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Bolted connections are widely used in assembly structures, and their dynamic characteristics are often affected by stiffness,
damping, excitation, and other factors. In order to solve the problems of low computational efficiency of fine modeling and
large computational error of linearized equivalent modeling of bolted structures, this paper proposes a dynamic characteristic
parameter identification method for bolted structures based on the multiscale method and considering the influence of
nonlinear factors. In this method, the bolted connection characteristics are simulated in the form of a combination of shear
stiffness, torsional stiffness, nonlinear stiffness, and viscous damping coefficient and identified according to the test
measurement frequency and frequency response function. At the same time, by establishing the nonlinear dynamic model of
bolted structure, the influence of different bolt preloads and excitation forces on the dynamic characteristics of bolted structure
is studied.

1. Introduction

Bolted joints are widely used in assembled structures, where
the dynamics are often influenced by various factors such as
stiffness, damping, and excitation, making direct measure-
ment of the relevant parameters very difficult [1, 2]. For
example, the bolt joint surface can cause local stiffness and
damping discontinuities in the structure, and the contact
stiffness resulting from nonlinear contact on the bolt joint
surface will also directly affect the mechanical properties of
the bolt joint structure. In addition, the analytical solution
for contact stiffness is often difficult to obtain or has consid-
erable uncertainty due to factors such as contact surface
area, coefficient of friction, and roughness. On the other
hand, in practical engineering calculations, a certain degree
of dynamical simplification or linear equivalence is usually
applied to the bolt joints, and this treatment ignores the
nonlinear nature of the bolt joints and fails to describe the
complex nonlinear phenomena caused by the presence of
the joint interface.

In the early stage, the dynamic model of the whole
machine structure was composed of simple beams, bars,
and plates due to the limitation of computational capacity,
and the whole machine structure model only included hun-
dreds of degrees of freedom [3]. At this stage, the dynamic
model calculation results depend on the experience of the
modeler, and a lot of simplification needs to be introduced
in the modeling process. The established model can only
roughly reflect the overall dynamic characteristics of the
structure and cannot directly analyze the local deformation
or dynamic stress state of the structure through the whole
machine model. In addition, the calculation accuracy of the
model is not satisfactory because of the introduction of a
large number of simplified assumptions.

With the development of computer performance and
finite element technology, dynamic modeling technology
has entered the stage of fine modeling. With very detailed
finite element models, researchers can obtain highly accurate
calculation results, such as stress analysis, modal characteris-
tics. However, the calculation scale of the refined model is
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relatively large. For the part-level structure, it is feasible to
accurately determine the mechanical properties of the part
structure through this refined model. For the assembly-
level structure with many parts, if the refined model is
adopted, the calculation cost is still very high. Therefore,
from the perspective of considering the calculation accuracy
and efficiency of the model, the basic stressed structure
should be properly simplified while retaining its main
mechanical characteristics, which can not only meet the
requirements of high-precision calculation but also control
the overall model calculation scale within a reasonable
range.

In general, when dealing with dynamic problems with
connected structures, the commonly used method is based
on the linearization idea, ignoring the connection or equiva-
lent connection to the combination of linear spring and lin-
ear damping unit, and then using model modification, test
identification, and other methods to give the parameters of
the spring units and damping units. There are mainly two
ways to achieve this. One is to identify the damping matrix
and stiffness matrix of the connection part by using the sub-
structure method and using the modal parameter identifica-
tion method, combining the modal data or frequency
response function before and after installation [4]. However,
it is difficult to accurately measure the frequency response
function, especially when it involves the degree of freedom
of rotation. Measuring noise level is also one of the impor-
tant standards to measure the recognition effect of this
method, and how to reduce the error caused by environ-
mental noise is also a difficulty of this method [5]. The
other method is to simulate the connection relationship
of connection parts by equivalent elements. Ahmadian
et al. [6] simulates the connection of the joint surface by
constructing a hexahedral isoperimetric solid element and
identifying the elastic modulus and shear modulus of the
element to obtain the equivalent stiffness of the connec-
tion. Kuanmi et al. [7] proposed a general form of connec-
tion element for bolted connection structures, considering
the coupling between each degree of freedom of the joint
surface and the connection structure, and carried out
experimental verification. The experimental results show
the effectiveness and reliability of this method, and the
error between the identified model calculation results and
the experimental results is within 10% [8]. However, this
linearized equivalence ignores the nonlinear characteristics
of the connection and simply simulates the effects of com-
plex viscous sliding and clearance collision with linearized
stiffness and damping, which makes this method must be
based on tests and cannot meet the requirements of dynamic
calculation and analysis for design. In fact, in the actual struc-
ture, most of the joint structures will show nonlinear charac-
teristics, so it is important to study the nonlinear dynamic
modeling of the joint structures. Jalali et al. [9] considered
the nonlinear characteristics of the bolted interface, deduced
the dynamic differential equation of the element, and used
the force state mapping method to identify the mechanical
property parameters of the nonlinear interface. By analogy
to the linear equivalent element method, some scholars intro-
duced nonlinear materials to simulate the nonlinear charac-

teristics of nonlinear joint surfaces. Iranzad and Ahmadian
[10] introduced elastic-plastic materials to simulate the
microslip and transverse macroslip phenomena that may
occur on the bolt joint surface and established the dynamic
model of the joint surface using the QUAD4 element. By
identifying the hardening modulus, linear modulus, yield
stress, and other parameters of elastoplastic materials, the
joint surface of the bolt structure can be identified. Mayer
and Gaul [11] introduced the Masing damping model which
can describe plastic sliding stiffness and stuck linear stiffness,
used a zero-thickness contact element to simulate microslid-
ing effect and friction in bolts, and took a specific bolt instal-
lation structure as an example to verify that the proposed
connection model can well simulate the nonlinear stiffness
and damping characteristics caused by bolt connection.

In this manuscript, a linearized equivalence method for
the stiffness of bolted joints and an equivalence calculation
method that considers nonlinear influences are proposed.
Firstly, the calculation method of nonlinear contact is intro-
duced. Secondly, the linear equivalent of bolt connection
stiffness and the equivalent calculation method considering
nonlinear influence factors are given, respectively. Finally,
the accuracy of the two equivalent methods and their influ-
ence on the calculation accuracy are compared through
numerical simulation examples.

2. Linearized Equivalent Modelling and
Stiffness Calculation Method for Bolted
Joint Structures

Depending on the different engineering and computational
requirements, there are three main methods of linearized
modelling of bolted joint structures in common: the virtual
material method, the multipoint constraint method, and
the spring damping method. In this manuscript, the spring
damping method is mainly investigated.

When using the spring damping method to simulate
bolted joints, realistic and reliable stiffness and damping
inputs are the key to accurate simulation. Due to the fact
that the bolts themselves are usually made of alloy steel
and the form of assembly in the actual structure, the influ-
ence of damping is normally unconsidered.

According to Figure 1, the forces and the external loads
on the bolts and the coupled parts are

Fb = F0 + Kbδ,
Fm = F0 − Kmδ,
Fe = Fb − Fm = Kb + Km δ,

1

where Fb is the pressure on the bolt, Fm is the pressure on
the coupling, F0 is the initial preload, Fe is the external load,
Kb is the axial stiffness of the bolt, Km is the axial stiffness of
the coupling, and δ is the deflection.

Then the equivalent stiffness of the bolted joints struc-
ture is

Ke = Fe/δ = Kb + Km 2
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According to the mechanical design manual, the calcula-
tion of the bolt’s own stiffness can be simplified in the form
of Figure 2.

The bolt stiffness can be expressed as

Kb =
lb + lh
AbEb

+ lt + ltm
AsEb

−1
, 3

where Ab is the cross-sectional area of the light bar of the
bolt, As is the equivalent cross-sectional area of the bolt, lh
is the equivalent length of the head of the bolt, lb is the
equivalent length of the light bar of the bolt, lt is the equiv-
alent length of the screw, and ltm is the equivalent length of
the screwed-in threaded section.

As shown in Figure 3, when the material thickness of the
jointed parts is the same, the stiffness of the force area of the
jointed parts can be expressed as [12]

Km = πdh tan θ 2 ln dw + 3dh
dw − dh

dw + L tan θ − dh
dw + L tan θ + 3dh

−1
,

4

where d is the nominal diameter of the bolt, dh is the diam-
eter of the bolt hole, direct support surface of the bolt head,
and dw is the total thickness of the part to be connected, and
the half-top angle θ is calculated as

θ = α1
ln L/d

ln R + 1/R − 1 + α2 C/d + α3 ln L/d

+ α4 ln R + 1/R − 1 + α5,
5

where α1 = 2 5o, α2 = −14o, α3 = 2o, α4 = −0 2o, and α5 = 30o,
and L/d is the relative total thickness; C/d is the relative
clearance; R is the thickness ratio of the jointed parts.

3. Parameter Identification of Bolted Joint
Structures considering Nonlinear Factors

3.1. Nonlinear Model for Bolted Beam Structures. Consider-
ing the bolted beam structure shown in Figure 4, consisting

of two identical linear Euler-Bernoulli beams bolted
together, with the bolted beam combination is solidly sup-
ported at both ends. Where Kl and Kθ denote the linear
shear and torsional stiffnesses, respectively, K3 denotes the
cubic stiffness term, and C denotes the viscous damping fac-
tor at the joint. In this manuscript, the nonlinear spring is
used to simulate the nonlinear characteristics of the contact
interface under the preload of the bolts.

According to the Euler-Bernoulli beam theory, the dif-
ferential equations of motion for the two-degree-of-freedom
bending deformation of this combined bolted beam struc-
ture can be developed as follows.

EI
∂4W1 x, t

∂4x
+m

∂2W1 x, t
∂2t

= F t δ x , x ∈ 0, s ,

6

EI
∂4W2 x, t

∂4x
+m

∂2W2 x, t
∂2t

= 0 x ∈ s, l , 7

where m, E, and I represent the mass per unit length, the
modulus of elasticity, and the moment of inertia of the
beam, respectively; W1 x, t and W2 x, t represent the
transverse displacement of the two beams, respectively; and
F t represent the external load acting on the beam.

Pre-tensioned condition External load condition Stifness model 

Figure 1: Stiffness model for bolted joint structures.

Ab As

lblh lt ltm

d

Figure 2: Simplified model of bolts.
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Considering the boundary conditions and the continuity
conditions at the coupling, the fixed boundary conditions for
this bolted coupling beam combination structure are

W1 0, t = ∂W1 0, t
∂x

= 0,

W2 l, t = ∂W2 l, t
∂x

= 0
8

The shear force and bending moment are equal on both
sides of the joint, i.e., at x= s, then

∂3W1 s, t
∂x3

= ∂3W2 s, t
∂x3

,

∂2W1 s, t
∂x2

= ∂2W2 s, t
∂x2

9

Assuming Kl is the shear stiffness of the coupling part, it
is obtained from the shear balance that

−EI
∂3W1 s, t

∂x3
= Kl W2 s, t −W1 s, t 10

The nonlinear characteristics of the bolted joint are char-
acterized by the linear torsional stiffness Kθ, the cubic term
stiffness K3 and the viscous damping coefficient C, which
can be obtained from the bending equilibrium of the joint
as follows:

EI
∂2W1 s, t

∂x2
= C

∂2W2 s, t
∂x∂t

−
∂2W1 s, t

∂x∂t

+ Kθ

∂W2 s, t
∂x

−
∂W1 s, t

∂x

− K3
∂W2 s, t

∂x
−
∂W1 s, t

∂x

3

11

3.2. Analytical Solution of Bolted Joint Beams Based on
Multiscale Method. For the main resonant state near the
linear first-order intrinsic frequency of a bolted beam
structure, the external excitation can be considered as a small
parameter term. According to the multiscale approach, mak-
ing F/m⟶ εf , C/m⟶ εμ, and K3/m⟶ εKN , Equation
(6) and Equation (7) can be transformed into the follows:

EI
m

∂4W1 x, t
∂4x

+ ∂2W1 x, t
∂2t

= εf t δ x , x ∈ 0, s ,

12

EI
m

∂4W2 x, t
∂4x

+ ∂2W2 x, t
∂2t

= 0 x ∈ s, l 13

The solution of the differential equation of motion for a
bolted joint beam structure is expressed in terms of different
time scales, such as T0 = t, T3 = ε3t, then,

W1 x, t ; ε =W10 x, T0, T3 + ε3W13 x, T0, T3 , 14

W2 x, t ; ε =W20 x, T0, T3 + ε3W23 x, T0, T3 15

Substituting the linear analytical expressions (14) and
(15) into Equation (6)–Equation (13) and separating the ε0

and ε3 terms, the differential equations of motion, boundary
conditions, and continuity conditions at different time scales
can be obtained for the main resonant state near the first
order intrinsic frequency.

3.2.1. ε0-Order Term. The differential equations of motion
are as follows:

D2
0W10 +

EI
m

W4
10 = 0,

D2
0W20 +

EI
m

W4
20 = 0

16

The boundary conditions are as follows:

W10 0, T0, T1 =W10 ′ 0, T0, T1 = 0,

W20 l, T0, T1 =W20 ′ l, T0, T1 = 0
17

The continuity conditions are as follows:

W10 ′′′ s, T0, T1 =W20 ′′′ s, T0, T1 ,

W10 ′′ s, T0, T1 =W20 ′′ s, T0, T1 ,

EIW10 ′′′ s, T0, T1 = −Kl W20 s, T0, T1 −W10 s, T0, T1 ,

EIW10 ′′ s, T0, T1 = Kθ W20 ′ s, T0, T1 −W10 ′ s, T0, T1

18

Figure 3: Figure of force area of coupled parts.
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3.2.2. ε3-Order Term. The differential equations of motion
are as follows:

D2
0W13 +

EI
m

W4
13 = f cos Ωt δ x − 2D0D1W10, 19

D2
0W23 +

EI
m

W4
23 = −2D0D1W23 20

The boundary conditions are as follows:

W23 0, T0, T3 =W23 ′ 0, T0, T3 = 0,

W23 l, T0, T3 =W23 ′ l, T0, T3 = 0
21

The continuity conditions are as follows:

W23 ′′′ s, T0, T2 =W23 ′′′ s, T0, T3 ,

W23 ′′ s, T0, T3 =W23 ′′ s, T0, T3 ,

EIW23 ′′′ s, T0, T3 = Kl W23 s, T0, T3 −W23 s, T0, T3 ,

EI
m

W23 ′′ s, T0, T1 = μD0 W20 ′ s, T0, T1 −W10 ′ s, T0, T1

+ Kθ

m
W23 ′ s, T0, T3 −W11 ′ s, T0, T3

− KN W20 ′ s, T0, T3 −W10 ′ s, T0, T3
3
,

22

where ∗ ′ = ∂/∂x, d/dt =D0 + εD1 + ε2D2, d2/dt2 =D2
0 + 2ε

D0D1 + ε2 D2
1 + 2εD0D2 , and Dn = ∂/∂T .

3.2.3. The First-Order Resonant Response of the ε0-Order
Term Homogeneous Equation. Assuming the form of its
solution can be written as

W10 x, T0, T3 = A T3 eiωT0 + A T3 e−iωT0 Y1 x , 23

W20 x, T0, T3 = A T3 eiωT0 + A T3 e−iωT0 Y2 x ,
24

where ω is the first-order intrinsic frequency of the structure,
A T3 is the complex conjugate of the antecedent term, and
Yi x is the oscillatory function of the first-order resonant
response, which can be expressed as

Yi s = 1
l

cosh rns
l

− cos rns
l

+ cos rn + cosh rn
sin rn + sinh rn

sin rns
l

− sinh rns
l

,

25

where rn is the nth order root of the characteristic equation
1 + cos r cosh r = 0.

Substituting Equation (23) and Equation (24) into the
equation for the ε0-order term yields

Y4
1 − λ4Y1 = 0,

Y4
2 − λ4Y2 = 0,

λ4 = mω2

EI ,

Y1 0 = Y1 ′ 0 = 0,

Y2 L = Y2 ′ L = 0,

Y1 ′′′ s = Y2 ′′′ s ,

Y1 ′′ s = Y2 ′′ s ,

EIY1 ′′′ s = −Kl Y2 s − Y1 s ,

EIY1 ′′ s = Kθ Y2 ′ s − Y1 ′ s

26

E, I, A W1 (x, t)

K1, K3, K0, C

W2 (x, t)

A

S
L

B

Figure 4: Bolt-on beams with fixed ends.
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3.2.4. The Solutions of Nonhomogeneous Equations of ε3-
Order Term. Substituting Equation (25) into Equation (19)
and Equation (20) yields

D0W13 +
EI
m

W4
13 =

1
2 f δ x eiΩT0 − 2iωY1D2Ae

iωT0 , 27

D0W13 +
EI
m

W4
13 = −2iωY1D2Ae

iωT0 28

In this manuscript, the frequency of the external excita-
tion Ω is assumed to be close to the first order natural fre-
quency ω of the structure, i.e., Ω = ω + ε2σ. where σ
denotes the simple harmonic parameter and ε is the minor
parameter.

Assuming that the amplitude A can be expressed in the
following form:

A = 1
2 ρe

i σT2−γ 29

Substituting Equation (29) into Equation (27) and Equa-
tion (28) and separating the real and imaginary parts, which
yields

ρ′ = 1
2 f̂ω sin γ,

ργ′ = σρ + 1
2 f̂ω sin γ,

30

where f̂ = f l
0Yi x .

Assuming that the solution to the system of equations
consists of a long term φi and a nonlong term Vi.

W13 x, T0, T1 = φ1 x, T3 eiωT0 + V1 x, T0, T3 + A T3 e−iωT0 ,
W23 x, T0, T3 = φ2 x, T3 eiωT0 + V2 x, T0, T3 + A T3 e−iωT0

31

Substituting the solution to the equation for the ε3-order
term, so that the coefficients of the long-term terms on the
left and right sides of the equation are equal, and thus elim-
inating the long term, can be further obtained as

EI
m

φ4
1 − λ4φ1 = f

2 δ x eiσT1 − 2iωY1D1A, 32

EI
m

φ4
2 − λ4φ2 = −2iωY2D1A 33

Multiplying Equation (32) and Equation (33) by Y1 and
Y2, respectively, and integrating along the direction x, the
results can be summed as

Looking down

Deformation of the bolt
connection area under preload

(scaling factor 300)

Removal of bolt
structure

Figure 5: ABAQUS model for simulation tests.

Table 1: Test measurement frequency.

Order 1 2 3 4

Frequency Hz 20.629 79.812 125.06 232.15
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EI
m

s

0
φ4
1Y1 x − λ4φ1Y1 x dx +

l

s
φ4
2Y2 x − λ4φ2Y2 x dx

=
s

0

f
2 δ x eiσT1Y1 x − 2iωY2

1 x D1A dx +
l

s
−2iωY2

2 x D1A dx

34

By divisional integration and introducing the boundary
conditions and continuity conditions for the ε-order term
and the ε3-order term, the above equation can be trans-
formed into

3KNA
2A Y2 ′ s − Y1 ′ s

4
− iωμA Y2 ′ s − Y1 ′ s

2

+ 2 1
3 Y2 s 3 −

1
3 Y1 s 3 iωD1A + f

2Y1 s eiσT1 = 0

35

Making p = Y2 ′ s − Y1 ′ s
2
, q = 1/3 Y2 s 3 − 1/3

Y1 s 3, then, the above equation can be further rewritten
as

3KNA
2Ap2 − iωμAp + 2iωqD1A + f

2Y1 s eiσT1 = 0 36

Therefore, the equation for the nonlinear frequency
response function of the bolted beam structure can be
expressed as

μρp
2q = f Y1 s

2ωq sin γ,

ρσ + 3KNρ
3p2

8ωq = −
f Y1 s
2ωq cos γ

37

The equation for the first-order amplitude frequency res-
onance curve for a bolted jointed beam structure can be
written as

μp
2q

2
+ σ + 3KNρ

2p2

8ωq

2
ρ2 = f Y1 s

2ωq
2

38

The Equation (38) can be further rewritten as

σ = −
3KNρ

2p2

8ωq ± f Y1 s
2ωqρ

2
−

μp
2q

2
39

According to the nature of the frequency response func-
tion, at the peak of the frequency response function meets
the following:

f Y1 s
2ωρ∗ = μp

2 , 40

σ∗ = −
3KN ρ∗ 2p2

8ωq
41

where ρ∗ and σ∗ denote the response amplitude at the peak
of the structural nonlinear frequency response function and
the simple harmonic parameter.

From Equation (40) and Equation (41), we can further
obtain that

C = f Y1 s
ωρ∗p

, 42

K3 = −
8ωmq Ω − ω

3 ρ∗ 2p2
43

Because the relatively small amplitude of changes in the
nonlinear stiffness of bolted joints, the matrix perturbation
method [13] can also be used to solve for the equivalent
stiffness

K Kl, Kθ, K3, C = K Kl, Kθ, K3, C 0 + ΔK Kl, Kθ, K3, C 1
44

Figure 6: Finite element simulation calculation model.

Table 2: First 4th order natural frequency of the structure for the
linearized equivalent of the bolt.

Order 1 2 3 4

Natural frequency Hz 23.082 81.378 129.38 239.11

Errors 11.89% 1.96% 3.45% 3.00%
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where Δ is a small parameter, and the system correspond-
ing to Δ = 0 is called the original system, K Kl, Kθ, K3, C 0
is the equivalent stiffness of original system, and ΔK
Kl, Kθ, K3, C 1 denotes the variation.

According to perturbation theory, the eigenvector u and
eigenvalues λ of the Equation (11) can be expanded into
power series according to small parameters

ui = ui0 + Δui1 + Δ2ui2+⋯,
λi = λi0 + Δλi1 + Δ2λi2+⋯,

45

where λi0 and ui0 are the eigenvalues and eigenvectors of the
original system, λi1 and λi2 are the first and second order per-
turbations of eigenvalues, and ui1 and ui2 are the first- and
second-order perturbations of eigenvectors, respectively.

According to the expansion theorem and the regulariza-
tion condition, the approximate perturbation solutions of
eigenvectors and eigenvalues can be obtained. This method
has strong advantages in terms of computational speed and
solution accuracy in engineering applications.

4. Numerical Validation of Equivalent Stiffness
Modelling Methods for Bolted
Joint Structures

In finite element analysis, contact conditions are a special
type of discontinuous constraint that allows forces to be

transmitted from one part of the model to another. When
two surfaces come into contact, contact forces are generated.
When the two surfaces separate, there is no constraint, mak-
ing this constraint type discontinuous. Contact problems are
highly nonlinear behaviors that require not only a significant
amount of computational resources but also pose consider-
able difficulties during the modeling and assumption phase.
In general, fundamental contact issues mainly focus on two
aspects: firstly, the determination of the contact area, and sec-
ondly, the determination of frictional forces during contact.

In order to further illustrate the influence of traditional
linear equivalent simulation and equivalent simulation con-
sidering nonlinear factors on the accuracy of simulation
calculation in the process of finite element modelling calcu-
lation of bolted structure, this manuscript adopts ABAQUS,
which is a finite element simulation analysis software with
strong ability to deal with nonlinear problems, to carry out
finite element modelling simulation calculation of bolted
joint beam structure and simulate the real dynamic test
results of the structure, the finite element model is shown
in Figure 5. The bolted beam structure was fixed at both
ends, and the nonlinear contact of the bolts was simulated
by defining the friction coefficient and contact stiffness on
each contact surface of the structure. The finite element
model is modelled using the uncoordinated mode of the 8-
node C3D8 3D stress cell, which on the one hand can accu-
rately simulate the contact stresses and contact deformations
at the bolt bond area and on the other hand can overcome
the problem of scattered calculations due to shear locking

Preload-1 Kn
Preload-2.5 Kn

Preload-5 Kn
Preload-10 Kn

10−2

10−4

10−6

10−8

A
m

pl
itu

de
 (m

)

Frequency (Hz)
0 50 100 150 200 250

Figure 7: Linear frequency response function curves of bolted beam structures under different bolt preloads.

Table 3: First 4th order linear natural frequency of the structure under different bolt preloads.

Linear natural frequency Hz
First order Second order Third order Firth order

Bolt preloads KN

1 20.929 79.824 125.26 232.53

2.5 20.865 79.795 125.17 232.46

5 20.758 79.747 125.00 232.35

10 20.545 79.656 124.68 232.12
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of fully integrated first-order cells. In addition, in order to
make the ABAQUS simulation calculation results more real-
istic simulation of the dynamics test, this manuscript adds
5% white noise to the simulation calculation results to simu-
late the real test results, and the test measurement frequency
as shown in Table 1.

4.1. Linearized Modelling Simulation and Equivalent Stiffness
Calculation. Due to the solid meshes, nonlinear contact algo-
rithms, and other factors, the ABAQUS-based finite element

model described above is time-consuming and computation-
ally inefficient. In order to improve calculation efficiency,
beam units and shell units are usually used to simulate
bolted coupling beams, and connection units are used to
simulate bolts in practice. Then, in this part, the shell unit
is used to simulate the bolted coupling beam, and the con-
nection unit is used to simulate the bolts. The finite element
model is shown in Figure 6.

The beam parameters are known as modulus of elasticity
E = 70Gpa, length l = 0 5m, bolt position S = 0 45m, density

Stimulation force-10 N
Stimulation force-12.5 N
Stimulation force-15 N
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Figure 8: Frequency response function curves of bolted beam structures under different excitation forces.

Table 4: Kl and Kθ for different bolt preloads.

Bolt preloads 1KN 2.5KN 5KN 10KN

Kl N/m 5 227 × 104 5 207 × 104 5 169 × 104 5 098 × 104

Kθ N/rad 394.4 383.9 366.9 335.4
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ρ = 2710 kg/m3, mass per unit length m = 0 542 kg/m, and
moment of inertia I = 2 67 × 10−10m4. The bolts are standard
hexagonal bolts of M12 and the nuts are standard hexagonal
nuts of M12, and the parameters are known as modulus of
elasticity E = 209Gpa and density ρ = 7890 kg/m3.

Substituting the geometric parameters of the bolt and the
bolted coupling beam into Equation (2)–Equation (5), the

equivalent stiffness of the linearized bolt is calculated as
1 1015 × 109N/m. The first 4 orders of natural frequencies
of the structure are calculated based on the FEM numerical
simulation software and are shown in Table 2.

As we can see from the comparison in Table 2, the equiv-
alent stiffness values obtained by the linearized equivalence
method are larger and correspond to a completely rigid

Table 5: Nonlinear parameters of bolted beam structures under different excitation forces and bolt preloads.

Bolt preloads
(KN)

Excitation
force (N)

First-order peak
frequency (Hz)

Displacement
amplitude (m)

Damping
coefficient
C (Ns/m)

Cubic item stiffness
K3 (N/m

3)

1

10 20.921 0.01516 0.0414 1 528 × 104

12.5 20.914 0.02384 0.0329 1 158 × 104

15 20.907 0.02701 0.0348 1 324 × 104

2.5

10 20.816 0.01338 0.0476 8 818 × 104

12.5 20.807 0.02223 0.0355 3 449 × 104

15 20.798 0.03323 0.0285 1 657 × 104

5

10 20.763 0.01425 0.0448 1 142 × 105

12.5 20.755 0.02138 0.0373 5 317 × 104

15 20.747 0.03325 0.0288 2 299 × 104

10

10 20.526 0.02157 0.0396 1 210 × 105

12.5 20.520 0.02837 0.0281 7 098 × 104

15 20.514 0.03333 0.0287 5 218 × 104

Table 6: Parameter identification results for the bolted beam structure in various operating conditions.

Stimulation force 10N Stimulation force 12.5N Stimulation force 15N

Bolt preload 1KN

Kl = 5 227 × 104N/m
Kθ = 394 4N/rad

K3 = 1 528 × 104N/m3

C = 0 0414Ns/m

Kl = 5 227 × 104N/m
Kθ = 394 4N/rad

K3 = 1 358 × 104N/m3

C = 0 0329Ns/m

Kl = 5 227 × 104N/m
Kθ = 394 4N/rad

K3 = 1 324 × 104N/m3

C = 0 0248Ns/m

Bolt preload 2.5 KN

Kl = 5 207 × 104N/m
Kθ = 383 9N/rad

K3 = 8 818 × 104N/m3

C = 0 0476Ns/m

Kl = 5 207 × 104N/m
Kθ = 383 9N/rad

K3 = 3 449 × 104N/m3

C = 0 0355Ns/m

Kl = 5 207 × 104N/m
Kθ = 383 9N/rad

K3 = 1 657 × 104N/m3

C = 0 0285Ns/m

Bolt preload 5KN

Kl = 5 169 × 104N/m
Kθ = 366 9N/rad

K3 = 1 142 × 105N/m3

C = 0 0448Ns/m

Kl = 5 169 × 104N/m
Kθ = 366 9N/rad

K3 = 5 317 × 104N/m3

C = 0 0373Ns/m

Kl = 5 169 × 104N/m
Kθ = 366 9N/rad

K3 = 2 299 × 104N/m3

C = 0 0288Ns/m

Bolt preload 10KN

Kl = 5 098 × 104N/m
Kθ = 335 4N/rad

K3 = 1 210 × 105N/m3

C = 0 0396Ns/m

Kl = 5 098 × 104N/m
Kθ = 335 4N/rad

K3 = 7 098 × 104N/m3

C = 0 0281Ns/m

Kl = 5 098 × 104N/m
Kθ = 335 4N/rad

K3 = 5 218 × 104N/m3

C = 0 0187Ns/m
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connection to the structure, which does not correspond to
the actual structural connection. And the resulting calculated
intrinsic frequencies of each order are greater than the exper-
imental measurements, especially the first-order frequency
error of about 12%. Since in engineering we tend to be more
concerned with the lower-order modalities of a structure,
obtaining a finite element model by linearized equivalence
is not suitable for practical engineering.

4.2. Modelling Simulation and Equivalent Stiffness
Calculation considering Nonlinear Factors. As linearized
equivalence would lead to overly rigid structures with large
frequencies, the effect of nonlinear factors needs to be con-
sidered to realistically and accurately simulate the bolted
joint. In this manuscript, the modal analysis of the structure
is carried out by applying a random excitation at the posi-
tion of point A shown in Figure 7 and measuring the linear
frequency response of the bolted beam structure at the posi-
tion of point B to obtain the first four orders of linear natural
frequencies of the structure. According to the strength limits
of the bolts in the mechanical design manual, the modal fre-
quencies of the structure were calculated for four working
conditions, namely, 1KN, 2.5KN, 5KN, and 10KN for the
preload force of the bolts. The curves of the linear frequency
response function at point B for these four operating condi-
tions are shown in Figure 7, and the frequency values corre-
sponding to the first four resonance peaks of the linear

frequency response function of the bolted beam for these
four operating conditions are shown in Table 3.

Figure 8 shows the displacement frequency response
function curves of the bolted beam structure in the fre-
quency range around the peak of the first-order resonance,
which taking different magnitudes of bolt preload and differ-
ent magnitudes of excitation force account.

4.2.1. Linear Term Parameter Identification. Substituting the
geometric and physical parameters of the bolted beam struc-
ture into Equation (37), we can obtain a system of equations
for the vibration function coefficients Ai, Bi, Ci, and Di. By
making the rank of the determinant of this equation equal
to 0, we can obtain a quadratic equation for shear stiffness
Kl and torsional stiffness Kθ. According to the values of
the first 4 orders of natural frequencies of the structure for
the 4 operating conditions in Table 4, a system of 4 equa-
tions for Kl and Kθ can be obtained. Solving the system of
equations further gives the sums for the bonded parts of
the bolted beam structure, as shown in Table 4.

4.2.2. Nonlinear Term Parameter Identification. Substituting
the linear term parameters of the bolted beam structure into
Equation (37), we can obtain a system of equations for the
vibration function coefficients Ai, Bi, Ci, and Di. Then the
vibration functions of the bolted beam structure at first-

Table 7: Bolt nonlinearized equivalent of the first 4th-order natural frequency of the structure.

1st frequency/Hz error 2nd frequency/Hz error 3rd frequency/Hz error 4th frequency/Hz error

1KN-10N
20.592 80.242 126.17 230.64

0.179% 0.539% 0.888% 0.650%

1KN-12.5N
20.588 79.923 126.14 230.64

0.199% 0.139% 0.864% 0.650%

1KN-15N
20.590 80.089 126.15 230.64

0.189% 0.347% 0.872% 0.650%

2.5KN-10N
20.636 80.025 126.51 230.51

0.034% 0.267% 1.159% 0.706%

2.5KN-12.5N
20.578 80.776 126.06 230.49

0.247% 1.208% 0.780% 0.715%

2.5KN-15N
20.558 80.776 126.06 230.49

0.344% 0.640% 0.672% 0.715%

5KN-10N
20.593 81.044 126.18 230.23

0.175% 1.544% 0.900% 0.827%

5KN-12.5N
20.540 80.920 125.76 230.21

0.431% 1.388% 0.560% 0.836%

5KN-15N
20.504 80.567 125.48 20.21

0.606% 0.946% 0.336% 0.836%

10KN-10N
20.479 81.044 125.30 229.68

0.727% 1.544% 0.192% 1.064%

10KN-12.5N
20.442 80.99 125.01 229.67

0.906% 1.476% 0.040% 1.068%

10KN-15N
20.417 80.915 124.83 229.67

1.028% 1.382% 0.184% 1.068%
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order resonant frequencies for the above four working con-
ditions are as follows:

Under a preload force of 1KN for the bolts:

Under a preload force of 2.5 KN for the bolts:

Under a preload force of 5KN for the bolts:

Under a preload force of 10KN for the bolts:

According to Equation (42) and Equation (43), it can be
seen that when the bolt preload and the excitation force are
determined, the amplitude of the frequency response func-
tion of a bolted beam structure is determined by the damp-
ing factor C, and the frequency shift of the frequency
response function is determined by the square term stiffness
K3. Therefore, from Equation (46) to Equation (49), the cor-
responding nonlinear parameters of the bolted beam struc-
ture for different excitation forces and bolt preloads can be
further obtained, as shown in Table 5.

Therefore, when the preload force of the bolt was 1KN,
2.5KN, 5KN, 10KN, respectively, and the excitation force
was 10N, 12.5N, 15N, respectively, the identified Kl, Kθ,
K3 and C under each working condition were shown in
Table 5. According to the identified parameters Kl and Kθ
and finite element simulations, the simulation frequencies
of the equivalent model of the bolted beam structure consid-
ering the influence of nonlinear factors are shown in Table 6.

It can be seen from Table 6, Kl and Kθ are indepen-
dent of the magnitude of the excitation force and are

related to the amount of bolt preload, which decreases as
the bolt preload increases. K3 is related to the excitation
force and the bolt preload, generally decreasing with increas-
ing excitation force and increasing with increasing bolt pre-
load. Then, the bolted beam structure in this example has
soft characteristics, and the resonance frequency decreases
with increasing excitation level, which agrees with the results
in Table 7.

As it can be seen from Table 7, the simulation calcula-
tions consider different excitation forces and bolt preloads
for Kl, Kθ, K3, and C. The maximum error between the
simulation results and the test results for each working
condition does not exceed 1.5%, which has a very high
calculation accuracy. And in general, the accuracy of the
bolted joint equivalence calculation, which considers the
influence of nonlinearities, is much higher than that of
the linearized equivalence calculation. Although the equiv-
alence calculation process is relatively complex, the results
are highly accurate and more in line with actual engineer-
ing conditions.

Y1 x = 0 1406 sin 4 734x − 0 1592 cos 4 734x − 0 1406 sinh 4 734x + 0 1592 cosh 4 734x ,
Y2 x = 0 2046 sin 4 734x − 0 0569 cos 4 734x − 0 6554 sinh 4 734x + 0 6596 cosh 4 734x

46

Y1 x = 0 1394 sin 4 726x − 0 1582 cos 4 726x − 0 1395 sinh 4 726x + 0 1582 cosh 4 726x ,
Y2 x = 0 2036 sin 4 726x − 0 055 cos 4 726x − 0 6561 sinh 4 726x + 0 6604 cosh 4 726x

47

Y1 x = 0 1376 sin 4 714x − 0 1565 cos 4 714x − 0 1376 sinh 4 714x + 0 1565 cosh 4 714x ,
Y2 x = 0 2018 sin 4 714x − 0 0518 cos 4 714x − 0 6573 sinh 4 714x + 0 6616 cosh 4 714x

48

Y1 x = 0 134 sin 4 69x − 0 1534 cos 4 69x − 0 134 sinh 4 69x + 0 1534 cosh 4 69x ,
Y2 x = 0 1985 sin 4 69x − 0 0457 cos 4 69x − 0 6595 sinh 4 69x + 0 6637 cosh 4 69x

49
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5. Conclusion

In this manuscript, an equivalent calculation method con-
sidering the influence of nonlinear factors for the bolted
joint is proposed.

(1) A two-degree-of-freedom nonlinear dynamics model
for a bolted beam structure with two solidly sup-
ported ends is developed, considering the nonlinear
characteristics of the bolted joint structure, and cubic
nonlinear stiffness and viscous damping are intro-
duced to characterize the nonlinear characteristics
of the bolted joint part

(2) According to the multiscale method, the correspond-
ing analytical solutions for the nonlinear frequencies
of the bolted joint beams of ε0 order and ε3 order are
used, on the basis of which a reasonable identifica-
tion of the linear and nonlinear model parameters
can be achieved

(3) The validity and accuracy of the bolt nonlinear
equivalent calculation method proposed in this man-
uscript are verified by a finite element simulation
example of a bolted beam structure with fixed con-
straints at both ends

Data Availability

The data used to support the findings of this study are
included within the article.

Conflicts of Interest

No potential conflict of interest was reported by the authors.

Acknowledgments

This research is supported by the Aviation Science Founda-
tion of China (20200057052006). Besides, this research is a
project Funded by the Priority Academic Program Develop-
ment of Jiangsu Higher Education Institutions (PAPD).

References

[1] B. R. Kirby, “The behaviour of high-strength grade 8.8 bolts in
fire,” Journal of Constructional Steel Research, vol. 33, no. 1-2,
pp. 3–38, 1995.

[2] C. J. Hartwigsen, Dynamics of Jointed Beam Structures: Com-
putational and Experimental Studies, University of Illinois at
Urbana-Champaign, 2002.

[3] D. Čelič and M. Boltežar, “Identification of the dynamic prop-
erties of joints using frequency-response functions,” Journal of
Sound and Vibration, vol. 317, no. 1-2, pp. 158–174, 2008.

[4] Ş. Tol and H. N. Özgüven, “Dynamic characterization of struc-
tural joints using FRF decoupling,” in Topics inModal Analysis
I, Volume 5, pp. 435–446, Springer, New York, NY, USA, 2012.

[5] T. Yang, S. H. Fan, and C. S. Lin, “Joint stiffness identification
using FRF measurements,” Computers & Structures, vol. 81,
no. 28-29, pp. 2549–2556, 2003.

[6] H. Ahmadian, J. E. Mottershead, S. James, M. I. Friswell, and
C. A. Reece, “Modelling and updating of large surface-to-
surface joints in the AWE-MACE structure,” Mechanical Sys-
tems and Signal Processing, vol. 20, no. 4, pp. 868–880, 2006.

[7] K. Mao, B. Li, J. Wu, and X. Shao, “Stiffness influential factors-
based dynamic modeling and its parameter identification
method of fixed joints in machine tools,” International Journal
of Machine Tools andManufacture, vol. 50, no. 2, pp. 156–164,
2010.

[8] D. J. Segalman, T. Paez, D. Smallwood, H. Sumali, T. Paez, and
A. Urbina, Status and Integrated Road-Map for Joints Model-
ing Research, Sandia National Laboratories, Albuquerque,
NM, Mexico, 2003.

[9] H. Jalali, H. Ahmadian, and J. E. Mottershead, “Identification
of nonlinear bolted lap-joint parameters by force-state map-
ping,” International Journal of Solids and Structures, vol. 44,
no. 25-26, pp. 8087–8105, 2007.

[10] M. Iranzad and H. Ahmadian, “Identification of nonlinear
bolted lap joint models,” Computers & Structures, vol. 96-97,
pp. 1–8, 2012.

[11] M. H. Mayer and L. Gaul, “Segment-to-segment contact ele-
ments for modelling joint interfaces in finite element analysis,”
Mechanical Systems and Signal Processing, vol. 21, no. 2,
pp. 724–734, 2007.

[12] Q. Datong and X. Liyang, Modern Machinery Handbook, vol.
6, Chemical Industry Press, 2011.

[13] C. Liu, X. Yue, K. Shi, and Z. Sun, Spacecraft Attitude Control:
A Linear Matrix Inequality Approach, Elsevier, 2022.

13International Journal of Aerospace Engineering


	Research on the Simulation Method for Equivalent Stiffness of Bolted Connection Thin Plate Structures
	1. Introduction
	2. Linearized Equivalent Modelling and Stiffness Calculation Method for Bolted Joint Structures
	3. Parameter Identification of Bolted Joint Structures considering Nonlinear Factors
	3.1. Nonlinear Model for Bolted Beam Structures
	3.2. Analytical Solution of Bolted Joint Beams Based on Multiscale Method
	3.2.1. ɛ0-Order Term
	3.2.2. ɛ3-Order Term
	3.2.3. The First-Order Resonant Response of the ɛ0-Order Term Homogeneous Equation
	3.2.4. The Solutions of Nonhomogeneous Equations of ɛ3-Order Term


	4. Numerical Validation of Equivalent Stiffness Modelling Methods for Bolted Joint Structures
	4.1. Linearized Modelling Simulation and Equivalent Stiffness Calculation
	4.2. Modelling Simulation and Equivalent Stiffness Calculation considering Nonlinear Factors
	4.2.1. Linear Term Parameter Identification
	4.2.2. Nonlinear Term Parameter Identification


	5. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments



