1

, 14

where Θk = Xk, ρk, λk, γk, μk . By making use of the mean
field theory, we have

q Θk ≈ q Xk q ρk q λk q γk q μk , 15

where q · is the approximate posterior PDF which can be
calculated through VB approach as follows:
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log q ϕk = E
Θk−ϕk

log p Θk, y1 k + cϕk , 16

where ϕk is an arbitrary element of Θk, Θk − ϕk denotes the set
Θk without ϕk, cϕk is the constant related to ϕk, and E ·
represents the expectation operation. The joint distribution
p Θk, y1 k can be divided into

p Θk, y1 k = p yk Xk, ρk, λk p Xk y1 k−1
× p ρk γk p γk y1 k−1 p λk μk

× p μk y1 k−1 p y1 k−1

17

Based on the VB inference, the conjugate prior distribu-
tions for γk and μk are expressed as Beta distribution and
Dirichlet distribution [30], i.e.,

p γk−1 y1 k−1 = Be γk−1 ; αk−1 k−1, βk−1 k−1 , 18

p μk−1 y1 k−1 =D μk−1 ; âk−1 k−1 19

Considering the unknown probability change over time,
we adopt the Beta-Bartlett evolutionary model to obtain the
predicted distribution of the parameter as [31]

αk k−1 = ςαk−1 k−1,

βk k−1 = ςβk−1 k−1,
20

âk k−1 = ςâk−1 k−1, 21

where ς is the forgetting factor whose value is usually
between 0 95 1 .

Substituting (2), (3), (9), (13), and (18)–(21) in (17), the
log p Θk, y1 k is given by

log p Θk, y1 k = 〠
I

i=0
ρkλ

i
k −0 5 yk − h CiXk

T
R−1
k−i yk − h CiXk

+ 1 − ρk −0 5yTkR−1
k yk

− 0 5 Xk − X̂k k−1
T
P−1
k k−1 Xk − X̂k k−1

+ ρk log 1 − γk + 1 − ρk log γk
+ αk k−1 − 1 log γk + b̂k k−1 − 1 log 1 − γk

+ 〠
I

i=0
λik log μik + 〠

I

i=0
âik k−1 − 1 log μik + CΘk

22

By updating one element of Θk while keeping the others’
estimated value constant, the VB solution of (16) can be
obtained iteratively.

Let ϕk = Xk, and substituting (22) in (16), it follows

log q d+1 Xk = 〠
I

i=0
E d ρk E

d λik

× −0 5 yk − h CiXk
T
R−1
k−i yk − h CiXk

− 0 5 Xk − X̂k k−1
T
P−1
k k−1 Xk − X̂k k−1 ,

23

where d represents the number of iterations. From (23), we
can see that q d+1 Xk ∝ 1/cXk

p Xk y1 k−1 × p d+1 yk Xk ,
where the predicted PDF p Xk y1 k−1 and the likelihood
PDF p d+1 yk Xk are defined as follows:

p Xk y1 k−1 =N Xk ; X̂k k−1, Pk k−1 , 24

p d+1 yk Xk = 〠
I

i=0
E d ρk E

d λik ×N yk ; h CiXk , Rk−i ,

25

where X̂k k−1 and Pk k−1 can be calculated through CKF as

X̂k k−1 =
1
2n〠

2n

j=1
F χj

k−1 k−1 , 26

Pk k−1 =
1
2n〠

2n

j=1
F χj

k−1 k−1 − X̂k k−1 · T +Qk−1,

27

where χj
k−1 k−1, j = 1, 2,⋯, 2n is the jth cubature point gener-

ated by

χj
k−1 k−1 = X̂k−1 k−1 + Sk−1ζj, 28

where Sk−1 is the Cholesky decomposition of Pk−1 k−1
which satisfy Pk−1 k−1 = Sk−1 Sk−1

T and ζj is the jth element
of the following set:

n

1
0
⋮

0

,⋯,

0
0
⋮

1

,

−1
0
⋮

0

,⋯,

0
0
⋮

−1

29

It is noted that when the measurement is lost, there is no
effect on the measurement update of the state, so the likeli-
hood function obtained according to the VB method does
not contain the terms related to measurement loss, which also
leads to that the sum of weights in (25) is less than 1. However,
in order to satisfy the condition that the sum of probability is 1
when GSF is running, we refer to (7) to keep the parameter
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terms related to measurement loss in the likelihood func-
tion, i.e.,

p d+1 yk Xk = 〠
I

i=0
E d ρk E

d λik N yk ; h CiXk , Rk−i

+ 1 − E d ρk N yk ; 0, Rk ,

30

which means that the proposed algorithm only does time
update when the measurement is lost. And we can obtain
the augmented state estimates of mean and covariance of each
component in the d + 1th iteration, which is formulated as

Pi
xy =

1
2n〠

2n

j=1
F χj

k k−1 − X̂k k−1 ŷik k−1 − h Ciχ j
k k−1

T
,

Pi
yy =

1
2n〠

2n

j=1
ŷik k−1 − h Ciχ j

k k−1 × ŷik k−1 − h Ciχj
k k−1 + Rk−i,

K i
k = Pi

xy Pi
yy

−1
,

X̂
i
k k = X̂k−1 k +K i

k yk − ŷik−1 k ,

Pi
k k = Pk−1 k −K i

kP
i
yy K i

k
T ,

ŷik k−1 =
1
2n〠

2n

j=1
h Ciχj

k k−1 ,

, i = 0,⋯,I,

X̂
I+1
k k = X̂k−1 k,

PI+1
k k = Pk−1 k,

31

where

χj
k k−1 = X̂k k−1 + Skζj, 32

and Sk satisfied Pk k−1 = Sk Sk
T .

To reduce the computational burden, we approximate
the posterior probability of the state estimate as a single
Gaussian as

X̂
d+1
k k = 〠

I+1

i=0
τ ikX̂

i
k k,

P d+1
k k = 〠

I+1

i=0
τ ik Pi

k k + X̂
d+1
k k − X̂

i
k k · T ,

33

where τ ik can be calculated as (11).
Let ϕk = ρk, and substituting (22) in (16), it follows

log q d+1 ρk = 〠
I

i=0
ρkE

d λik −0 5 yk − h CiXk
T
R−1
k−i × yk − h CiXk

+ 1 − ρk −0 5yTk R−1
k yk + ρk log 1 − γk + 1 − ρk log γk

34

From (34), we can see that q d+1 ρk is a Bernoulli distri-
bution, i.e.,

P d+1
ρ ρk = 1 = exp E d log 1 − γk − 〠

I

i=0
0 5E d λik tr Ai

kR
−1
k−i ,

P d+1
ρ ρk = 0 = exp E d log γk − 0 5tr BkR

−1
k−i

35

where

E d+1 log γk = ψ α
d+1
k k − ψ α

d+1
k k + β

d+1
k k ,

E d+1 log 1 − γk = ψ β
d+1
k k − ψ α

d+1
k k + β

d+1
k k ,

36

and Ai
k and Bk are given by

Ai
k = E yk − h CiXk · T = yk − h CiX̂

d+1
k k · T

+ 1
2n〠

2n

j=1
ŷik k−1 − h Ciχj

k k−1 · T ,

Bk = yky
T
k 37

Hence, the expectation of ρk can be updated as

E d+1 ρk = P d+1
ρ ρk = 1

P d+1
ρ ρk = 1 + P d+1

ρ ρk = 0
38

Let ϕk = γk, and substituting (22) in (16), it follows

log q d+1 γk = E d+1 ρk log 1 − γk + 1 − E d+1 ρk log γk

+ αk k−1 − 1 log γk + b̂k k−1 − 1 log 1 − γk

39

From (39), we can see that q d+1 γk is a Beta distribution,

i.e., q d+1 γk = Be γk ; α
d+1
k k , β d+1

k k , where the parameters

α d+1
k k and β

d+1
k k are updated as

α
d+1
k k = αk k−1 + 1 − E d+1 ρk ,

β
d+1
k k = βk k−1 + E d+1 ρk

40

Let ϕk = λk, and substituting (22) in (16), it follows

log q d+1 λk = 〠
I

i=0
E d+1 ρk λ

i
k −0 5 yk − h CiXk

T
R−1
k−i yk − h CiXk

+ 〠
I

i=0
λik log μik

41

From (41), we can see that q d+1 λk is supposed to be a
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Time update Variational measurement update

d>D?

Initialization

d = 0
(d) (d)

d = d + 1

Cubature points generate
x
k−1|k−1 (Eq.28)

State prediction
F (.) (Eq.26~Eq.27)

Augmented
state 

Binary random
variable 

Forgetting factor 󰣫

Parameter prediction
(Eq.20~Eq.21)

State measurement update
X

k|k
, P

k|k
 (Eq.31)

Weight update
𝜏
k
 (Eq.11~Eq.12)

State estimation
(Eq.33)

Lost parameter update
(Eq.35~Eq.40)

Latency parameter update
(Eq.42~Eq.46)

Measurement
y
k

𝜇
k Latency

probability 

Lost
probability 

k = k + 1

a
k|k−1
ˆ

(d)a
k|k
ˆ

a
k−1|k−1
ˆ

𝛼
k|k−1

, 𝛽
k|k−1

ˆ ˆ

𝛼
k|k

 𝛽
k|k

ˆ ˆ𝛼
k|k
, 𝛽

k|k
, a

k|k

ˆ ˆ

𝛼
k−1|k−1

, 𝛽
k−1|k−1

ˆ ˆ

X
k|k−1

, P
k|k−1

ˆ

(d) (d)X
k|k

 P
k|k

ˆ

X
k−1|k−1

, P
k−1|k−1

ˆ

j

𝛾
k
ˆˆˆ

ˆ

ii i

X̂
k|k

, P
k|k

Figure 1: The flow chart of the algorithm.

Input: X̂k−1 k−1, Pk−1 k−1, f · , h · , yk,Qk−1, Rk−1,αk−1 k−1, βk−1 k−1, âk−1 k−1, ς, I,N
1 Time update:
2 Obtain X̂k k−1 and Pk k−1 using ((26)) and ((27))

3 αk k−1 = ςαk−1 k−1, βk k−1 = ςβk−1 k−1,âk k−1 = ςâk−1 k−1;
4 Variational measurement update:

5 Initialization X̂ 0
k k = X̂k k−1, P

0
k k = Pk k−1, α

0
k k = αk k−1, β

0
k k = βk k−1, â

0
k k = âk k−1, E 0 ρk = β

0
k k/ α 0

k k + β
0
k k , E 0 λk = â 0

k k

∑
I

i=1
â 0 ,i
k k

,

E 0 log γk = ψ α 0
k k − ψ α 0

k k + β
0
k k , E 0 log 1 − γk = ψ β

0
k k − ψ α 0

k k + β
0
k k , E 0 log μik = ψ â 0 ,i

k k − ψ ∑I
i=1â

0 ,i
k k ;

6 for d = 0 to D − 1 do

7 Update q d+1 Xk =N Xk ; X̂
d+1
k k , P d+1

k k given E d ρk and E d λk using ((33));

8 Update E d+1 ρk using ((38));

9 Update α 0
k k and β

0
k k using ((40));

10 Compuate E d+1 log γk and E d+1 log 1 − γk as ((36));
11 Update E d+1 λk using ((44));

12 Update â d+1
k k using ((46));

13 Compuate E d+1 log μik as ((43));
14 end

15 X̂k k = X̂ d+1
k k , Pk k = P d+1

k k , αk k = α d+1
k k , βk k = β

d+1
k k , âk k = â d+1

k k ;

Output: X̂k k, Pk k, αk k, βk k, âk k,The estimated lost probability γk = βk k/ αk k + βk k ,The estimated latency probability

μk = âk k/∑I
i=1â

i
k k

Algorithm 1: The proposed VB-based Gaussian sum cubature Kalman filter algorithm.
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multinomial distribution, i.e., q d+1 λk = I
i=0 ξ

d+1 ,i
k

λik
,

where the parameter ξ
d+1 ,i
k can be updated as

ξ
d+1 ,i
k ∝ E d log μik −0 5E d+1 ρk tr Ai

kR
−1
k−i ,

ξ
d+1 ,i
k = ξ

d+1 ,i
k

∑I
i=0ξ

d+1 ,i
k

,

42

where

E d+1 log μik = ψ â d+1 ,i
k k − ψ 〠

I

i=0
â d+1 ,i
k k , 43

and E d+1 λik is updated as

E d+1 λik = ξ
d+1
k 44

Let ϕk = μk, and substituting (22) in (16), it follows

log q d+1 μk = 〠
I

i=0
E d+1 λik + âik k−1 − 1 log μik

45

From (45), we can see q d+1 μk is supposed to be a

Dirichlet distribution, i.e., q d+1 μk =D μk ; â
d+1
k k , where

the parameter â d+1
k k can be updated as

â d+1
k k = âk k−1 + ξ

d+1
k 46

The flow chart and one time step of the proposed
algorithm are summarized in Figure 1 and Algorithm 1,
respectively.

Remark 1. The common way of dealing with (23) is
augmenting measurement vector, and the modified matrix
Rk−i = Rk−i/ E d ρk E

d λik is given to the diagonally aug-
mented measurement noise covariance matrix [27, 29, 32, 33].
However, in some cases, the probability of delay or loss of a
step, E λik or E ρik , may be close to zero. It will cause Rk−i to
be infinite and lead to filter collapse. In this paper, this
problem is avoided by using probability to update the weight
of each Gaussian component. Therefore, the stability of the
proposed algorithm is improved.

4. Simulations

In this section, the proposed VB-based Gaussian sum
cubature Kalman filter with delay and loss measurement

Table 1: ARMSEpos and ARMSEvel of VBAKFLM, IUKF-NL,
SWVAKF, MLCKF, MCKF, and proposed VBGSFDLM.

Filter ARMSEpos (m) ARMSEvel (m/s)

VBAKFLM 122.5286 30.9837

IUKF-NL 113.7579 26.1438

SWVAKF 21.3963 4.2468

MLCKF 5.3894 1.3123

VBGSFDLM 4.3503 1.0769

MCKF 4.2964 1.0448

0 20001000

True
VBGSFDLM

3000
Time (s)

5000 60004000

D
el

ay
 p

ro
ba

bi
lit

y

0.7

0.65

0.55

0.5

0.45

0.4

0.35

0.6

0.75

Figure 4: True and estimated delay probability.
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(VBGSFDLM) effectiveness is verified by a tracking simula-
tion applied in air-traffic control system with unknown
probability of MRMDL [11]. The maximum number of
delays is set as 3. And the target dynamic is modeled by a
constant turn rate model, i.e.,

xk =

1 sin ΩT
Ω

0 −
1 − cos ΩT

Ω
0

0 cos ΩT 0 −sin ΩT 0

0 1 − cos ΩT
Ω

1 sin ΩT
Ω

0

0 sin ΩT 0 cos ΩT 0
0 0 0 0 1

xk−1 +wk−1,

47

where T = 1 s denotes the sampling interval and Ω repre-
sents turn rate; the state vector xk consists of position and
velocity in the x and y directions and Ω, which is defined

as xk = xTk , xTk , yTk , yTk ,Ω
T
, while the nonlinear measure-

ment equation is composed of range rk and bearing θk:

zk = ρk
rk

θk
+ vk = ρk

x2k + y2k

arctan yk
xk

+ vk,

yk = λ0kzk + λ1kzk−1 + λ2kzk−2 + λ3kzk−3,

48

where ρk and λk are both random variables with prob-
ability as

p ρk = 0 =
0 1, k < 2000,
0 2,2000 ≤ k < 4000,
0 15,4000 ≤ k ≤ 6000,

p λ0k = 0 =
0 7, k < 2000,
0 4,2000 ≤ k < 4000,
0 5,4000 ≤ k ≤ 6000

49

In the simulation, we consider that each step has the
same delay probability, so the probability distribution of
λk can be expressed as p λ0k = 1 = 1 − p λ0k = 0 , p λ1k = 1 =
1 − p λ0k = 0 p λ0k = 0 , p λ2k = 1 = 1 − p λ0k = 0
p λ0k = 0 2

, and p λ2k = 1 = p λ0k = 0 3
. The initial state

estimatation x̂0 0 is generated randomly from the true value x0
= 0,20,0, 0,0 15 T and P0 = diag 10000,100,10000,100,0 01 .
The covariances Q and R are given as Q = diag q1, q1, T and
R = diag δ2r , δ2θ where

q1 =

T3

3
T2

2
T2

2 T

,

δr = 5m,
δθ = 0 0017 rad

50

To evaluate the accuracy of the state estimation, the root
mean square errors (RMSEs) of position and velocity are con-
sidered as the metric:

RMSEp =
1
M

〠
M

m=1
xm − x̂m 2 + ym − ŷm 2 ,

RMSEv =
1
M

〠
M

m=1
xm − x

m 2
+ ym − y

m 2
51

The number of Monte Carlo runs is set as M = 500.
The proposed filter is compared with the MLCKF [11],

the matched CKF (MCKF), the SWVAKF [23], the IUKF
with a nominal lost probability (IUKF-NL) [28], and the
VBAKFLM [29]. The nominal latency probability of
MLCKF is set as μk = 0 5, 0 25, 0 125, 0 125 T . The window
length is set as L = 5 in SWVAKF. In the IUKF-NL and

VBAKFLM, the initial shape parameters are selected as α0 0

= 10, β0 0 = 10. The nominal loss probability of measurement

is set as 0.5. In the proposed VBGSFDLM, α0 0 = 10, β0 0 = 10,
and â0 0 = 16, 8, 4, 4 T , which is the same as the weight of
MLCKF. And the number of iterations is set as D = 10, forget-
ting factor ς = 0 97 for SWVAKF, IUKF-NL, VBAKFLM, and
VBGSFDLM. In MCKF, the delay and loss of measurement
are precisely known. Therefore, the estimated result of MCKF
can be regarded as the optimal result.

Figures 2 and 3 show the RMSEp and RMSEv of the
VBAKFLM, IUKF-NL, SWVAKF, MLCKF, MCKF, and
VBGSFDLM. And the average RMSEs (ARMSEs) are given
in Table 1. It can be seen that the ARMSEs of position of the
proposed VBGSFDLM is reduced by 96.45%, 96.18%,
79.67%, and 19.27%, respectively, compared with VBAKFLM,
IUKF-NL, SWVAKF, and MLCKF while the ARMSEs of
velocity is reduced by 96.52%, 95.88%, 74.64%, and 17.94%.
Due to the fact that the IUKF-NL and VBAKFLM can only

Table 3: Single step running time of SWVAKF, MLCKF, IUKF-NL,
VBAKFLM, and proposed VBGSFDLM.

Filter Single step running time (ms)

VBAKFLM 3.32e-1

IUKF-NL 1.37

SWVAKF 1.53e-1

MLCKF 3.76e-1

VBGSFDLM 3.81
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estimate the probability of one-step delay and measurement
loss, respectively. The state estimation accuracy of above two
filters will be affected when measurement loss and multistep
randomly delay exist at the same time. Although the
SWVAKF uses a sliding window to reduce the influence of
multistep random delay, the estimation accuracy is still

affected by time-varying delay probability because it is
designed to identify time-varying Gaussian noise. While
MLCKF updates the weight of each state estimation compo-
nent by combining likelihood probability and multistep delay
probability, it achieves some degree of robustness against inac-
curate prior delay and loss probability under the framework of
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Figure 7: True and estimated delay probability when ς = 0 95, 0 96, 0 97, 0 98, 0 99, and 1.
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GSF. However, MLCKF does not have the ability to identify
the time-varying measurement delay and loss probability. In
the proposed VBGSFDLM, the augmented state includes the
state with multistep random delay and a Gaussian component
with the predicted state is added to the GSF to deal with the

case of measurement loss. In addition, the augmented state
and parameters are estimated jointly by VB method to obtain
accurate identification of the unknown measurement delay
and lost probability which improves the estimation accuracy
of the state. Therefore, the estimation accuracy is the closest
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to MCKF. Furthermore, the true and estimated delay and loss
probability are shown in Figures 4 and 5, which illustrate that
the proposed VBGSFDLM can accurately estimate the multi-
step random delay and loss probability.

Besides, the computational complexity of VBGSFDLM is
compared with VBAKFLM, IUKF-NL, SWVAKF, MLCKF,
and VBGSFDLM. The number of multiplications in each
algorithm is considered as the evaluation criterion. The
results are shown in Table 2. And the single step running
time of each filters is shown in Table 3, where Nx = I + 1
n and Nz = I + 1 m are the dimension of the augmented
state and measurement vector, respectively. Mn = 2Nx is the
number of sampling points.Mx andMz represent the number
of multiplications in nonlinear transformations F · and h ·
in augmented system. It can be seen that the significant
improvement of estimation accuracy is at the cost of
computation.

Further, we discuss the effect of the number of iterations
on VBGSFDLM. Figure 6 shows the ARMSEs of position
and velocity when D = 1, 2,⋯, 20. It can be seen from
Figure 6 that the VBGSFDLM has well estimation accuracy
when d ≥ 4 and converges when d ≥ 8.

Next, we study the forgetting factor effect of the time-
varying MRMDL on the performance of VBGSFDLM.
Figures 7 and 8 show the true and estimated delay and loss
probability. And Figure 9 shows the RMSEs of position
and velocity of VBGSFDLM when ς = 0 95, 0 96, 0 97, 0 98,
0 99, and 1. It can be seen from Figures 7 and 8 that
VBGSFDLM with ς = 0 95, 0 96, 0 97, 0 98, and 0 99 has
essentially consistent estimation performance in probability
estimation. However, VBGSFDLM with ς = 1 0 converges

slowly because ς = 1 0 corresponds to the case of constant
probability of MRMDL so that the estimation performance
degrades when the actual probability is slowly varying.
Besides, Figure 9 shows that the RMSEs of position and
velocity are almost the same in different ς.

Finally, in order to investigate the influence of target
maneuvering on the tracking performance of the VBGSFDLM,
different values of process noise Qk = qrQ are taken in the
simulation. In Figure 10, the RMSEs of position and velocity
are shown with qr = 0 001, 0 01, 0 1, 1, 2, and 5. Obviously, it
can be seen in Figure 10 that the tracking RMSE increases when
the process noise increases. This shows that the proposed
algorithm needs a precise state equation to achieve accurate
estimation of unknown delay and loss probabilities. And
process noise will significantly affect the estimation results of
the algorithm.

5. Conclusion

In this paper, we proposed a VB-based Gaussian sum filter
to obtain the estimation of state for nonlinear systems with
MRMDL with unknown probability. By introducing two
random variables, the Gaussian mixture distribution is
rewritten into an exponential multiplication form and VB
method is used to estimate the state and the unknown mea-
surement delay and lost probability jointly. Simulations
show that the proposed VBGSFDLM has a better perfor-
mance in state estimation and probability identification in
the presence of unknown and time-varying delay and loss
probability.
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