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Aeroengines use numerous sensors to detect equipment health and ensure proper operation. Currently, filtering useful sensor data
and removing useless data is challenging in predicting the remaining useful life (RUL) of an aeroengine using deep learning. To
reduce computational costs and improve prediction performance, we use random forest to evaluate the feature importance of
sensor data. Based on the size of the feature corresponding to the Gini index, we select the appropriate sensor. This helps us to
determine which sensor to use and ensures that the computational resources are not wasted on unnecessary sensors.
Considering that the RUL of equipment changes in a progressively more complex manner as the equipment is used over time,
we propose an improved squeeze and excitation block (SSE) and combine it with a convolutional neural network (CNN). By
enhancing the feature selection ability of CNN through segmented squeeze and excitation block, the model can focus on
important information within features to effectively improve prediction performance. We compared our experiments with
other RUL experiments on the CMAPSS aeroengine dataset and then conducted ablation experiments to verify the critical role
of the methods we used.

1. Introduction

Mechanical maintenance workers employ equipment fault
diagnosis and health management techniques to guarantee
the safety and dependability of mechanical industrial opera-
tions. They assess, analyze, and forecast the operational con-
dition of mechanical equipment to ascertain its proper
working or any abnormalities. In addition, they analyze the
causes of equipment malfunctions and forecast the remain-
ing lifespan of the equipment based on their expertise and
the equipment’s attributes. Research data reveals that more
than 60% of aircraft failures are attributed to turbofan
engine malfunctions, highlighting its critical importance as
a component in any aircraft [1]. In order to mitigate the
severe repercussions of abrupt malfunction, it is imperative
to guarantee the smooth and consistent functioning of
mechanical apparatus or components by precisely ascertain-
ing their remaining useful life (RUL). Aviation engines pro-
duce a significant volume of complex data during their

operation, characterized by its high dimensionality, nonline-
arity, and temporal and spatial properties. Extracting mean-
ingful features from the data and mapping them to RUL
forecasts is a difficult task.

Several models have been created to forecast the remain-
ing useful life (RUL) of turbofan engines. The models can be
classified into three main categories: model-based, data-
driven, and hybrid approaches [2]. Themodel-based approach
entails developing amathematical model that contains consid-
erable a priori information of the equipment in question and
using it to predict the remaining life of the equipment by
stating its failure mechanism. However, this approach also
imposes certain constraints on model predictions [3, 4].
Model-driven methods rely heavily on the accuracy of models
and parameters, but as the complexity of prediction equip-
ment increases, the complexity of model construction rises
while the accuracy is difficult to guarantee. In the task of aero-
engine residual life prediction, the adaptability and generaliza-
tion ability of the model are also limited when faced with
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multiple operating environments and different failure mecha-
nisms. Data-driven methods relate to the use of machine
learning and statistical techniques to anticipate the remaining
life of mechanical equipment. These methods assess the oper-
ation information and characteristics of the equipment, dis-
covering potential links with the RUL. Unlike traditional
approaches, data-driven procedures do not require a huge
amount of prior knowledge or understanding of the failure
mechanism. This makes them easier to use, and they have
become the mainstream of today’s research [5–7]. Data-
driven approaches require to verify the accuracy and com-
pleteness of the data and need to be trained andmodelled with
a huge amount of previous data from the device. If the amount
of data is insufficient or unrepresentative, the prediction out-
puts of the model will likewise become less accurate. A hybrid
technique is a combination of the first two methods to esti-
mate the RUL of a device through a failure mechanism model
and data-drivenmethods. Hybrid approaches not only include
the selection of weights for the two methods but also increase
the complexity of the overall predictionmethod as well as limit
the interpretability of the prediction method, making the
results harder to understand.

The aeroengine itself is characterized by accuracy and
complexity, and when it functions, it generates multiple
components and system status information and also causes
mutual effects and linkages between various components.
When a single component fails, it causes the failure of asso-
ciated components, leading to the coupling of different fail-
ure modes. This makes the failure modes of the aeroengine
numerous and complex, so it is difficult to develop a physical
failure model based on the failure mechanism while facing
the aeroengine based on the construction of a physical fail-
ure model. Therefore, a data-driven method is commonly
chosen for the task of forecasting the remaining life of
aeroengines.

The progress of artificial intelligence and sensor technol-
ogies has enabled us to use data-driven methodologies to
train deep learning models. By mapping the job output
end-to-end and automatically learning data representation
and features, we may significantly reduce the complexity of
the prediction task using a huge amount of collected data.
Deep learning has attracted great attention from researchers
due to its remarkable nonlinear fitting capabilities that can
yield distributions closer to reality. Among the deep learning
techniques, convolutional neural networks (CNN) have
achieved great success in different computer vision domains
such as image processing, automatic driving, and medical
image analysis. In-depth research on network structure,
optimization, regularization, normalization, and other key
areas has substantially enhanced the performance of CNN,
making it highly attractive in the industrial sphere. Li et al.
introduced a deep convolutional network (DCNN), which
learns to extract high-level abstract information from sensor
input by stacking four convolutional layers to achieve RUL
prediction [8]. Wang et al. proposed a combination of
CNN and long short-term memory (LSTM) network,
wherein CNN adaptively extracts deep features and inputs
them into the LSTM network to construct trending quantita-
tive health indicators [9]. Yang et al. introduced a dual CNN

model architecture that predicts and distinguishes anomalies
based on different degradation patterns, combining degrada-
tion models for RUL prediction [10]. Jin et al. introduced a
CNN network based on positional coding to model sequen-
tial information, facilitating quicker training and acquisition
of sequential information for reliable RUL prediction [11].
Lin et al. developed a signal selection approach that assesses
the signal’s ability to map RUL and picks more valuable sig-
nal data, which is fed into a fully convolutional network for
RUL prediction [12].

Feature selection is crucial for remaining life prediction
[13], and there have been several relevant works [14, 15].
Li et al. immediately input all original features into the
model without considering feature relevance, which can
increase model computation cost and reduce prediction
accuracy owing to noisy data. Chen et al. created an LSTM
network and employed self-attention methods to learn from
the raw data, identifying representative sequential features
and giving them more weight for RUL prediction [16]. Liu
et al. presented a feature attention technique, establishing a
feature attention weight matrix to analyze various feature
inputs, achieving adaptive weighting to focus the model
more on significant features [17]. However, they neglected
that the remaining usage life of equipment frequently fol-
lows a linear diminishing trend, owning excellent fitting
potential. Irregular feature changes might be disregarded;
however, this data could include vital information for RUL
prediction. To circumvent this, we applied random forests
to evaluate multiple features [18, 19] and based on corre-
sponding importance weight parameters to accurately retain
the useful features for RUL prediction [20, 21].

Attention mechanisms have shown great success in the
realms of image recognition and natural language process-
ing. One strategy involves replicating the correlation of fea-
ture response space or channel relevance to enhance the
representation capabilities of deep convolutional networks
[22]. By introducing squeeze and excitation (SE) blocks into
CNN networks, the SE block first runs the squeeze opera-
tion, which comprises global average pooling to obtain a sca-
lar value for each channel. Subsequently, the excitation
module turns these scalars into channel weights, enabling
the network to learn to choose and emphasize the impor-
tance of channel information while suppressing less signifi-
cant aspects. However, SE blocks do have certain
limitations [23] since they apply the squeeze operation indis-
criminately to global information, thereby hiding changes in
particular data patterns. Therefore, we have explored inte-
grating SE blocks into CNN networks for RUL prediction
in turbofan engines. We have improved the SE blocks based
on data fluctuation features and machine degradation pat-
terns. We segment global information to keep more sequen-
tial data’s upward and downward changes, and we refer to
this as segmented squeeze and excitation blocks (SSE).

Aeroengines are equipped with sensors at multiple
critical locations to collect degradation information, which
results in a large amount of data showing degradation
trends, but there is also a lot of redundancy and irrelevance
in this data. Considering the failure coupling caused by the
interconnections between aeroengine components, when a
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single component starts to degrade, other related compo-
nents will also start to degrade. Therefore, direct prediction
of all the sensor characteristic data will not only increase
the computational cost but also make the model overfit
due to irrelevant and redundant data, and the accuracy of
prediction results will be reduced. The main goal of our
research is to select more comprehensive and representative
sensor characteristic data from a large amount of sensor
data, which contains more degradation trend information,
so as to improve the accuracy of aeroengine residual life pre-
diction. The paper leverages random forest to evaluate the
relevance of sensor feature data. This is done to filter out
the feature data that are relevant for forecasting RUL and
remove the unnecessary information. By doing this, it mini-
mizes the processing cost and enhances the prediction accu-
racy. Based on the RUL change condition, the device will
initially run normally for some time; after a while, its perfor-
mance will start to degrade. To increase the accuracy of RUL
prediction, the SE in the field of image recognition has been
improved. The global compression has been altered to seg-
mented compression, which corresponds better with the
actual RUL prediction condition. This new approach main-
tains more data change patterns and hence increases the pre-
diction accuracy.

The main contributions of this paper are as follows:

(1) Random forest is used to analyze the feature impor-
tance of the sensor data of turbofan engines to filter
the valuable information that can improve the pre-
dictive RUL prediction ability

(2) The SE attention mechanism is improved to retain
more feature change trends for the characteristics
of turbofan engine service life change trends

(3) Demonstrate the necessity and excellent RUL predic-
tion performance of the feature selection of random
forests and SSE combined CNN that we have used
through comparison and ablation experiments

The rest of the paper is organized as follows: the adopted
methodological framework is described in Section 2. A dem-
onstration of our experimental setup is presented in Section
3. In Section 4, a series of comparison and ablation experi-
ments are performed to demonstrate the excellent perfor-
mance of our method. Finally, the paper is summarized
and the directions for future research are outlined.

2. Methods

In our RUL prediction method, we utilize random forest to
select features and combine CNN with the SSE. This section
provides a detailed explanation of the RUL prediction task
and the methodology employed. You can refer to the flow-
chart depicted in Figure 1 for an overview of the entire
methodology.

2.1. Multivariate RUL Projections. The most crucial part of
the experimental process is the multivariate RUL prediction
task, which evaluates the RUL of the device in the future

period using sensor data, operation records, temperature,
vibration, and other information. The training set can be
denoted as TR = Xtr

i , Y tr
i i ∈ 1,N tr , where N tr, Xi

tr ∈
θf∗W , and Y tr

i represent the total number of samples in the
training dataset, the i-th input sample in the training set,
and the i-th RUL label value in the corresponding training
set, respectively. In θF∗W , F represents the number of fea-
tures in the input samples, W represents the size of the time
window, and the whole indicates that the i-th input sample
contains all the data volume. The synoptic test set can be
represented as TE = Xte

i , Y te
i i ∈ 1,N te . The prediction

task of RUL is performed by constructing a remaining life
prediction model f x , which is passed to the training set
for earning, and finally allowing the prediction results
f Xi

te and Y te
i to achieve a good fit.

2.2. Random Forest. To increase the accuracy of RUL predic-
tion, we begin by applying random forests for data prepro-
cessing. This helps us to find the most significant sensor
features, which can further boost the RUL forecast accuracy.
Random forests are particularly good for nonlinear classifi-
cation issues because of the mixture of trees. The perfor-
mance of RUL prediction can be further improved with
increasing the number of forests [24]. The random forest
algorithm is simple and has small computational cost, and
through the random forest for importance analysis, it can
be achieved at a reduced computational cost of feature
screening, reduce the computing complexity of the future
training phase, and increase the accuracy of the prediction.
Through the important evaluation, it can be seen how much
each feature contributes to each spanning tree, and through
the summing and average, it can be seen that the relevance
of each sensor data is compared, and the screening of feature
data is accomplished.

Random forest is a sort of machine learning technique
that uses several decision trees. Each tree is formed indepen-
dently and learns and predicts from its own set of data,
which provides the random forest some generalization
power. When creating each tree, the bootstrap sampling
method is utilized to randomly select samples from the orig-
inal dataset with replacement. Every time a branch of the
decision tree is constructed, it does not take into account
all the features in the dataset. Instead, it randomly selects a
subset of features to decrease the potential of model overfit-
ting. Random forest employs the Gini index or out-of-bag
data to evaluate the importance of attributes based on the
makeup of the decision tree. We use the Gini index
approach to evaluate feature relevance [19]. The flowchart
of the feature importance calculation of the random forest
algorithm is shown in Figure 2. The feature importance eval-
uation of random forest is to evaluate the feature corre-
sponding to each node in the tree to see how much each
feature contributes to the tree where it is located, and the
importance evaluation of each feature is denoted by FIM.
Assuming that there are a total of J features, I trees, and C

categories, the Gini index score FIM Gini
j is performed on

each feature Xj.

3International Journal of Aerospace Engineering



The Gini index of node q in the i-th tree is given by

Gini iq = 〠
C

C=1
〠
C ′≠C

P i
qc P

i

qc′ = 1 − 〠
C

C=1
P i
qc

2
1

Here, Pqc represents the proportion of category C in
node q, where the number of categories C is set as the num-
ber of original features. The degree of impurity of each
sample in the node is calculated, after which the feature with
the highest reduction in impurity is selected for the segmen-
tation node. Finally the importance of features can be evalu-
ated by calculating the number of times each feature has
been selected in all decision trees and normalizing it to an
importance score.

Based on the change in the Gini index before and after
branching of node q, it can be concluded that the impor-
tance of feature on node q of the i-th tree is

FIM Gini i
jq = Gini iq −Gini il −Gini ir , 2

where Gini il and Gini ir denote the Gini index of the two
new nodes after the branching of node q.

If the set of feature occurrences in decision tree i is Q,
with a total of I trees, then the importance in the forest is

FIM Gini
j = 〠

I

i=1
FIM Gini i

j 3

Finally, normalize the importance scores of all features.

FIM Gini
j =

FIM Gini
j

∑J
j′=1FIM

Gini
j′

4

Observing the distribution of FIMi, higher numerical values
indicates that the feature contains more valuable information
and possesses a stronger mapping capability for RUL predic-
tion. When FIM is 0, it signifies that the feature does not con-
tribute to RUL prediction. These sensor data do not contain
RUL label information when they are passed into the random
forest for feature importance assessment, so the random forest
cannot generate a mapping between the feature data and the
corresponding RUL label values, which means that the feature
data are not able to produce a practical connection with the
RUL to obtain a higher weight advantage, and we can only rely
on the feature data to train to achieve the global optimal point
of themodel and obtain the features that containmore informa-
tion and value for the RUL prediction. It can only rely on the
feature data to train the model to achieve the global optimal
point and to obtain features that contain more information
and are more valuable for RUL prediction.

2.3. Convolutional Networks Based on Segmented Squeeze
and Excitation Blocks. The attention mechanism in deep
learning is a strategy that mimics the human cognitive

Weighted feature data

Segmented squeeze and
excitation blocks 

Convolutional neural
networks

Trained model

Training

Te
sti

ng

Data preprocessing

Dataset

Random forests

Feature selection

Feature importance
assessment

Input data RUL

Figure 1: RUL prediction flowchart.

BootstrapDataset

Gini index Select feature nodes

Get valuable dataFeature importance
assessment

Building decision
trees

Feature select

Figure 2: Flowchart of random forest feature importance
calculation.
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function of vision, which allows neural networks to focus
their attention on more useful information while process-
ing incoming data. By incorporating the attention mecha-
nism into the neural network, it enables the network
model to automatically learn and focus on the key infor-
mation of the input, thus delivering increased model per-
formance and generalization. After analyzing the value of
the features by random forest and filtering the features
that contain more valuable information for RUL predic-
tion, we opted to further upgrade the network model to
extract more vital information from the incoming feature
data. We discovered that SE in the image domain may
reweight the feature data and deliver a good accuracy
boost to the model via improved SE and combining it
with CNN to accomplish RUL prediction for aeroengines.
The specific network structure diagram is shown in
Figure 3 in detail.

The SE consists of three primary procedures: first, it
performs a global average pooling operation to compress
and then independently extrude the whole feature data into
a single value, with each value reflecting the relevance of the
related feature to the total feature data. Then, the ongoing
modification of the data in each extrusion channel is imple-
mented through single or multiple fully connected layers,
and the ReLU activation function is employed to capture
and express the nonlinear data relationships. In this process,
the network model learns the relevance of each channel.
Finally, the feature representation is strengthened by
repassing the learned channel feature weights into the
CNN so that it can focus on more essential features in sub-
sequent training.

However, we noticed that the global average pooling
operation of SE works efficiently in the image domain, but
when it comes to RUL prediction, this direct compression
of the global information has major restrictions. The global

pooling method can potentially conceal some data that indi-
cates a local rising or downward trend, which could be
essential for RUL prediction. The depreciation of industrial
equipment often starts after a certain length of use [25]. Fur-
thermore, the RUL of industrial equipment can be separated
into two states: a smooth change state and a quick decline
state. In RUL prediction, segmented linear deterioration is
usually employed as the objective function to estimate this
[26]. However, the straight use of SE for RUL prediction is
impacted by the smooth state data and loses a substantial
number of local data changes. This can substantially impair
the accuracy of RUL predictions. To be able to make SE bet-
ter for the RUL prediction task, we propose SSE, which not
only fits the requirements of the RUL prediction task but
also maintains more data variance ups and downs, thus giv-
ing a great improvement to the RUL prediction accuracy,
and the segmented compression improvement of SE is
shown in Figure 4. Inspired by the RUL segmentation dete-
rioration of industrial equipment, we segment the entire
data by setting a length value and dividing the data into sev-
eral length segments to separate the two states of RUL
change, smooth change, and rapid decrease, as much as fea-
sible. Then, when the segmented data are evenly divided into
two segments, the average pooling operation is done, to
maintain more local data change trends to accomplish more
accurate RUL prediction.

Transform the feature data X into a tensor U ∈ R1×H×C as
input to the SSE, and then convert tensor U ∈ R1×H×C into a
tensor F ∈ R1×S×C through the squeezing operation, with the
squeezing operation formula as follows:

Fsq C, n =
1

fl H/N
〠

n∗fl H/N

i= n−1 ∗fl H/N
X C, i , 5

Input

Segmented
average pooling 

FC

FC

Sigmoid

Scale

Weighted feature data
RUL

Dense
Dense

ReLU

ReLU

BN

BN

Conv layer 3 Filter 64

Conv layer 2 Filter 128

ReLU
BN

Conv layer 1 Filter 64

CNN

1 × H × C

1 × H × C

1 × N × C

1 × N × C

1 × 1 × C

1 × 1 × C

Segmented squeeze and excitation blocks

Figure 3: Structure of convolutional network based on segmented extrusion and excitation blocks.
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where C represents the number of features selected through
the random forest, fl x denotes the floor function, H is the
length of segmented feature data, N is the length of seg-
mented compressed data, X C, i represents the i-th data
of the corresponding feature channel, and n represents the
total number of data. Using the process of segmented com-
pression helps to separate the two phases of RUL as much
as possible. After that, average pooling is performed to retain
more data variations and achieve better feature information
characterization capability than SE. In this process, the value
of N is set to 2 based on the actual setting of RUL linear seg-
mentation degradation. Meanwhile, the value of H is set
considering the average running period of each data subset
and the complexity of the data. Specifically, the FD001 to
FD003 datasets are set to 35, while the FD004 dataset is set
to 25 considering that it is the most complex. The specific
value setting and linear degradation segmentation point set-
ting will be analyzed and demonstrated in Section 4 in com-
bination with the SSE.

The squeeze operation formula is as follows:

Fex Fsq,W = σ g Fsq,W = σ g W2δ W1Fsq , 6

where δ denotes the ReLU activation function, σ signifies the
sigmoid activation function, and W1 and W2 represents the
weight matrices of two fully connected layers, respectively.

The output result of the SSE is as follows:

X = Fscale X, Fex 7

The importance weights of all the features are obtained
after the segmented squeeze and excitation operations. Then,
the input feature data is multiplied with its importance
weight by scale operation and reweighted to get new data
with importance weight. Finally, the new data with impor-
tance weights are fed into the CNN to achieve RUL
prediction.

The neurons of each layer in CNN are arranged in 3
dimensions, i.e., height, width, and depth. When dealing
with one-dimensional data from engine sensors, the width
should be set to 1. The CNN mainly consists of an input
layer, a convolutional layer, a ReLU layer, a pooling layer,
and a fully connected layer. Before the data is transferred

to the CNN, it undergoes a pooling operation in the SSE,
so we do not include a pooling layer in the CNN structure
to avoid losing too much information and failing to capture
the key features, which leads to the degradation of the
model’s performance. The CNN consists of three convolu-
tional layers, and the formula of the convolutional layer is
as follows:

Convi = Re LU BN Fliterci ⊗ Input + bi , 8

where Input is the input of each layer and bi is the bias term
for each layer. The first layer has 64 filter sizes, the second
layer has 128 filter sizes, and the third layer has 64 filter
sizes. After each layer, there is a normalization layer and a
ReLU layer. Finally, as shown in Figure 3, the deep feature
data extracted by the three convolutional layers is passed
to the fully connected layer. The computation of the final
RUL is achieved through global average pooling and two
layers of fully connected layers.

3. Experimental Setup

In this section, we show the data preprocessing and experi-
mental setup of the experiment.

3.1. CMPASS Dataset. In this section, we utilize the
CMPASS dataset to further validate our approach [27].
The CMPASS dataset is acquired from the operation of tur-
bofan engines, equipped with 21 sensors at various engine
components and places. It comprises four subsets: FD001,
FD002, FD003, and FD004. Each subgroup reflects diverse
operational conditions and fault modes, with distinct initial
states and degrees of wear. The training and test sets relate
to the same turbofan engine, where the training data starts
with normal operation and steadily records performance
decrease until the occurrence of a problem. The test set
includes sensor data only up to just before the engine fault.
The specific details of the CMPASS dataset are presented
in Table 1. Among the four subsets, FD002 and FD004 con-
tain more constraints and training samples, and complex
operating conditions and fault modes can challenge RUL
prediction, leading to decreased prediction accuracy.
Achieving good results in RUL prediction for both simple
and complex datasets is a challenging task.

Data

Data

···

Segmented average pooling

Segment

Squeeze

Data Data Data Data Data Data Data Data

Figure 4: Improvements to SE—segmented average pooling.
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3.2. Data Processing. First, after evaluating feature impor-
tance using random forest, we select sensor data with impor-
tance scores greater than 0.005. These sensor features, which
provide more effective information for RUL prediction, are
marked in red, while those that do not meet the threshold
are marked in blue, as shown in Figure 5. Additionally, we
apply normalization to each selected feature to expedite the
model’s search for the optimal solution.

When estimating the RUL of industrial equipment, the
equipment will remain in a normal state for a period of
time after it starts to run, and it is not acceptable to antic-
ipate how long the equipment will survive when it is still
in a healthy state. It is only reasonable to forecast the
RUL when the performance of the equipment is degraded
after a long period of use. Zheng et al. proposed to adopt
a segmented linear degradation model in the RUL predic-
tion task [28], in which the RUL value of the engine is set
to a fixed value from the initial operation to the value that
reaches the segmentation point after a period of time of
operation and then begins to decline rapidly. Afterward,
by observing the dataset, the average run length of all
the engines was around 210 and the minimum run period
was 127. Heimes first proposed to set the segmented deg-
radation point between 120 and 130 [29], but this was the
result of their observation and inference using a multilayer
perceptron (MLP).

As we consider the tendency of segmental degradation
in the RUL prediction process to improve the global
compression of SE, we perform segmental compression
on the engine sensor data as input and then divide each
segment into two for squeezing and excitation, and at the
same time, we adopt 115 as the segmentation point of
linear segmental degradation in the experiments, which
is shown in Figure 6, and at the same time, we set the
time window size of all three data subsets from FD001
to FD003 in the experimental data to 35, which is the
same as the time window size of the most complex data
subset FD004 in Section 2. At the same time, to ensure
the reduction of the mutual influence between segment
compression and RUL segment degradation, the time
window sizes of the three data subsets from FD001 to
FD003 in the experimental data are all set to 35, and
the time window of the most complex data subset
FD004 is set to 25, which is consistent with the size of
the pooling window of the pooling layer in the segment

compression in Section 2. In this way, the improvement
of SE is realized based on the actual degradation of
RUL, and the mutual influence of different degradation
states of RUL is avoided to the greatest extent, to realize
the retention of more data change content and improve
the model prediction performance. We realize the
improvement of SE based on the distribution of RUL
and actual data, combined with the feature importance
assessment of random forest, and we will demonstrate
its excellent performance in the following.

In the SSE, the hyperparameter “ratio” is set to 1,
considering the differences between sequential data and
image data to reduce the computational complexity and
cost of the model [30, 31]. The batch size in the model
is set to 1024, and the training epochs are set to 1000.
Early stopping is configured with 40 patients during
training and 20 during testing. The chosen optimizer is
Adam. The learning rate is reduced by a factor of 0.5
when the loss stops improving, with the minimum learn-
ing rate set to 0.0001.

3.3. Model Evaluation Indicator. To evaluate the RUL pre-
diction performance of the CNN model with feature impor-
tance selection and the SSE, we utilize two model evaluation
metrics: root mean square error (RMSE) and the scoring
function (S), where RMSE is a more common metric in pre-
diction tasks. yi represents the true value and f x represents
the predicted value. The formula is shown in the following
equation:

RMSE = 1
N
〠
n

i=1
yi − f xi

2 9

RMSE is generally used to quantify the divergence
between expected values and actual values, and it is sensitive
to outliers. When there is a considerable gap between antic-
ipated values and actual values, RMSE grows appropriately.

The scoring function, on the other hand, is specifically
designed for RUL prediction tasks and sets itself apart from
other evaluation metrics by placing a stronger emphasis on
predicting the timing of failure, particularly in the later
stages of the task. In the realm of industrial equipment oper-
ation, it is crucial to minimize losses caused by equipment
failures. When the predicted value exceeds the actual RUL

Table 1: CMPASS dataset.

Data
CMPASS dataset

FD001 FD002 FD003 FD004

Training set 100 260 100 249

Average training set period 206 206 247 245

Test set 100 259 100 248

Test set average period 130 130 165 166

Operating conditions 1 6 1 6

Failure model number 1 1 2 2

Number of training samples 17731 48819 21820 57522
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of the equipment, the score is penalized severely. Ti repre-
sents the true value and Pi represents the predicted value,
as illustrated in the following formula:

S =

〠
N

i=1
e Ti−PI /13 − 1 , Ti > Pi,

〠
N

i=1
e Pi−TI /10 − 1 , Ti ≤ Pi

10

4. Comparative Analysis of Forecast Results

To demonstrate the importance and excellent performance
of the random forest feature selection and improvement of
SE that we use, we analyze the results of ablation experi-
ments, comparative experiments, segmentation points, and
different settings of time step corresponding to the RUL pre-
diction results to demonstrate that our method can effec-
tively improve the performance of the model for the RUL
prediction of aeroengine.
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Figure 6: RUL segmented linear descent.
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4.1. Ablation Experiment. Firstly, the ablation experiments
involve combinations of four different methods: RF+SSE
+CNN (our method), RF+SE+CNN, RF+CNN, and CNN.
RF symbolizes random forest for feature selection, while
SSE represents the upgraded SE block, which features seg-
mented squeezing and activation. To ensure the dependabil-
ity of the experimental outcomes, each subset is explored
with five times during training, and then, the averages are
taken. These methods are used for RUL prediction, and the
resulting errors are accumulated, as shown in Figure 7, we
pick one engine from each of the four subdatasets for dem-
onstration, and it can be seen from the figure that the error
accumulation of our method for full life prediction on each
test engine is smaller than the other methods, and as time
goes by, the RUL prediction task is produced by our method
on the smaller errors and more accurate predictions. The
excellent performance of our proposed method also gets bet-
ter and better with continuous prediction after our method
passes the gentle decline phase in the RUL prediction task,
i.e., when the decline segmentation point RUL is 115. For

RUL prediction of aeroengines, the late prediction accuracy
is very important. The complete ablation experiment results
are shown in Table 2.

We accurately evaluate the engine RUL prediction by
aggregating RMSE, score, and prediction loss on the four
datasets, clearly and thoroughly exhibiting the engine RUL
deterioration features to optimize and enhance the model
to effectively improve the model performance.

4.2. Comparison with Other Methods. In this section, we will
compare our method with other state-of-the-art approaches
on the same dataset to demonstrate the excellence of our
method and predictive performance. As shown in Table 3,
included among these, the hybrid model which is based on
a combination of CNN and LSTM exhibits better perfor-
mance than deep LSTM. DCNN improves feature extraction
by using a time window for data preparation. MODBNE is a
multiobjective ensemble learning method that evolves multi-
ple deep belief networks for RUL estimation models based
on accuracy and diversity. Tafcn introduces a signal
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selection method and an end-to-end RUL prediction model
using a fully convolutional network, achieving highly accu-
rate RUL predictions.

Our method obtains the best prediction performance
compared to other methods, only slightly poorer than individ-
ual methods in the simpler FD001 dataset of the four subdata-
sets and practically concurrently in the other three datasets. A
series of ablation tests and comparison experiments are suffi-
cient to show that we realize the prediction of RUL through
the feature selection of random forest and the improvement
of SE, which is combined with CNN, and the experimental

results confirm the feasibility of our whole method and dem-
onstrate its excellent prediction performance.

4.3. Analytical Experiment. In this section, we analyze the
effect on the method performance under different RUL deg-
radation segmentation points and different time window
parameters. Considering that FD004 is the most complex
dataset among the four datasets, FD004 is chosen for exper-
imental demonstration.

In the RUL prediction task, the segmentation degrada-
tion model is often taken as the objective function, and in

Table 2: Comparison of ablation experiment results.

Dataset FD001 FD002 FD003 FD004
Evaluation RMSE Score RMSE Score RMSE Score RMSE Score

CNN 14.75 433.3 17.95 3124.7 13.58 398.0 20.23 5803.9

RF_CNN 14.69 416.5 17.84 3045.2 13.50 344.3 20.19 3488.3

RF_SE_CNN 14.51 373.0 17.76 2380.7 13.55 351.8 19.94 4442.5

Our method 13.46 265.9 16.54 1465.1 11.79 222.0 19.39 2036.2

The bold contents represent the optimal experimental results. The ablation experiments show that our proposed method can effectively improve the
prediction performance of the model.

Table 3: Comparison with other state-of-the-art methods on the CMPASS dataset.

Dataset FD001 FD002 FD003 FD004
Evaluation RMSE Score RMSE Score RMSE Score RMSE Score

Hybrid [16] 14.53 322.4 NA NA NA NA 27.08 5649.1

DCNN [8] 12.61 274 22.36 10412 12.64 284 23.31 12466

MOBNE [32] 15.04 334 25.05 5585 12.51 422 28.66 6558

Deep LSTM [17] 16.14 338.0 24.49 4450.0 16.18 852.0 28.17 5550.0

BiLSTM [33] 13.65 261 23.18 4130 12.74 317 24.86 5430

SBRNN [34] 13.58 228 19.59 2650 19.16 1727 22.15 2901

BiGRU [35] 12.65 213 18.9 2264 12.5 233 20.5 3610

Tafcn [12] 13.99 336 17.06 1946 12.01 251 19.79 3671

Our method 13.46 265.9 16.54 1465.1 11.79 222.0 19.39 2036.2

The bold contents represent the optimal experimental results. This table shows excellent performance by comparing the results of the multiple research
methods and comparing our method with other state-of-the-art methods.
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the CMPASS dataset, the average period of each engine run
is about 210, and the authors who first proposed the segmen-
tation point thought that it seems reasonable that the segmen-
tation point should be set at 105, but the selection of the
segmentation point between 120-130 was not systematically
verified by experiments. We considered this issue and con-
ducted experiments when making improvements to the SE.
Considering that the setting of the segmentation point will
set some values larger than the segmentation point as con-
stants and that the segmentation point should not be too
small, otherwise it will cover up some data changes, and
we chose to set the segmentation point between 110 and
130 and demonstrated the experimental results, as shown
in Figure 8(a). By observing the images, it can be clearly
seen that the setting of the segmentation point has an
impact on the experimental results. As the value of the seg-
mentation point decreases, at the point of 115, both RMSE
and score reach their lowest values. Subsequently, when
the value of the breakpoints is further decreased, both RMSE
and score values will rise, thus proving the rationality of the

breakpoint setting and its ability to improve the perfor-
mance of the model.

When improving the SE, to ensure as much as possible
that the constant phase and the fast descending phase in
the data are split, so that the two parts of the data do not
affect each other as much as possible, combined with the fact
that the average running period of all the engines is different,
it is necessary to choose a suitable time window to accept the
data and then compress the data after splitting it. Therefore,
to satisfy most of the data segmentation cases as much as
possible, we consider setting the time window value at 35.
It should be noted that in the four data subsets, FD001 and
FD002 and FD003 and FD004 have almost the same average
engine running cycle, but the data volume and complexity of
FD004 are much more than that of FD003. Therefore, we set
the same time window, size 35, for FD001, FD002, and
FD003. For FD004, set it to 25 individually, to better capture
more useful change information from the complex data and
reduce the impact on the experiment; the size of the window
will also be affected. The setting of the time window for the
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FD004 dataset and the impact it has on the experimental
results is demonstrated as shown in Figure 8(b).

4.4. Test Set Prediction Results. To show the performance of
the CNN model with feature selection and enhanced SE on
the CMPASS dataset, we picked one test engine from each
of the four datasets for RUL prediction. As can be seen in
Figure 9, our predictions are very near to the genuine values
and, in many cases, greater than the true values, and we have
strong prediction performance on all datasets, which is
highly essential in RUL prediction tasks. We also selected
to provide all test engine prediction results for the more
complex FD004 dataset, as shown in Figure 10. The results
show that we are able to accurately achieve RUL prediction
on both basic and sophisticated datasets.

5. Conclusions and Future Work

In this research, we propose to evaluate the importance of sen-
sor features by random forest to filter more useful information
for the prediction task. The SE is improved according to the
actual changes in RUL, and segmented compression is realized
to retain more data with upward and downward trends, which
are then sent to the CNN for training to complete the predic-
tion task. Experimental results reveal that our proposed
approach may effectively improve the performance of CNN
and provide high-accuracy RUL prediction results on the
CMPASS dataset. To highlight the requirement of our strat-
egy, we conduct a series of ablation and comparison experi-
ments, which prove that the combination of random forest
feature selection and improvement of SE may effectively
enhance the performance of the model. In addition, we also
compare our results with other state-of-the-art approaches,
and our results indicate greater performance. In our study,
we have realized the inspiration for the improvement of SE
by combining the actual situation of RUL change; considering
the different degrees of influence of feature dimension and
window step, we will study the feature dimension, window

step, and time series in the future and combine long short-
term memory and SSE.
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