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This paper analyzes the root causes of attitude-orbit coupling effects of spacecraft proximity relative motion in space precision
collaborative tasks from three aspects: mathematical representation, physical definition, and engineering applications. At first,
taking mathematical representation as the context, spacecraft proximity relative motion representations such as particle relative
dynamic model, extended particle relative dynamic model, and dual-spiral-based relative dynamic model are investigated in
detail. On this basis, the mechanism of attitude-orbit coupling effects originating from different mathematical representations
is further investigated. Second, spiral theory–based attitude-orbit coupling relative dynamics is developed. The innovation of
this work is extending the dual number representation from rigid body to flexible body, which makes it possible to describe
the proximity relative motion between two rigid-flexible coupling spacecraft. Third, the application value of attitude-orbit
coupling relative dynamic model in precision collaborative mission such as precision formation, rendezvous and docking, space
manipulation, and on-orbit assembly is provided. Finally, simulation results verify the engineering significance of the attitude-
orbit coupling relative dynamic model.
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1. Introduction

In the research of spacecraft proximity collaborative tasks, such
as rendezvous and docking, precision formation, space manip-
ulation, and on-orbit assembly, many scholars have proposed
the necessity of attitude-orbit coupling modeling [1–5]. Some
scholars have applied the attitude-orbit coupling results to
spacecraft guidance, navigation and control (GNC) [6, 7]. Liu
et al. [8, 9] proposed various effective attitude-orbit coupling
control methods. Obviously, in the field of spacecraft relative
dynamics, navigation, and control, attitude-orbit coupling is
not a new issue. However, to the author’s knowledge, there is
no research that has clearly defined attitude-orbit coupling.
It is specifically a mathematical problem, a physical phenom-

enon, or an engineering application problem arising only from
practical processes, and there is still controversy.

Due to the unsystematic academic investigations on
attitude-orbit coupling, the research results have little guid-
ing significance for engineering applications. In terms of
engineering practice, most space missions such as rendez-
vous and docking [10] and space manipulation technology
demonstrations [11] have been successfully deployed on
orbit and achieved highly accurate spacecraft cooperative
operations without considering the impact of attitude-orbit
coupling effect. In the above aerospace engineering tasks,
Hill-Clohessy-Wiltshire (HCW) equations [12] are the most
widely used relative dynamic model. Obviously, it is not an
attitude-orbit coupling relative dynamic model.
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The viewpoint proposed in Refs. [1–5] conflicts with the
engineering application research in Refs. [10–12], whichmakes
scientific aerospace engineers to wonder whether the research
work on attitude-orbit coupling relative dynamic model is
necessary, or under what circumstances it is necessary. In
addition, in ground experiments, the spacecraft simulator’s
relative attitude maneuver does not cause relative translational
motion [13], which means that the attitude-orbit coupling
phenomenon is not explicitly expressed in the physical level,
if engineering errors such as inaccurate centroid identification
of the spacecraft simulator are ignored.

This paper clarifies, at the first part, the confusion about
mechanism and application of attitude-orbit coupling effect
and gives a clear definition of attitude-orbit coupling effect.
Then, a spiral theory–based attitude-orbit coupling relative
dynamic model is developed, which describes the 6-DOF rel-
ative motion between spacecraft, whether the spacecraft is a
rigid body or a rigid-flexible coupling system, with one equa-
tion by using six-dimensional spinor dual vector. Therefore,
the spiral theory–based model is known as integrated
model [14–16]. Finally, taking spacecraft flying formation
as an example, the application value of attitude-orbit cou-
pling relative dynamic model in precision collaborative

mission is provided, and simulation results verify the engi-
neering significance of the attitude-orbit coupling relative
dynamic model.

2. Mechanism Analysis of Attitude-Orbit
Coupling Effects

Aiming at the root cause of the attitude-orbit coupling
effects in spacecraft proximity relative motion, taking math-
ematical representation as the context, the mechanism of
attitude-orbit coupling effects originating from different
mathematical representation is investigated.

2.1. Particle Model. Since the development of space station
rendezvous and docking missions in the 1960s, spacecraft
relative dynamic modeling technology has also evolved
accordingly. The initial relative dynamic model is known
as the particle model, which regarded the relative motion
between spacecraft as the relative motion between two
points with mass. As shown in Figure 1, the motion of par-
ticle f and particle l represents the orbital motion of the fol-
lower spacecraft and the leader spacecraft, respectively. Re,
Re, and Re denote the relative position, relative velocity,

Inertial coordinate system

Observation
station

Observation
station

Leader l
Follower f

Orbit of leader

Zf

Xf
Of Yf

Rr

ZlXl

Ol

Yl

Rl

ZI

YI

XI
OI

Rf

Figure 1: Schematic diagram of the particle model.

2 International Journal of Aerospace Engineering



and relative acceleration between two particles in terms
along the inertial system, respectively. If the leader is orbit-
ing on a near circular Earth orbit, the relative dynamics
between two spacecraft is [17]

mfRe +mfμ
Rl + Re

Rl + Re
3 −

Rl

Rl
3 = Ff 1

Equation (1) is derived based on Newton’s second law,
wherein mf and ml denote the mass of the follower and
leader, respectively, μ is the gravitational constant, and Rl
is the position vector of the leader with respect to the inertial
system. dt = df −mf /mldl, where df and dl denote the exter-
nal interference forces acting on the follower and leader,
respectively. Ft = Ff −mf /mlFl, where Ff and Fl denote the
control forces acting on the follower and leader, respectively.
Note that the external interference forces and control forces
are acting on the center of mass (COM) of spacecraft in
Equation (1). Based on the particle model, the spacecraft
body coordinate system is constructed with the particle as
the origin, and the relative attitude dynamic equations
between the follower and leader can be expressed as

Jfωe + ωe × Jfωe + df = τf 2

Equation (2) is derived by using quaternion mathemati-
cal representation, wherein Jf is the moment of inertia of
follower, ωe denotes the angular velocity tracking error,
and τf and df denote the control torque and external inter-
ference torque acting on the follower. Note that all vectors in
Equations (1) and (2) are expressed with respect to the inertial
coordinate system. The relative dynamic equation describing
the relative 6-DOFmotion between spacecraft can be obtained
by combining Equations (1) and (2).

Equations (1) and (2) are derived with respect to the
inertial system. This model is used for initial theoretical cal-
culations. If the above equations are expressed in the orbit
coordinate system of the leader, the relative dynamic model
can be expressed as [18–21]

Re = −2nl × Re − nl × nl × Re − nl × Re − μ
Rl + Re

Rl + Re
3 −

Rl

Rl
3 +

1
mf

Ff

Jfωe + ωe × Jfωe + df = τ f
3

where nl is angular velocity of the leader orbit. The physical
meaning of other parameters is the same as those corre-
sponding to Equations (1) and (2). The difference between
Equation (3) and Equations (1) and (2) is that all the vectors

are represented in orbit coordinate system of leader. Fur-
thermore, if the leader is orbiting on a circular orbit, the
angular velocity of the leader orbit nl can be simplified to
the constant mean motion, nl, and Equation (3) can further
be expressed in a simple form [10].

x − 2nly − 3n2l x =
1
mf

Ff x

y + 2nlx =
1
mf

Ff y

z + n2l z =
1
mf

Ff z

Jfωe + ωe × Jfωe + df = τf

4

where Re = x y z T and Ff = Ff x
 Ff y

 Ff z
T. These

above equations of motion are known as the HCW equa-
tions. The HCW equations have been used extensively since
the 1960s for space cooperative mission modeling [22–24].
The above functions are mainly used for rendezvous
and docking missions with orbital hovering and orbital
orbiting, as the HCW equation is constructed based on
the orbital coordinate system as the reference coordinate
system.

Equations (1)–(4) are relative dynamic equations derived
from particle model for different engineering applications.
Under particle model mathematical framework, the orbital
and the attitude motion of spacecraft are independent of
each other, and there is no motion projection between the
orbital and the attitude motion. Therefore, there is no cou-
pling between the relative attitude and orbit motion between
two spacecraft.

2.2. Extended Particle Model. Segal and Gurfil [25] believe
that even under particle model mathematical framework,
attitude-orbit coupling effect is still a key factor affecting
the success of space collaborative tasks, such as rendezvous
and docking and spacecraft formation flying (Figure 2).
Their argument is that because the size of the spacecraft
itself is much smaller than the scale of relative orbital
motion, it can be considered as a particle when describing
relative motion. However, for space collaborative tasks at
ultraclose distances (typically less than 100m), or for
ultraclose stages of certain collaborative tasks, such as the
close approximation stage and docking stage of rendezvous
and docking mission, the size of the spacecraft can no lon-
ger be considered as an absolute small amount compared
to the relative motion distance. And the docking point is
not actually the COM of the spacecraft, but rather a point
on the edge of the spacecraft. Therefore, for the engineer-
ing application of above tasks, it is necessary to build the
relative dynamic model between the docking points on
the spacecraft, instead of the relative dynamic model
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between COMs of spacecraft, assuming that i and j are the
docking points of the follower and leader, respectively.

The relative dynamic equations between i and j can be
expressed as

where rij = xij, yij, zij
T is the relative position vector from

docking point i to j, Pi
f = Pi

xf , Pi
yf , Pi

zf
T
is the position vec-

tor from the COM of the follower to docking point i, Pj
l =

Pj
xl, P

j
yl, P

j
zl

T
denotes the position vector from the COM of

the leader to docking point j, and ωe = ωx, ωy, ωz
T denotes

the angular velocity tracking error.
In Equation (6), it can be found that the relative transla-

tional motion is affected by the relative angular velocity ωe;
that is, the spacecraft proximity relative motion is affected
by attitude-orbit coupling. Through the simulation of preci-
sion formation and rendezvous and docking, Segal and Gur-
fil conclude that the larger the size of a rigid spacecraft, the
stronger the impact of the attitude-orbit coupling effect on
the relative motion.

According to the conclusions of the above research, the
attitude-orbit coupling effect originates from the relative
dynamics between two noncentroid points. It can be
inferred that when the particle and COM coincide, the
impact of attitude-orbit coupling on relative motion is zero,
which is the same as the conclusion drawn in Section 2.1.
Obviously, Equation (5) describes a special scenario, not a
general equation.

2.3. Spiral Theory–Based Relative Dynamic Model. An
attitude-orbit coupling relative dynamic model was provided
in 2001 based on the Newton-Euler equations by Pan and
Kapila [26], which is also the first publicly published theoret-
ical achievement of attitude-orbit coupling relative dynamics
that the authors can find.

evr = ρvd − ωe × evr +
1
ml

fel + fdl −
1
ml

fl −
1
mf

fef + fdf +
1
mf

ff

Jfωe + ωe × Jfωe + df = τf
6

where evr and ρvd are the real-time relative orbital velocity
and desired relative orbital velocity between the leader and
follower, respectively; ml and mf are the mass of the leader
and follower, respectively; and fel , fdl, and fl are the Earth’s
gravity, external interference force, and control force acting
on the leader, respectively. Equation (6) contains element,
ωe × evr , which shows that the relative rotational motion
has an impact on the relative translational motion.

Equation (6) describes the relative dynamics between
the COMs of the spacecraft. However, the attitude-orbit
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Figure 2: Schematic diagram of the extended particle model.
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coupling effect occurs. Obviously, this conclusion conflicts
with the research conclusions of Equations (1)–(5). It is
worth mentioning that Pan and Kapila did not explain the
cause of attitude-orbit coupling in Ref. [26] but focused on
studying the impact of spacecraft attitude motion caused by
gravity gradient torque on relative orbital motion.

In response to the above contradictions, in recent years,
Sun et al. [27–29] conducted a detailed study on the attitude-
orbit coupling characteristics of relative motion between
spacecraft. The attitude-orbit coupling relative dynamics
based on spiral theory was obtained.

ω f

e = −M̂−1
f ω f

e + q̂∗e ω
l
lq̂e × M̂f ω f

e + q̂∗e ω
l
lq̂e

+ M̂−1
f F̂ff − q̂∗e ω

l

lq̂e + ω f
e × q̂∗e ω

l
lq̂e

7

where ω f
e and F̂ff denote the relative dual velocity and dual

force acting on the follower, respectively, M̂f is the dual iner-
tia operator of the follower, q̂e is the relative dual quater-

nion, q̂∗e is the conjugate of q̂e, and ω l
l is the dual velocity

of the leader. Based on the spiral theory, each dual number
can represent two separate real vectors with a dual unit ε,
which makes the relative dynamic model representation to
be in a compact form. According to Ref. [27], it can be found
that Equation (7) contains the same coupling element, ωe

× evr , as Equation (6).
Both Equations (6) and (7) describe the relative motion

between the COMs of spacecraft, and the attitude-orbit cou-
pling phenomenon occurs in both equations. Unfortunately,
none of the above investigations focused on the mechanism
of attitude-orbit coupling phenomenon, but rather on the
trajectory offset caused by attitude-orbit coupling effects. It
makes engineers wonder what is the root cause of attitude-
orbit coupling and what is the difference between the appli-
cation scenarios of attitude-orbit coupling models and
attitude-orbit-independent models.

To clarify this confusion, by analyzing Equations (1)–(4)
and Equations (6) and (7), it can be found that Equations (6)
and (7) are attitude-orbit coupling relative dynamic model,
Equations (1)–(4) are attitude-orbit-independent relative
dynamic model, and the above equations all describe the rel-
ative motion between COMs of spacecraft. In addition to the
mathematical representation, another one of the main differ-
ences of above equations is the reference coordinate system.
In detail, the reference coordinate system of Equations (1)
and (2) is the geocentric inertial coordinate system; the ref-
erence coordinate system of Equations (3) and (4) is the
orbital coordinate system of leader; the reference coordinate
system of Equations (6) and (7) is the body-fixed coordinate
system of follower. Based on the above facts, we propose the
following conjecture: attitude-orbit coupling effect between
the COMs of spacecraft originates from the selection of refer-
ence coordinate system.

As shown in Figure 3, the position vector of a particle P
in the inertial coordinate system is r, the velocity of particle
P in the inertial coordinate system is vIP = dr/dt, and the

velocity of particle P in the local coordinate system is vBP =
δr/dt. The relationship between the two can be described
as vIP = vpf + δr/dt = ω × r + δr/dt. Specifically, in the descrip-
tion of relative motion of spacecraft, the motion of the COM
of leader relative to the COM of the follower is described
using the body-fixed coordinate system of the follower as a
reference system, thereby introducing relative rotational
motion in relative translational motion, resulting in an
attitude-orbit coupling characteristic. Therefore, the follow-
ing inference can be obtained.

Ratiocination Definition 1. Attitude-orbit coupling is the
physical phenomena that occur when describing the relative
motion between the COMs of spacecraft with respect to a
local coordinate system, namely, body-fixed coordinate
system.

Ratiocination Definition 2. The dynamic equation also
contains attitude-orbit coupling terms even if describing
the 6-DOF motion of a single spacecraft with respect to
the body-fixed coordinate system. Further, even if the origin
of the body-fixed coordinate system coincides with the COM
of this spacecraft, the centroid dynamics is also affected by
attitude-orbit coupling effect.

2.4. Summary of the Attitude-Orbit Coupling Problems.
Based on the above research and analysis, we can conclude
that there are two main sources of attitude-orbit coupling
effect.

1. The point of motion described by the dynamic equa-
tion does not coincide with the point of application
of the external force, resulting in additional torque,
which leads to attitude-orbit coupling of motion of a
single spacecraft, and then, this attitude-orbit cou-
pling effect affects the relative motion between two
spacecraft, as shown in Equation (5).

2. Attitude-orbit coupling phenomena occur by using
the body-fixed coordinate system as a reference coor-
dinate system to describe relative motion between two
spacecraft, as shown in Equations (6) and (7).
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P

Local coordinate system

v
P
I

v
P
B

v
Pf
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Figure 3: Schematic diagram of particle motion in different
reference coordinate systems.
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Source 1 is a special engineering scenario, and Equation
(5) is not a general equation. Therefore, there is little inves-
tigation on attitude-orbit coupling relative dynamic model-
ing caused by source 1. In the following sections of this
paper, for attitude-orbit coupling caused by source 2, spiral
theory–based attitude-orbit coupling relative dynamics is
investigated in detail. The innovation of this work is
extending the dual number representation from rigid body
to flexible body, which makes it possible to describe the
proximity relative motion between two rigid-flexible cou-
pling spacecraft.

3. Spiral Theory–Based Attitude-Orbit
Coupling Relative Dynamics

Equation (7) is the spiral theory–based relative dynamics
between two rigid spacecraft. Based on Equation (7), the rel-
ative dynamic model between two rigid-flexible spacecraft is
provided. This model can solve the problem of motion
description of spacecraft formation with rigid and flexible
spacecraft investigated in Ref. [30].

3.1. Definition of the Coordinate Systems and Equation
Assumptions. The mission scenario of this paper is designed
to be a spacecraft formation flying task with a rigid space-
craft as the leader and a rigid-flexible coupling spacecraft
as the follower. As shown in Figure 4, a simple rigid-
flexible coupling spacecraft consists of a rigid base and a
flexible appendage. All the coordinate systems are defined
in Figure 4, and there are three coordinate systems in this
paper.

a. Earth-centered inertial coordinate system ΨI : the ECI
frame is a classic frame for spacecraft dynamic analy-
sis. It has the +z-axis pointing at the north pole, the

+x-axis pointing at the vernal equinox, and +y com-
pleting the right-hand set.

b. Body-fixed coordinate system of leader ΨA: it has the
origin locating at the COM of leader, with +z-axis
pointing at the working part, +x pointing the relative
measuring sensor of leader, and +y completing the
right-hand set.

c. Body-fixed frame of follower ΨB: it has the origin
locating at the COM of follower, with +z-axis point-
ing at the flexible appendages, +x pointing the relative
measuring sensor of follower, and +y completing the
right-hand set.

The following notations are employed: xB denotes the

components of x expressed in the body-fixed coordinate
system of the follower, and xA denotes the components

of x expressed in the body-fixed coordinate system of
the leader.

The derivation of relative dynamics requires the follow-
ing three conditional assumptions.

Assumption 1. The position of COM and the moment of
inertia of the rigid-flexible coupling spacecraft remain
unchanged under the vibration of the flexible appendages.

Assumption 2. There is no relative rotation and translation
between the flexible appendages and the rigid base; that is,
the rigid-flexible spacecraft has a stable configuration.

Assumption 3. The elastic displacement of the flexible
appendages is assumed to be small and yields to the linear
elasticity theory.

Working part

Orbit of the leader

The leader spacecraft

Relative measuring
sensor

Relative measuring
sensor

Rigid body Br𝛹B

𝛹A

𝛹I

Flexible appendages Bf

The follower spacecraft

An arbitrary particle i

An arbitrary discrete
element j

Figure 4: Dual vector of a rigid-flexible coupling spacecraft.

6 International Journal of Aerospace Engineering



3.2. Attitude-Orbit Coupling Dynamics of the Follower

3.2.1. Dual-Spinor Representation of the Flexible Appendages.
Assuming that the angular velocity of ΨB relative to ΨI is ωB

B
, orbital velocity of the COM of spacecraft B is vBB. According
to the finite element principle, the rotational velocity and
translational velocity of an arbitrary discrete element j of
the flexible appendages relative to the COM of the follower
can be expressed as

ωB
j = ωB

B

vBj = vBB + ωB
B × rBcj + uBj + uBj

8

where rBcj denotes the position vector from the COM to dis-

crete element j, uBj is the elastic position of j, and uBj is the
elastic velocity of j.

Let

ωB
j =

ωB
j

vBj
9

where ωB
j denotes the dual velocity of an arbitrary discrete

element j relative to the COM of the follower.
The dual momentum of j with respect to the COM of the

follower can be expressed as

ĤB
j = R̂B

cjm̂jωB
j 10

where R̂B
cj =

I3×3 03×3
rBcj + uBj

× I3×3
is the Hermitian matrix

expressed in six-dimensional spinor form (where I3×3 is the
third-order identity matrix) and m̂j =mj d/dε is the dual

mass of j (where mj is the mass of j). rBcj + uBj
× denotes

the cross product matrix of rBcj + uBj .
Introducing Equations (8) and (9) into Equation (10),

the dual momentum of j can further be expressed as

ĤB
j = R̂B

cjm̂jωB
j = 1 + ε rBcj

×
+ uBj

×
mj vBB + ωB

B

× rBcj + uBj + uBj
11

According to Assumption 3, the modulus of elastic dis-
placement uBj is much smaller than rBcj , and the elastic

displacement uBj can be neglected in the calculation of Equa-
tion (11). Subsequently, Equation (11) can be written in the
explicit form

ĤB
j = 1 + ε rBcj

×
mj vBB + ωB

B × rBcj + uBj

=mjvBB +mj rBjc
×
ωB
B +mjuBj + εmj rBcj

×
vBB

+ εmj rBcj
×
rBjc

×
ωB
B + εmj rBcj

×
uBj

12

where rBjc
×ωB

B = ωB
B

×rBcj.
Based on the finite element principle, the dual momen-

tum of the flexible appendages Bf , with respect to the
body-fixed coordinate system of follower, is obtained.

ĤB
Bf
= 〠

N

j=1
ĤB

j , j = 1, 2,⋯,N 13

where ĤB
Bf

denotes the dual momentum of the flexible

appendages.
Introducing Equation (12) into Equation (13), the spe-

cific expression of dual momentum of the flexible append-
ages Bf is obtained.

ĤB
Bf
= 〠

N

j=1
mjvBB + 〠

N

j=1
mj rBjc

×
ωB
B + 〠

N

j=1
mjuBj

+ ε〠
N

j=1
mj rBcj

×
vBB + ε〠

N

j=1
mj rBcj

×
rBjc

×
ωB
B

+ ε〠
N

j=1
mj rBcj

×
uBj

14

Let

mBf
= 〠

N

j=1
mj, VBf

×
= 〠

N

j=1
mj rBcj

×
, VBf

×

V

= 〠
N

j=1
mj rBjc

×
, JBf

= 〠
N

j=1
mj rBcj

×
rBjc

×
15

where mBf
and JBf

denote the mass and the moment of iner-

tia of the flexible appendages, respectively.
Then, Equation (14) can be further expressed as

ĤB
Bf
=mBf

vBB + VBf

×

V
ωB
B + 〠

N

j=1
mjuBj + ε VBf

×
vBB

+ εJBf
ωB
B + ε〠

N

j=1
mj rBcj

×
uBj

16

Having formulated the discrete model of the dual
momentum of the flexible body, we proceed from Equation
(16) with model transformation

uBj =Φjη, uBj =Φjη 17
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where η ∈ℝN×1 (where N is the truncation number) is the
modal coordinate matrix of the flexible body and Φj is the
matrix of eigenvectors of j.

In addition, let

Btran = 〠
N

j=1
mjΦj, Brot = 〠

N

j=1
mj rbcj

×
Φj 18

where Btran is the rigid-flexible translational coupling matrix
and Brot is the rigid-flexible rotational coupling matrix.

Substituting Equations (17) and (18) into Equation (16)
and representing Equation (16) in 6-DOF matrix form, we
can obtain

ĤB
Bf
=

VBf

×

v
mBf

I3×3

JB VBf

×

ωB
B

vBB
+

Btran 03×N
03×N Brot

η
η

19

Let

M̂Bf
=

VBf

×

v
mBf

I3×3

JBr
VBf

×
, B̂Bf

=
Btran 03×N
03×N Brot

20

Introducing Equation (20) into Equation (19), one can
obtain

ĤB
Bf
= M̂Bf

ωB
B + B̂Bf

η 21

where M̂Bf
and B̂Bf

denote the dual inertia operator and dual

rigid-flexible coupling operator, respectively. η =
η
η

denotes the dual modal coordinates of the flexible append-
ages. Note that η has no physical property, and it is only a
dual operator for compact construction.

3.2.2. Dual-Spinor Representation of the Rigid Base. The
same mathematical representation is adopted to derive the
dual momentum of the rigid base. The rigid base can be
equivalent to a system of particles. The attitude and orbital
velocity of an arbitrary particle, i, with respect to ΨB can
be expressed as

ωB
i = ωB

B

vBi = vBB + ωB
B × rBci

22

where rBci is the position vector from the COM of the fol-
lower to particle i.

Then, the dual momentum of i with respect to ΨB can be
expressed as

ĤB
i = R̂B

cim̂iωB
i 23

where R̂B
ci =

I3×3 03×3
rBcj

× I3×3
, ωB

i =
ωB
i

vBi
, and m̂i is the dual

mass of particle i.
Dual momentum of the rigid base is equivalent to the

dual momentum of a system of particles, and the dual
momentum of a system of particles is a sum of linear dual
momentum of each particle.

Ĥ
B
Br
= 〠

N

i=1
Ĥ

B
i = 〠

N

i=1
R̂
B
cim̂iω

B
i = 〠

N

i=1
miv

B
B + 〠

N

i=1
mi r

B
ic

×
ωB
B

+ ε〠
N

i=1
mi r

B
ci

×
vBB + ε〠

N

i=1
mi r

B
ci

×
rBic

×
ωB
B =mBr

vBB

+ VBr

×
Vω

B
B + ε VBr

×vBB + εJBr
ωB
B

24

where

mBr
= 〠

N

i=1
mi, VBi

× = 〠
N

i=1
mi rBci

×, VBr

×
V

= 〠
N

i=1
mi rBic

×, JBr = 〠
N

i=1
mi rBci

× rBic
×

25

Representing Equation (16) in 6-DOF matrix form, the
dual momentum of the rigid base can further be expressed as

ĤB
Br
=

VBr

×
v mBr

I3×3

JBr
VBr

×

ωB
B

vBB
26

Let

M̂Br
=

VBr

×
v mBr

I3×3

JBr
VBr

×
27

Equation (26) can further be expressed as

ĤB
Br
= M̂Br

ωB
B 28

3.2.3. Dual-Spinor Representation of the Dynamics of Rigid-
Flexible Coupling Spacecraft. Dual momentum of the rigid-
flexible coupling spacecraft can be expressed as the sum of
Equations (21) and (28).

ĤB
B = ĤB

Bf
+ ĤB

Br
= M̂Bf

+ M̂Br
ωB

B + B̂Bf
η 29
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In addition, let

M̂B = M̂Bf
+ M̂Br

=
VBf

×

v
+ VBr

×
v mBf

+mBr
I3×3

JBf
+ JBr

VBf

×
+ VBr

×

30

where mB =mBf
+mBr

and JB = JBf
+ JBr

denote the mass

and moment of inertia of rigid-flexible coupling spacecraft,
respectively.

According to the Assumption 1 and Assumption 2,
Equation (30) includes mutually canceling terms.

VBf

×

v
+ VBr

×
v = 0, VBf

×
+ VBr

× = 0 31

The dual momentum of rigid-flexible coupling space-
craft can further be expressed as

ĤB
B = M̂BωB

B + B̂Bf
η 32

where M̂B =
03×3 mBI3×3
JB 03×3

is the dual inertia operator of

the follower.
Xie et al. [29] provided a time derivative rule of dual

momentum. Dynamic equation can be derived using along

with the time derivative rule of dual momentum

d
dt

ĤB
B =

∂
∂t

ĤB
B + ωB

B × ĤB
B 33

Note that Equation (33) can be adopted only when
the reference coordinate system of the 6-DOF dynamics
is a local coordinate system. That is, the dynamics and
relative dynamics based on dual number with Newton-
Euler form is derived with respect to the body-fixed coor-
dinate system.

Relative dynamics
between the follower
and leader (reference
coordinate system)

Measurement of
relative position and
attitude (reference
coordinate system)

Determination of
relative position and

attitude

Control actuator
of the follower

Controller of
the follower

Coordinate
conversion

Control instruction

Figure 5: GNC system of the spacecraft in a spacecraft proximity mission.
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Figure 7: Relative motion trajectory between two spacecraft in
inertial frame.
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Figure 6: Measurement device in a spacecraft proximity mission.
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The dynamic equation of a rigid-flexible spacecraft can
be obtained by substituting Equation (32) into Equation (33).

F̂BB = M̂Bω
B

B + B̂Bf
η + ωB

B × M̂BωB
B + ωB

B × B̂Bf
η 34

where F̂BB =
FBB
TB
B

is the dual forces acting on the COM of the

follower.

3.3. Dual-Spinor Representation of Relative Dynamics
Between a Rigid-Flexible Spacecraft and a Rigid Spacecraft.
According to Ref. [31], the relative kinematic equation
between the follower and leader can be expressed as

q̂BA =
1
2
q̂BAω

B

BA 35

where ω
B

BA = 0 ωB
BA

T T
+ ε 0 vBBA

T T
, ωB

BA = ωB
BA + εvBBA

denotes the dual velocity of the follower relative to the
leader, and ωB

BA and vBBA denote the relative angular velocity
and relative linear velocity, respectively.

The relative dual velocity ωB
BA can be obtained by the fol-

lowing equation.

ωB
BA = ωB

B − ωB
A = ωB

B − Ex q̂∗BAω
A

Aq̂BA 36

where ωB
A and ωA

A denote the dual velocity of the leader
expressed in body-fixed coordinate system of the follower

and body-fixed coordinate system of the leader, respectively,
and Ex ⋅ is the dimensionality reduction operator, for

example, Ex ω
A

A = ωA
A + εvAA.

Substituting Equation (34) into Equation (36) and taking
the first derivative, we obtain a dual-spinor representation of
the relative dynamic equation between a rigid-flexible space-
craft and a rigid spacecraft.

ω
B

BA = ω
B

B − Ex q̂∗BAω
A

Aq̂BA + ωB
BA × Ex q̂∗BAω

A

Aq̂BA

= M̂
−1
B F̂BB − M̂

−1
B B̂Bf

η − M̂
−1
B ωB

B × M̂Bω
B
B + B̂Bf

η

− Ex q̂∗BAω
A

Aq̂BA + ωB
BA × Ex q̂∗BAω

A

Aq̂BA

37

The modal coordinates η, η, and η can be obtained
through the vibration equation [5]

η + 2ξΛη +Λ2η + BT
tranv

B
BA + BT

rotωB
BA = 0 38

where Λ denotes the vector of natural angular frequencies
and ξ denotes the vector of modal damping factors.

By combining Equations (35), (37), and (38), the relative
kinematic and dynamic equations between two flexible
spacecraft are obtained. It is worth noting that the dynamic
model developed in Equation (27) is applicable to both cir-
cular and elliptical orbits.
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4. Analysis of Engineering
Application Advantages

In Section 2, we conclude that attitude-orbit coupling effect
between the COMs of spacecraft originates from the selec-
tion of reference coordinate system. However, compared
with the attitude-orbit-independent relative dynamic equa-
tion, the following model advantages of the dual-spinor-
based attitude-orbit coupling relative dynamic model can
be summarized.

1. In terms of mathematical expression, the dual-spinor-
based attitude-orbit coupling relative dynamic model
is an integrated representation, which is more concise
in mathematical expression and faster in numerical
calculation compared to the particle model.

2. In terms of physical phenomenon presentation, the
dual-spinor-based attitude-orbit coupling relative
dynamic model illustrates the relative motion phe-
nomenon using oneself as an observer.

3. In terms of engineering application, in spacecraft
GNC systems, the measured results of currently
developed high-precision measurement sensors of
relative states, such as high-accuracy metrology sensor
based on laser metrology in PROBA-3 mission [32]
and optical sensor in multispacecraft formation
mission [33], are the relative differentials with respect

to the spacecraft body-fixed coordinate system.
Therefore, the controller constructed based on the
attitude-orbit coupling model achieves higher con-
trol accuracy.

5. Simulation and Results

In this section, the advantage of engineering application of
the attitude-orbit coupling relative dynamics is verified by
numerical simulation. The GNC system of the spacecraft
in a spacecraft proximity mission is shown as Figure 5. Tak-
ing the measurement sensors (high-accuracy metrology
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sensor based on laser metrology) of the PROBA-3 mission as
an example, measured results are the relative differentials
with respect to the spacecraft body-fixed coordinate system
of the follower and have 25μm measurement accuracy, as
shown in Figure 6.

In this GNC system, coordinate conversion must be
adopted if using attitude-orbit-independent dynamic equa-
tion, Equations (1)–(5). In contrast, coordinate conversion
is not required if using attitude-orbit coupling dynamic
equations, Equations (6), (7), and (37). That is, the main
advantage of attitude-orbit coupling dynamic equations in
GNC system is reducing errors and computational complex-
ity caused by the coordinate conversion process. In order to
quantitatively present the errors caused by the coordinate
conversion process, Equations (1) and (37) are selected as
an example. Equation (1) is presented with respect to the
inertial coordinate system, and the following coordinate
conversion process should be adopted if using the GNC sys-
tem shown in Figure 6.

CIB =CIO ⋅ COB 39

where CIB is the coordinate conversion matrix from the iner-
tial coordinate system to the body-fixed coordinate system,
CIO is the coordinate conversion matrix from the inertial
coordinate system to the orbital coordinate system, and
COB is the coordinate conversion matrix from the orbital
coordinate system to the body-fixed coordinate system.

In GNC system, relative dynamic data of Equation (1)
need to be converted to the body-fixed coordinate system
through Equation (38) to match the relative measurement
data. The data of Equation (37) does not require this step.
The coordinate conversion matrix CIO can be expressed as

CIO = xo yo zo
T 40

where xo = yo × zo, yo = v × r / v × r , and zo = −r/ r . r and
v are the position vector and velocity vector of the spacecraft
with respect to the inertial system, respectively. In aerospace
engineering, r and v are related to the orbit determination
accuracy of spacecraft. In this paper, the orbit determination
error is defined as Δr.

Assuming that the leader is deployed in a 500-km
circular orbit, its body-fixed coordinate system coincides
with the orbital coordinate system. The orbital motion of
the leader is governed by gravity (Fg = −μrAI/ rAI

3, μ =
398600 44 km3 × s‐2), and the influence of other forces
and noises is neglected. The mass and moment of inertia
of the leader are

mA = 100kg, JA =
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The initial position and velocity of the leader with
respect to the inertial coordinate system are

rIIA 0 = 5955267 2431228 2431228 Tm, vIIA 0
= ‐3774 2 4729 1 4729 1 Tm/s

The initial attitude quaternion and angular velocity of
the leader with respect to the inertial coordinate system
are

qA 0 = 0 8924 0 3696  − 0 0990 ‐0 2391 T, ωI
A 0

= 0 0 0011067 0 Trad/s

The mass, moment of inertia, and attitude motion of the
follower are the same as those of the leader. The relative
position and relative velocity between the follower and the
leader with respect to the inertial coordinate system are

rIf l 0 = 2230 1088 ‐900 Tm, vIf l 0 = 0 0 0 Tm/s

Taking the body-fixed coordinate system of the follower
as the conference coordinate system and assuming that the
orbit determination accuracy is Δr = 100m, the simulation
step length is 0.1 s, and the simulation time is 1000 s, and

using the coordinate conversion matrix CIO, the relative
motion states are shown in Figures 7–16.

The orbit determination accuracy is set to Δr = 10m, and
other parameters remain unchanged. Simulation results are
shown as Figures 17–19.

The orbit determination accuracy is set to Δr = 1m, and
other parameters remain unchanged. Simulation results are
shown as Figures 20–22.

Figure 7 is the relative trajectory of two spacecraft in
the inertial coordinate system, where the red line repre-
sents the trajectory of the leader and the blue line
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represents the trajectory of the follower. Figures 8 and 9
show the true values of the relative positions and velocities
of two spacecraft in the inertial coordinate system, respec-
tively. Figures 10 and 11 show the three-axis relative posi-
tion curve between two spacecraft in the body-fixed
coordinate system of the follower when orbit determina-
tion accuracy is zero and Δr, respectively. Figures 12 and
13 show the three-axis relative velocity curve between
two spacecraft in the body-fixed coordinate system of the
follower when orbit determination accuracy is zero and
Δr, respectively. Figure 14 is the three-axis relative posi-
tion error between two spacecraft due to coordinate con-
version errors with respect to the body-fixed coordinate
system of the follower, which is the difference curve
between Figures 10 and 11. Figure 15 is the three-axis rel-
ative velocity error between two spacecraft due to coordi-
nate conversion errors with respect to the body-fixed
coordinate system of the follower, which is the difference
curve between Figures 12 and 13. Figure 16 shows the rel-
ative motion trajectory error of two spacecraft due to
coordinate conversion errors. Figures 17 and 20 is the
three-axis relative position error between two spacecraft
due to coordinate conversion errors with respect to the
body-fixed coordinate system of the follower when Δr =
10m and Δr = 1m, respectively. Figures 18 and 21 is the
three-axis relative velocity error between two spacecraft
due to coordinate conversion errors with respect to the

body-fixed coordinate system of the follower when Δr =
10m and Δr = 1m, respectively. Figures 19 and 22 show
the relative motion trajectory error of two spacecraft due to
coordinate conversion errors when Δr = 10m and Δr = 1m,
respectively.

From Figure 14, we can conclude that when the orbit
determination error is 100m, the relative position descrip-
tion error caused by coordinate conversion errors is about
0.03m, which indicates that, even if the relative data
obtained by spacecraft using relative measurement sensors
are absolutely accurate, the error caused by coordinate rota-
tion can reach 0.03m. This error even exceeds the measure-
ment error of the sensor (25μm). According to Figures 12,
13, and 15, the relative velocity description error caused by
coordinate conversion error is about 0.015mm/s. From
Figures 14, 17, and 20, we found that the higher the orbit
determination accuracy, the smaller the error caused by
coordinate conversion, but it is still greater than the mea-
surement error of the relative measurement sensor. From
Figures 7–16, it can be seen that within 1000 s, the relative
motion error between spacecraft caused by coordinate con-
version increases as a whole over time. Considering the high
efficiency characteristics of precision collaborative tasks such
as precision spacecraft formation flying, the one-time work-
ing time of the spacecraft will not be too long. Therefore, the
simulation duration of 1000 s is within a reasonable range,
resulting in a relative motion description error of about
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centimeters, which basically exceeds the indicator require-
ments for precision collaborative tasks such as precision
spacecraft formation flying.

6. Conclusions

This article mainly completes two innovative contents. First,
through the study of attitude-orbit coupling dynamic mech-
anism and mathematical representation, we conclude that
one of the main root causes of attitude-orbit coupling effects
of spacecraft proximity relative motion is the selection of the
reference coordinate system. Second, through extending the

representation of dual spinors to flexible body, the attitude-
orbit coupling dynamic model between a rigid-flexible cou-
pling spacecraft and a rigid spacecraft is developed. Based
on the above analysis and modeling work, the engineering
application advantages of the attitude-orbit coupling relative
dynamics is provided. Simulation results show that in GNC
systems for precision collaborative missions, the use of
attitude-orbit coupling relative dynamic model can reduce
the errors and computational complexity caused by coordi-
nate conversion. Our next work is aimed at investigating
control methods based on attitude-orbit coupling dynamics,
like model predictive control method [34] linear matrix
inequality approach [9], and other control method [35–37].
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