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Farming and agriculture are the oldest professions, but they are adapting to the technology revolution to accommodate the world’s
growing population. UAV technology is part of the agriculture revolution, which aims to boost crop yields, properly monitor
fields, and handle manpower shortages and resource efficiency. Rural India’s tiny farmers cannot afford UAV technology;
therefore, it has not yet spread. Payload capacity, endurance, and selective spraying are other considerations. Thus, a low-cost,
long-lasting UAV is necessary. This study modified the arm assembly to create a cheap hexacopter UAV. The endurance
increased by 10% when 1.5 kg was lost. ABS plastic was used to make the modular arm. For working loads of 9 kg and 10 kg,
pesticide/fertilizer spraying saves time, money, and manpower. Thus, a pressure-area coverage-cone angle connection is
needed. This study examined spray patterns at different pressures and heights by varying flat fan nozzle and complete cone
nozzle orifice diameters. These factors were linked, helping farmers choose the right nozzle. This nozzle was installed in the
UAV and field-tested for paddy crops, showing a significant production improvement and lower operational cost. Chemical
use pollutes and leaves traces in produce. Precision farming with artificial intelligence (AI) has solved this problem. In this
experiment, AI algorithms were used to lemon leaves. Three AI systems were tested on different datasets to forecast plant
stress by analyzing leaves due to technical constraints. CNN’s accuracy and computing speed make it ideal for precision
farming. This work’s UAV was 30% cheaper than commercial UAVs and had more durability. Farmers will also benefit from
the flat fan and complete cone nozzles’ pressure-area coverage connection.

1. Introduction

Industry and agriculture have been affected by automation
and mechanisation. Monsoon failure and unseasonal rain
due to global warming hurt crops [1]. India’s 40% GDP
comes from agriculture, with most farmers having less than
a hectare of land and earning less than 300 Indian rupees a
day [2, 3]. Agriculture workers are relocating to cities for
better pay and job security [4].

Agriculture is expensive due to a lack of irrigation water,
fertilizers, and labor. IoT, drip irrigation, UAV spraying, and
crop health monitoring are used by even small farmers to
solve these issues [5]. Compared to autonomous tractors
and other pricey methods, UAV fertilizer spraying seems
economical and user-friendly [6]. Thus, UAV use is rising
exponentially, and the Indian government encourages it to
double farmers’ revenue. Therefore, it is necessary to build
cost-effective, stable UAVs with better endurance, nozzles
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with wider coverage area, and leaf health monitoring utiliz-
ing an AI-based vision system for selecting crops. Thus,
trends in agriculture, cost-effective UAV development, AI
for leaf health prediction, and nozzles for greater spray
coverage have organised this effort [7].

Technology, especially smart gadgets, sensors, and
intelligent machinery, can reduce farmers’ workloads. Aerial
photography, GPS, temperature, and moisture sensors
enable crop monitoring, mapping, and autonomous spray-
ing. By using sophisticated technology, robotic systems,
and precision agriculture, the agricultural sector may achieve
a paradigm shift that increases profit, safety, efficiency, and
sustainability [8, 9]. Modern technologies including UAV
surveillance and pesticide spraying, image analysis, and
spraying nozzle optimization are used in this work to
improve crop number, quality, and farmer revenue.

AI and machine learning are revolutionising agriculture
and will effect global markets [10]. Soil, water, agricultural,
and livestock management can be improved through
machine learning. AI can optimize a fixed area’s yield for
profit. AI can increase plant disease, weed identification,
and harvest quality [11]. AI transforms agriculture by
increasing farm production, GDPs, food security, and the
environment. Agriculture uses artificial methods like crop
monitoring, yield optimization, soil optimization, irrigation,
and pest management.

Agriculture must be revolutionised in a world where
technology is changing everything. Thus, UAVs transform
agriculture. From spreading seeds to spraying pesticides,
UAVs can optimize agriculture operations, monitor crop
growth, and boost crop production [12]. Plant health and
pests are monitored using surveillance UAVs. UAVs with
AI also assess soil moisture, fertility, and other parameters
that affect plant development. As the country’s population
grows and weather patterns change, farmers must adapt to
new technologies [13]. By monitoring farms using UAVs,
UAVs increase traditional farming’s quantity, quality,
and revenue.

1.1. Objectives of the Research. As discussed earlier, the
development of stable and economical UAVs is very essen-
tial for small- and medium-scale farmers in India. A pleth-
ora of literature is available on UAV technologies, but
there are still gaps available to overcome those issues. Hence,
the objectives of this work have been formulated to address
the following issues: (1) Endurance is dependent on the
overall weight of the UAV. This work has been designed to
cover 1 acre of agricultural land in 10 minutes by carrying
a pesticide of 10 litres. The frame contributes mainly to the
overall weight of the UAV. Hence, the reduction of frame
weight to increase endurance while maintaining the payload
of 10 kg is the primary objective of this work. (2) Precision
spraying is one of the important factors to be considered
for reducing not only the cost but also the environmental
pollution. Hence, the development of an AI-based crop
health condition monitoring system is another objective of
this research. And (3) comparing the crop yield of cus-
tomized UAV-sprayed paddy crop with manually sprayed
paddy crop.

1.2. Related Works. This section divulges about the literature
review for the current work, based on the input from the
previous work on applications of AI in agriculture, smart
farming, design and analysis of hexacopter, usage of UAVs
in agricultural applications, selection of suitable UAV com-
ponents, and spraying nozzle design optimization and calcu-
lations which are used for this study. The importance of
artificial techniques in agriculture was investigated. Agricul-
tural automation is of high concern as the traditional tech-
niques followed by farmers are not sufficient to fulfil the
food requirements of the increasing population. This paper
has audited the applications of artificial intelligence in agri-
culture for weed removal and spraying using UAVs. The
usage of UAVs is also discussed in spraying applications
and crop monitoring. The comprehensive information is
listed in Table 1.

Yallappa et al. [24] designed a hexacopter agriculture
spraying UAV with a 15-minute flying time, 2 km range,
and 1.5-litre fluid capacity. Selection and computation of
components were done. The authors attached a GoPro video
camera to photograph and monitor the spraying mecha-
nism. Yeong and Dol [25] researched the computational
and experimental test-based effective outcomes of multirotor
UAV. Both engineering approaches examined the multirotor
UAV’s rotors. The multirotor UAV propeller’s initial design
phases were revealed, wherein thrust-to-weight ratio, typical
multirotor UAV configuration, and number of propellers
involved in important lifting phases were presented. Analyt-
ical propeller construction methods are the main focus of
this work. Raja et al. [26] conceptually created the multirotor
UAV for environmental applications, providing analytical
methodologies for developing all UAV components. Design
ratio, fineness ratio, and their roles in multirotor UAV
building were highlighted. The ideal values for both ratios
were mentioned. These ratios, their proper values, and
known design criteria made comprehensive design processes
easy to achieve. Analytical methodologies for secondary
design parameters (thickness) of connection arms and land-
ing sticks were explored in addition to fundamental design
parameters (length and diameter). Suprapto et al. [27] exam-
ined the design viewpoint of a heavy payload hexacopter for
diverse purposes. The component sections and their subor-
dinate analytical approaches were discussed. Through this
effort, components other than propellers could be selected.
In particular, the propeller-motor-battery-electronic speed
controller-flight control board connections were indirectly
implemented. The necessity of initial weight estimation
and its final optimization was also emphasised. Due to the
substantial payload-based application, these analytical meth-
odologies and shortlisted components complement the
current effort.

Lack of available workforce for agricultural production
activities is one of the most pervasive problems that farmers
face today. This issue will continue for the foreseeable future
because the next generation does not have enough opportu-
nities to choose from in terms of employment fields. Manual
sprayers of pesticides are putting their health in danger since
they are exposed to the poisons they employ on the job.
UAV technology has a wide range of possible uses in
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agriculture and provides a stable system on which to operate.
UAVs that can carry more weight are the subject of constant
interest and development. UAVs have several advantages
over more traditional farming tools and techniques, espe-
cially for large agricultural plots. In the field of agri-UAVs,
there is a deficiency of agricultural and scientific data neces-
sary to determine which UAV parts are most applicable.
Another major challenge is gathering enough images to use
in training artificial intelligence systems for use in precision
farming. There is potential for the development of low-cost
UAVs with a high payload capacity that can be used to spray
a wider area. Choosing the right spraying nozzles to cover
large areas reduces not only the operational costs but also
the amount of pesticide needed to perform the job. Field
trials of a spray to determine its quality and efficacy require
knowledge of the best spraying system to utilize for each
crop variety. It is important to remember that research into
spray droplet deposition and area coverage, spray drift man-
agement, and its impact on crop output is in its infancy and
has yet to be applied to a wide variety of crops and locations.
It is also important to stress the fact that this study is just
getting started. There is a paucity of UAV testing facilities
for evaluating its various parts. The furthermore compre-
hensive highlights are listed in Table 2.

2. Design and Development of Lightweight,
Heavy Payload Hexacopter

The number of times that UAVs are being put to use in
agricultural settings is rapidly increasing. Nevertheless, there
are constraints, some of which include, but are not limited
to, cargo capacity, thrust of the UAV, endurance, controlla-

bility, operational cost, and safety of operations [28]. In this
context, both the quadcopter and the hexacopter find wide-
spread application in the field of precision agriculture [29].
Despite the fact that both are put to significant use, the
quadcopter has a number of drawbacks, including poor pay-
load capacity, instability, and a high risk of crashing even if
just one of its propellers stops working [30]. According to
Suprapto et al. [27], however, hexacopter has improved pay-
load lifting capacity while also preserving efficiency and pro-
viding better stability. In spite of the fact that the hexacopter
has a lower endurance than the quadcopter due to the addi-
tional two motors, the hexacopter was selected for this inves-
tigation because of its superior stability. Due to the fact that
we have extensive experience in the field of spraying, it was
agreed that the new hexacopter should have the characteris-
tics detailed in Table 3.

Since the commercially available hexacopters are heavy
and expensive as discussed in [31], it was decided to design,
manufacture, and assemble the hexacopter to make it afford-
able and lightweight. Since the majority of the UAV perfor-
mance indicators are dependent on weight, the major focus
is given to the reduction of weight in frames, arms, and fuse-
lages, whereas propeller shafts, motors, and batteries were
purchased based on our requirements.

2.1. Overall Take-Off Weight Estimation. The performance
of a hexacopter is mainly dependent on the ratio between
overall weight to payload. This ratio is very essential to cal-
culate the flight parameters such as thrust, power, speed,
and endurance of which thrust is the major factor that needs
to be calculated. It is noteworthy to mention the fact that all
the commercially available hexacopters have WO/Wp, and it

Table 1: Investigations on UAVs and components selection.

Specifications Description Investigators

Autonomous spraying UAV Agricultural UAVs help in increasing yield and crop growth Garre and Harish [14]

UAV in agriculture
UAVs integrated with cameras are the prominent requirement as the images are

used in weed identification, soil analysis, and monitoring

Security of distributed
intelligence in edge computing

The impact of UAV combines with data privacy, device security, and secure
communication

Chen et al. [15]

Challenges in smart agriculture
Remote range, data storage and transfer, signal interference, and UAV

implementation in all fields are some of the challenges
Maddikunta et al. [2]

Nozzle spray applications To understand the droplet and spray pattern in the agricultural UAV Psirofonia et al. [16]

Spray characterization of flat
fan nozzle

Perform evaluation of flat fan nozzle under various drifting conditions Guler et al. [17]

Crop monitoring Linear regression method for sunflower crop Vega et al. [18]

UAV nozzle spray droplet size
Understanding the spraying droplet spectrum varying the speed and height of

spraying
Martin et al. [19]

Spraying efficacy Effective ways of utilizing UAVs for increasing spray efficiency and efficacy Liao et al. [20]

Crop monitoring Mapping, image processing, and comparison study have been conducted

UAV computing UAV-assisted autonomous search and rescue system for disaster response Huang et al. [21]

Spraying fertilizers and
pesticides

It has the ability to reduce time and human effort Pharne et al. [22]

Context of industry 5.0 in UAV
in agriculture

Industry 5.0 and precision agriculture Gomes et al. [23]
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was decided to develop a lightweight hexacopter withWO/Wp

ratio between 2.4 and 2.8. Although it was designed to carry
10kg of liquid fertilizer or pesticide, it is also essential to
include the weights of the spraying tank as well. Therefore,
the payload needs to be calculated as given in the following
equation:

WPayload =WPrimary +WSecondary, 1

where

WPrimary =WTank+pesticides ⇒WPrimary = 10 74 kg 2

The high-density acrylonitrile butadiene styrene (ABS)
plastic material was selected for the pesticide tank as it is eco-
nomical compared tometal and composite materials [32]. The
tank was designed as shown in Figure 1.

WSecondary =WNozzle +WPump+supportingrods 3

The nozzle is one of the most important components in
the agricultural UAV. Nozzles are used to spray fertilizers/pes-
ticides on agricultural land. A motor pump is used to pump
the fluid from the tank to the nozzles. The spraying quality
in agricultural land with the help of nozzles is one of the objec-
tives of my research. The weight of the nozzles measured is
0.040kg.

WNozzle = 0 040 kg 4

The supporting components such as connecting rods or
sticks, wireframe model-based platforms, truss structured-
based connecting plates, and motor pumps are always pre-
dominant in the holding of payloads and their execution.
For this work, four connecting sticks are used to hold the stor-
age tank and nozzle setups with the main hexacopter. Thus,
the major weight of the supporting components of this UAV
comprises the weight of the sticks.

WPump+rods = 0 67 kg 5

Therefore, the consolidated weight of the secondary pay-
load is calculated with the help of the following equation [33]:

WSecondary =WNozzle +WPump+rods ⇒ 0 04 + 0 67⇒ 0 71 kg
6

After the estimation of secondary payload weight, the esti-
mation of the overall weight of the payload needs to be calcu-
lated. In this regard, the equation [34] is referred to

WPayload =WPrimary +WSecondary ⇒ 10 74 + 0 71 = 11 45 kg
7

In this work, it was arbitrarily decided to have Wo/Wp at
2.4 for a given payload of 11.45kg. As Wo/WP of commer-
cially available UAVs are in the range of 2.4 to 2.8, it was
decided to design the proposed system to have Wo/Wp at
2.4 as it provides low weight and subsequently offers better
endurance. Therefore, the maximum required overall weight
was calculated as per the following equation:

WOverall take‐off
WPayload

= 2 4, 8

Table 2: Comprehensive summary of the highlights.

Sl no. Objectives defined Outcomes

1

Endurance is dependent on the overall weight of the UAV. This
work has been designed to cover 1 acre of agricultural land in 10
minutes by carrying a pesticide of 10 litres. The frame contributes
mainly to the overall weight of the UAV. Hence, the reduction of

frame weight to increase endurance while maintaining the
payload of 10 kg is the primary objective of this work.

A UAV with a 20% reduction in weight was achieved to carry a
10 kg payload and it helped to increase the endurance by 2min.

2

The nozzle of the sprayer plays a vital role in the efficiency and
the crop yield. Hence, the selection of a nozzle covering a large
area is another objective of this research and experimentally

validated in the lab and in the crop yield.

A correlation between the nozzle and the area coverage has been
established for different nozzles. Recommendations for the
selection of nozzles for 5 different plants which are widely

cultivated in India are given.

3

Precision spraying is one of the important factors to be
considered for reducing not only the cost but also the

environmental pollution. Hence, the development of an AI-based
crop health condition monitoring system is another objective of

this research.

Three different AI algorithms were tested and found that CNN
was more effective as compared to other algorithms in
identifying plant health with less computational time.

4
Comparing the crop yield of customized UAV sprayed paddy

crop with manually sprayed paddy crop.
UAV-based spraying has increased the crop yield by 0.4 tons per
acre while the reduction in spraying cost by INR 200 per acre.

Table 3: Hexacopter design parameters.

Design data Parameters

Payload 10 kg

Endurance 10min

Operating speed 3m/s to 6m/s

Range 2 km

Mode of flight Manual and autonomous
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WOverall take‐off =WPayload ∗ 2 4 = 11 45 ∗ 2 4 = 27 48 kg ≈ 28 kg

9

2.2. Calculation of the Diameter of the Propeller. The propeller
is the only thrust-producing component in the UAV [35]. It
transforms rotary motion produced with the help of a motor
into linear thrust. It produces lift by the difference in the pres-
sure between the top surfaces and bottom surfaces of the pro-
pellers. The variation of the speed of the propellers results in
changing the direction of the UAV into roll, pitch, yaw, hover,
take-off, and landing. Based on the configuration, the numbers
of propellers vary. UAV propellers usually comewith six in the
case of hexacopter. The materials of the blades are carbon fibre
or plastic. Plastic propellers are more flexible and less durable
than carbon fibre. Carbon fibres are light in weight compared
to plastic, and they also reduce the vibration caused due to
rotation of blades [36]. Propellers are manufactured with
two specifications. First is the length of the propellers also
called as the diameter of the propeller. If the length of the pro-
peller is small, inertia will be less, so less energy is required to
spin them, and it is easier to control their speed [37]. The lon-
ger the length of the propeller, the more lift is produced with
good stability, but it consumes more power. Second is the
pitch of the propeller. The pitch of a propeller is defined as
the distance moved for one revolution of a propeller. If the
pitch is smaller, it will be stable, and hence the speed will be
less compared to high-pitch UAVs. High-pitch UAVs will
fly faster for a particular RPM but they consume more power.
Since manufacturing of propeller is expensive, it was decided
to purchase a suitable propeller. Therefore, it is essential to
calculate the thrust which is directly proportional to the
overall weight of the UAV. Since a hexacopter has 6 propellers,
the weight will be equally distributed and the thrust required
for each propeller is calculated as given in the following
equation [25]:

TPropeller =
T/Wratio ∗ WOverall take‐off

n
, 10

where Tpropeller is the thrust requirement by a single propeller
in kg, T/Wratio is the thrust-to-weight ratio, and n is the total
number of propellers. Therefore, the thrust required by each
propeller is calculated as 9.33kg.

Thrust requirement by the single propeller =
2 ∗ 28

6
= 9 33 kg

11

It is important to mention that the higher the thrust-to-
weight ratio will offer better controllability. Generally, the
minimum thrust-to-weight ratio for agricultural UAVs is
1 : 2 to perform all kinds of aerodynamic maneuvring and to
hover at half the throttle [38].

From the thrust requirement, the diameter of the propel-
ler can be calculated using Equation (12) based on the
momentum theory.

T = 0 5 ∗ ρ ∗ A ∗ VUAV
2 − V0

2 N , 12

where ρ is the density of the air, 1.225 kg/m3 at ambient tem-
perature, A is the area of the rotational propeller, m2, VUAV
is the velocity of air accelerated by a propeller, 24m/s, VO is
the velocity of the air at the propeller, 5m/s, and T is the
thrust, 9 33 kg ∗ 9 81m/s2 = 91 52N .

0 5 ∗ ρ ∗ Arotor ∗ 24 2 − 5 2 = 91 52⇒ Arotor = 0 27m2

13

After that, the needful design data was estimated. The
diameter of the propeller is equal to 0.58m (23 inches).
Hence, the propeller having a diameter of 23 inches will pro-
vide the required thrust.

2.3. Calculation of Pitch of the Propeller. Under the design
consideration of the propeller, the pitch of the propeller
plays a vital position along with the diameter. There were
twenty propeller profiles used for agricultural UAVs that
are available in the market were collected, and the relation-
ship between various propellers to pitch by diameter (P/D)
ratio is derived. From the second historical relationship, it
is observed that most of the pitches to diameter fractions
are located in the range between 0.35 and 0.40. In this work,
P/D was arbitrarily chosen as 0.375 and the pitch was calcu-
lated as given in the following equation:

P
D

= 0 375, 14

P
23

= 0 375⇒ pitch P = 0 375 ∗ 23

= 8 6⇒ pitch P = 8 6 inches
15

There are over 20 different propeller blades available of
which foldable fixed pitch propeller blade provides better
thrust performance [39]. Hence, in this work, a foldable
fixed pitch blade was chosen, and its dimensions as depicted
in Figure 2.

Based on various propeller design considerations, the
estimated specification of the proposed hexacopter is shown
in Table 4.

2.4. Estimation of Power Requirement. Estimation of power
required by each propeller is very essential in choosing
motors and batteries. The maximum power required for

50 cm

15
 cm

Figure 1: Spraying storage tank.
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100% throttle is calculated using Equation (16) as given
by [26]

Power =
1
2
∗ T ∗V ∗

T

A ∗V2 ∗ ρ/2
+ 1

1/2
+ 1 , 16

where T is the thrust by a single propeller and VUAV is
the velocity of air accelerated by the propeller, 24m/s.

Power requirement =
1
2
∗ 91 52 ∗ 24

∗
91 52

0 261 ∗ 242 ∗ 1 2256/2
+ 1

1/2
+ 1

⇒ 1098 24 ∗ 2 41 = 2646 7W
17

The maximum power required for 100% throttle is esti-
mated as 2.6 kW. Although the hexacopter is designed to work
with 50% throttle, it is essential to choose the power supply for
100% throttle condition in order to overcome surges and
abnormal conditions.

2.4.1. Battery. The battery power is calculated by using
Equation (18), and also battery consumption will be maxi-
mum while hovering over the aircraft.

Flight time = battery capacity ∗ discharge
average ampere draw

18

In the hovering condition, the lift of the UAV is the
weight of the UAV, and the thrust required for hover per
motor for full load condition is the total weight of the
UAVs/no of rotors, ⇒28/6⇒ 4 66 kg/motor.

From the generalized motor data sheet, the current
required for generating 4.66 kg thrust is approximately
13A. During full load hovering condition for lifting 1 kg of
thrust, the current required is = 13/4 66⇒ 2 78 A to lift

1 kg; average ampere draw = current required to lift 1 kg of
load ∗ overall weight⇒ 2 78 ∗ 28 = 77 84A. Since estimated
flight time is assumed as 10mins = 0 16 hours, 0 16 =
battery capacity ∗ 0 8/77 84⇒ battery capacity = 15 568Ah.
A battery of 15.568Ah is required for 10mins endurance; in
this work, six cells, lithium polymer (LiPo) battery with
16000mAh (16Ah) battery of TATTU make was used.

2.5. UAV Frame Design. Since a hexacopter has 6 arms, each
arm needs to be placed in equidistance. Simply, each arm
needs to be separated by 60°. The length of the arm is depen-
dent on the length of the propeller. Clearance between tip to
tip of the propellers decides the arm length of a UAV [40].
Based on these requirements, in this work, an arm length
of 65 cm was chosen. Since this work is fully dependent upon
the conventional design of hexacopter rotor-based multiro-
tor UAV, the estimation of angle representations of all the
connecting arms can be derived from the help of simple
geometry. Thus, it is observed that the assembling of con-
necting arms is predominantly arriving at the equilateral
triangle, as shown in Figure 3. In Figure 3, the central hub
of the UAV is referred to as “X” and “Y” and “Z” are
referred to as positions of the propeller mounts of two
different motors in which the distance between the hub is
shown as A and B, respectively. As stated, the angle between
each arm of the rotors is 60° and the length of the arm is
65 cm, and this data clearly results that for the hexacopter,
the length of the arm should be equal to the distance
between the hub of the motor which is mentioned as C.
So, A = B = C = 65 cm.

So, lengths of all the connecting arms and distance
between the motors should be equal. The frame size ranging
from 600mm to 1200mm is used for agricultural UAVs.
With the study on the existence of the agricultural UAV,
frame size is designed. The proposed arm model is shown
in Figure 4.

2.6. Selection of Fuselage. The selection of fuselage for UAVs
has been generally relayed on two factors: the external
boundaries of electronics equipment and the enclosure and
shape of the fuselage. Since the outer shape of the fuselage
is one of the main factors in generating the drag force on
the entire multirotor UAV, the shape of the multirotor
should be always kept as curvature-based instead of bluff
body orientation. Based on the commercially available
shapes and materials, in this work, ABS was used due to its
cost and relatively low weight. The fuselage used in the work
is shown in Figure 5.

23 inches
Body

Blade tip

Blade hub

Figure 2: Propeller specifications.

Table 4: Calculated final design data.

Sl. no. Description Design data

1 Thrust by the propeller 9.33 kg

2 Thrust-to-weight ratio 2

3 Diameter of the propeller 23 inches

4 Pitch of the propeller 8.8 inches
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By selecting the appropriate commercially available
components and custom-made arms, the UAV was assem-
bled. The assembled UAV is shown in Figure 6. The weight
of the assembled UAV is 26 kg which is 2 kilos lower than
the anticipated weight discussed in the earlier section. Fur-
ther, the weight is lower than the commercially available
UAVs. It is noteworthy to mention that the cost of the
assembled UAV is nearly 30% lower than the commercially
available UAVs.

3. Deep Learning Embedded for
Crop Monitoring

As the usages of UAV are increasing, it is essential to make it
for precision farming. First, UAV is responsible for mapping
the large-scale agricultural area which in the current work is
a rice field, lemon, and guava field located in Kumaraguru
Institute of Agricultural, Satyamangalam, Tamil Nadu, to
get the coordination of the area boundaries by using GPS
to get location data in latitude and longitude format. It is
one of the objectives to understand the leaf condition
through image processing techniques. It has been decided
to focus on a lemon and create a dataset for a lemon. In
India, lemon has been cultivated 3.17 lakh acres in which
India contributes 17% of the world’s lemons [41]. Despite
it has been cultivated in large volume, to our knowledge,
the dataset for lemon leaf is limited. Therefore, in this work,
a dataset of lemon cultivation land was created by photo-
graphing with a gimbal camera and DSLR camera. The
image dataset having 838 unhealthy and healthy lemon leaf
images was created by capturing the images. The images
were taken from the land owned by Kumaraguru Institute
of Agriculture wherein 1 acre of land was used to cultivate

lemon. The dataset of lemon leaf captured was analysed
using three different algorithms to classify the stress level
of the leaf. In this work, logistic regression, random forest,
and convolutional neural network (CNN) algorithms were
used to classify and identify the stress level of the leaf to
spray the pesticide effectively. Since this is a new dataset,
in this report, AI-based disease identification and classifica-
tion of lemon leaf is only presented in this report [42].

3.1. Hexacopter with Gimbal Camera. In the present study, a
hexacopter with a gimbal camera is used for mapping and
taking images of the crop land. Existed hexacopter design
was chosen for the study and performed the comparative
study on choosing the gimbal camera and fitting it in the
UAV. Table 5 contains the hexacopter specifications.

3.2. Gimbal for Camera Stabilization. Various factors distin-
guish cameras, but the most significant for photogrammetric
applications are optics quality, sensor quality, and lens com-
patibility. A gimbal is a supporting mechanism that allows
the camera to remain in the same position. By automatically
adjusting using calibrated and typically remotely controlled
electric motors, a gimbal can control the movement of the
camera independent of the movement of the UAV. Gimbals
dampen vibration in UAVs, which is extremely useful for
real-time picture stabilization applications and gives advan-
tages for capturing better pictures. Gimbals usually have
two or three axes. Images captured in 2-axis gimbals will
have significantly greater roughness as they do not correct
for yaw. A three-axis gimbal provides additional stability
by managing the camera’s yaw movement. A three-axis gim-
bal is used in the current research. The proposed hexacopter
UAV with a gimbal camera is shown in Figure 7.

In this, the proposed hexacopter with a gimbal camera is
used to map the agricultural land. The samples of the images
of the leaves are shown in Figure 8. The leaf dataset is gath-
ered and subsequently processed for the assessment of the
leaf ’s health state using appropriate algorithms.

35 cm

15
 cm

Figure 5: Front view of a fuselage.

AB

X

C

Y Z

Figure 3: The trigonometric representation of the UAV frame’s
design.

65
 cm

Figure 4: Isometric view of connecting arms.

Figure 6: Isometric view of the assembled hexacopter.
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3.2.1. Procedure to Process the Images. The data collected by
the hexacopter UAV is stored and processed by following
the steps shown in Figure 9. This storing system allows the
user to access data from any location and at any time. For
simple access, the image data is saved with the name and
time of capture. For crop health analysis, the recorded
photos are analysed utilizing image processing and the pro-
posed algorithms [43].

3.2.2. Leaf Images. Leaf images are the input images, whose
health has to be analysed to check the stress level and health
condition of the leaf. This image was processed by following
the steps.

(1) Preprocessing. At this stage, the input images are prepro-
cessed to speed up the process and reduce the computational
and memory complexity in the cloud. Here, two steps are
followed to perform a preprocess on the input images. The
steps are as follows:

(a) Image resizes

In this step, the input image size is resized into 250 ∗
250 ∗ 3 to reduce the computational complexity. In this
work, the input image size is 256 ∗ 256 ∗ 3. This size is
reduced to 250 ∗ 250 ∗ 3 for processing all types of images
in the future. This resized image is subjected to color trans-
formation to highlight the healthy and unhealthy regions in
the leaf.

(b) RGB to BGR conversion

In this step, the input RGB channel of the image is
converted into a BGR channel to signify the healthy and
unhealthy regions of the leaf using the following algorithm
1 [43]. Using algorithm 1, the HSV plot for the RGB and
BGR image is shown in Figure 10 [43].

Figure 10 shows that the blue and red channels are inter-
changed to highlight the healthy regions of the leaf. This
highlighting helps to improve the segmentation process.

(2) Leaf Region Segmentation. At this stage, the final prepro-
cessed image is processed to segment the leaf region from
the background image. It is achieved by two stages of mask-
ing. One is green masking to segment the healthy regions,
and the other is brown masking to segment the unhealthy
regions. By combining both this stage’s output, the leaf
region is extracted from the background and it is useful for
efficient classification.

(a) Healthy region

In this, the healthy region of the leaf is extracted by
defining the pixel range for the upper and lower parts of
the leaf. The combined upper- and lower-part values give
the mask for extracting the healthy region of leaves. Algo-
rithm 2 is for healthy region segmentation [43]. Using
algorithm 2, the healthy regions of the leaf are extracted,
and they are shown in the result section [43]. This segmen-
tation helps to improve the feature extraction and classifica-
tion process.

(b) Unhealthy region

Similarly, by setting the pixel range for the top and bottom
regions of the leaf, the unhealthy region of the leaf is retrieved.
The mask for removing the unhealthy zone of leaves is created
by combining the upper- and lower-part values. The method
for segmenting unhealthy regions is shown in algorithm 3
[43]. The diseased parts of the leaf are extracted using the tech-
nique described in algorithm 3 [43], and they are displayed in
the result section. This segmentation aids in the extraction and
categorization of features.

(c) Final segmentation

In this, the outputs from both stages are combined to pro-
duce the final segmented leaf image from the background. The
algorithm for the final segmentation part is shown. Using the

Table 5: Proposed hexacopter specifications.

Major components Specifications

Sensor units

BLDC motor 1400KV

Electronic speed controller 30A

Thrust-to-weight ratio 1 : 2

Gimbal 3 axis

Flight control board Pixhawk 2.4.8

Frame 550mm ∗ 550mm ∗ 100mm
Maximum speed 25m/s

Range 2 km

Power unit

Battery 8000mAh

Operating time 12min

Propeller unit

No. of propeller 6

Operational mode and weight

Net weight 2 kg

Operational mode Autonomous/manual

Figure 7: Developed hexacopter UAV with gimbal camera.
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algorithm 4 process, the leaf region is extracted from the back-
ground image [43]. This extracted image is subjected to the
feature extraction and classification process.

(3) Feature Extraction. In this step, the pixel count for each
channel value is calculated for the leaf region, and it is called
the histogram count. After calculating the histogram count,
the normalized values of the image are also calculated. These
two parameters are useful for performing classification using
logistic regression and the random forest algorithm. Algo-
rithm 5 is for performing the feature extraction process
[43]. Using the algorithm 5 steps, the feature extraction is
performed on the leaf region, and the corresponding results
are shown in Figures 11 and 12 [43].

In Figure 12, the x-axis indicates the pixel values and the
y-axis indicates the number of counts in that pixel. This
gives the histogram count of the image. From Figure 12, it
is observed that the leaf region has a maximum pixel count
of between 2 and 160. Based on the histogram count, it is
observed that the maximum pixel value in the image is
160. Hence, the 160 is chosen as the normalization for the
input image. Then, the corresponding normalized histogram
image is shown in Figure 12.

Figure 12 shows that the histogram value is normalized
to the range of 160. This improves the feature extraction
by analyzing the regions more dominantly as compared to
the histogram count of the image. Both these values are used
for classification by a machine learning algorithm [43]. For

(1) (2) (3) (4) (5) (6) (7)

(8) (9) (10) (11) (12) (13) (14)

(a)

(1) (2) (3) (4) (5) (6) (7)

(8) (9) (10) (11) (12) (13) (14)

(b)

Figure 8: (a) Deceased leaf samples and (b) healthy leaf image samples.

Leaf images
Pre-processing
resize and BGR

conversion

Segmentation
(leaf region)

Feature extractionClassificationPerformance
evaluation

Figure 9: Steps for processing the images.

77 52 38 66
91 32 66 72
34 55 59 67
35 42 58 83

65 54 52 58
45 49 35 65
75 47 58 15
49 45 48 85

33 42

Algorithm 1

54 25
26 59 58 75
95 83 27 35
65 72 58 12

86 65 32 25
26 78 65 93
12 67 68 69
28 31 58 68

65 72 15 36
45 65 98 78
12 45 76 98
68 35 31 42

32 62 65 69
86 89 95 78
79 65 14 42
35 62

R

15 47

RG GB B

Figure 10: 2nd stage of preprocessing output.
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deep learning algorithms, the segmented images are directly
processed instead of these extracted features [43].

(4) Performance Evaluation. In this section, the metrics used
for evaluating the classification process are discussed.

(a) Accuracy

Accuracy is an evaluation metric for the classification
process. It defines the classifier performance by identify-
ing the leaf types correctly as shown in the following
equation:

Accuracy =
correctly identified classes
total number of classes

, 19

correctly identified classes = healthy or unhealthy type
20

(b) Computational time

Computational time is the time taken to complete the
image-processing task for each algorithm [43]. Generally,
the computational time should be low for faster processing.

3.2.3. Surveillance Room. The manual operation settings for
the UAV may be supplied in this room, and the UAV’s
motions can be watched to replenish the UAV’s energy if
it runs out. In this section, the output for each stage of image
processing is shown, and the comparison of machine learn-
ing algorithms is given [43]. In this, the input image is
resized to 250 × 250, and then it is transformed into the
BGR domain to observe the changes in the leaf to indicate
the type of disease, as shown in Figure 13.

The figure shows the sample resized image for process-
ing on the UAV because the larger image size requires more
space and processing time. Hence, in this, the (250, 250) size
is chosen for processing all the images from the UAV. After
resizing, the image undergoes color transformation using a
relevant algorithm [43]. The output of color transformation
is shown in Figure 14.

Here, it is observed that the RGB channel of the image is
transformed into the BGR channel as in Figure 14(b). This
transformation highlights the maximum changes in the leaf
region.

(1) Segmentation. After the color transformation process, the
leaf image is separated from the background using a seg-
mentation algorithm [43].

Here, the segmentation is performed by two types of
masking. One is green masking, and the other is brown
masking. In green masking, the upper and lower regions of
the leaf in green color are masked as in the first part of
Figure 15. The second part of Figure 15 shows the leaf struc-
ture of the mask. Similarly, the second masking is per-
formed, and its results are shown in Figures 16 and 17.

In brown masking, the unhealthy regions and stem
regions of the leaf will be covered. In the input image, the
brown images are fewer; hence, it shows a smaller white area
in the first Figure 16 as compared to green masking. The
corresponding output for the brown mask is shown in the
second part of Figure 16. By combining both this green
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Figure 13: Resized image.
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and brown masking, the complete leaf structure can be
extracted from the background. Figure 17 shows the com-
plete segmentation of the leaf from the images. The result
shows that the proposed segmentation is suitable for extract-
ing all the regions from the leaf as compared to other seg-
mentation approaches like FCM or K-means that segment
a single region into one part.

(2) Classification. From the segmented image, the deep learning
algorithm is applied to it for feature extraction and classifica-
tion purposes [43]. The performance evaluation of the deep
learning classification for training and validation sets is shown
in Figure 18. Figure 18 shows that the CNN performs well by
increasing the epochs to reduce its model loss to a 0.10% value.

Similarly, the corresponding validation loss is also minimal and
falls under 0.05%. This proves that the proposed deep learning
performance is individually better by having minimal loss as
compared to the training set. Then, the overall validation accu-
racy for the trained CNN is shown in Figure 19.

Figure 19 proves that at higher epochs, the trained model
can achieve 100% accuracy for properly trained CNN. This
shows that the proposed deep learning algorithm is best
for the dataset [43]. To verify this, the proposed method’s
performance is compared with the existing approaches like
logistic regression and random forest in terms of computa-
tional time and epochs. The comparison between the pro-
posed method and the existing method is given in Table 6.
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Figure 14: Color transformation.
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Figure 15: Green masking results.
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Figure 16: Brown masking results.
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From Table 6 and Figures 20 and 21 also, it is observed
that the proposed method outperforms the existing method
by having less computational time. From both the perfor-
mance evaluation and the computational time, it is clear that
the proposed deep learning is best for embedding in UAVs.
The dataset of the lemon plant was created. It is found that

CNN is the most powerful method yielding 99% accuracy
and consuming 33% and 20% less time as compared with
logistic regression and rainforest algorithms, respectively
[43]. It is necessary to integrate this AI algorithm in the
UAV for precision spraying of pesticides.

4. Experimental Validation of Thrust and
Nozzle Spray Optimization

Two of the main objectives of this research work are to gen-
erate sufficient thrust at different flying conditions and
develop a nozzle which covers a large spray area. Since we
have estimated the overall weight of the hexacopter, it is
necessary to test the thrust generated at different flying con-
ditions such as take-off, landing, and hovering. Thrust mea-
suring setup was created and measured the thrust by varying
propeller, battery and motor [35]. In this chapter, the results
of experimental validation of thrust are presented. Similarly,
most of the conventional nozzles used commercially have
limitations in spraying area coverage [44]. Nevertheless, it
is crucial to spray the appropriate amount of fertilizers and
pesticides at the right intervals in India, since the country
possesses more than 157 million hectares of agricultural land
and is a leading producer of rice, wheat, and vegetables [45].
Hence, it is very crucial to optimize on selection of a nozzle
which can cover a large spray area. As part of this research,
experimental results of custom-made nozzles are also pro-
vided in this section.

4.1. Thrust Measuring Setup. The thrust-to-weight ratio of a
UAV varies depending on its applications [46]. As motors
are propulsion systems for electric UAVs, they need to be
chosen based on the RPM and KV rating of the motor. A
motor with a suitable propeller will produce the required
thrust. The thrust of the UAV is mainly controlled by vary-
ing motor specifications, propeller size, and battery [35]. The
amount of thrust force decided the lift of the UAV. There-
fore, a test setup to measure the thrust produced for different
combinations was established in the laboratory, and the
schematic is shown in Figure 22 and the thrust frame setup
is shown in Figure 23. The experiments were carried out
with a test bench fabricated using stainless steel to withstand
the higher load produced by the motor.
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Figure 18: CNN evaluation.
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Figure 17: Final segmented result.
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The experiment involved utilizing an Arduino Nano in
conjunction with a load cell to provide the measured data.
The studies are undertaken to measure the thrust variation
for different combinations of motor, battery, propeller, and
ESC while manipulating the throttle. The importance of
the load cell is to measure the propeller-induced aerody-
namic force, the ESC is used to control the speed of the
planned test propeller, and the control unit is used for guid-
ing this entire experimental system. The experimental data is
utilized to generate plots depicting the relationship between
thrust and efficiency, RPM, power, and current under the
given conditions.

4.1.1. Testing Procedure. Measuring the thrust for different
speeds, motors, batteries, and propellers is essential to select
the appropriate components for the proposed hexacopter. In
this work, 6 propellers, 2 motors, and 2 batteries were used
and tested for 40%, 50%, 60%, 70%, 80%, 90%, and 100%
throttle positions. The process of testing of thrust measure-
ment is depicted in Figure 24. LiPo battery is the only power
source used in the testing setup. It is always important to

check the voltage level of the battery for accurate readings,
fix the propeller to the motor mount in the correct direction,
and connect the motor and ESC to the battery. A servo tester
is used to vary the speed of the motor and propeller setup.
Note down the thrust produced, propeller RPM, and power
consumed for each throttle position.

4.1.2. Experimental Results. Although this setup allows con-
ducting different combinations, this work has been limited
to two combinations, as shown in Table 7. The results were
investigated between various parameters which include
thrust vs. power efficiency, RPM vs. current, RPM vs. power,
and thrust vs. RPM. These studies will provide a comprehen-
sive idea of which system performs better and help to choose
appropriate components for assembly.

(1) Results of Combination 1. Although experiments were
conducted for two combinations, the results for one combi-
nation are provided here. The second combinations follow
the same pattern. As anticipated, the consumption of power
increases with increasing RPM, as shown in Figure 25. Since
the speed of the motor did not increase linearly, there is a
minor deviation in the linear relationship between RPM vs.
power. Figure 25 also shows that the power consumption
increases with increasing propeller length. At full throttle,
the longest propeller consumed a power of 3200 watts,
whereas the shortest consumed 2500 watts. Up to 80% throt-
tle, all three propellers have the same pattern, and the
longest starts consuming 20% more power for the throttle
increased from 80% to 100%.

As power is dependent on the current, RPM vs. current
followed the same pattern as RPM vs. power, as shown in
Figure 26. The current consumed at 40% throttle for all three
propellers was around 10A, whereas in gradual increasing of
throttle, a steep increase in current consumption is observed.
By increasing the length of the propeller, RPM decreases,
and the current consumption increases. The maximum cur-
rent consumption for 100% throttle for 22-inch, 23-inch,
and 24-inch propellers are 54A, 61A, and 72A, respectively.

Similar to the previous cases, RPM vs. thrust showed
increasing thrust for increasing RPM, and thrust generated
was also increased for increasing propeller length, as shown
in Figure 27. The 22-inch propeller can generate 10,000
grams of thrust at 7000 RPM. Comparatively, a 23-inch pro-
peller can produce a better thrust of close to 12,000 grams at
6800 RPM, whereas a 24-inch propeller can result in a much
higher thrust of exceeding 13,000 grams at 6400 RPM.

Power efficiency is defined as the ratio of thrust pro-
duced to the power consumed is one of the most important
considerations in the selection of a propeller. Figure 28
shows the thrust vs. power efficiency, as anticipated, the
23-inch propeller performance was always in the middle
between 22- and 24-inch propellers. Surprisingly, the 23-
inch propeller exhibited superior power efficiency than the
other 2 propellers, as shown in Figure 28. At the lower
thrust, the power efficiency is between 4.4 and 4.5 for a
23-inch propeller which is reading just below 4.2 at the
maximum thrust. In comparison, a 24-inch propeller and a

Table 6: Proposed method comparison.

Methods Accuracy (%) Computational time (ms)

Logistic regression 65.3 175.5-1000

Random forest 82.7 150-900

Deep learning 98 55.96-748.34
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ESC

Propeller

Motor mount

Load cell

BLDC motor

Servo tester

LiPo batteryControl unit

Figure 22: Schematic diagram of thrust measuring setup.

ESC

Servo tester

Watt meter

LiPo battery

Propeller

BLDC motor

Motor mount

Load cell

LCD display

Figure 23: Thrust frame setup.

Step 1: check for the charge level of the battery that going to test

Step 2: connect the motor, propeller, ESC to the battery.

Step 4: gently increase the speed of the motor using servo tester.

Step 5: note down the readings from the watt mater, tachometer

Step 6: repeat the procedure by varying the speed of the motor

Step 3: make sure the propeller is fxed in the correct direction.
Avoid standing in front of the propeller.

Figure 24: Process of thrust measurement.
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Table 7: Variable combinations of UAV components.

Combination 1 Combination 2

Battery: 12 s Battery: 12 s

ESC: 80A ESC: 40A

Motor: 180 Kv Motor: 320Kv

Propeller: 22″ × 8 8, 23″ × 7 2, and 24″ × 7 9 Propeller: 15″ × 4 5, 16″ × 6 2, and 17″ × 5 5
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22-inch propeller produce a maximum efficiency of 4.38 and
4.32, respectively, and drop to 4.03 and 3.97, respectively, at
maximum thrust. The results show that the 23-inch propeller
is best suited for the specified motor.

4.1.3. Field Study on Spraying Area Coverage and Time
Consumptions. Since 3m/s and 4m/s are considered stable
speeds for agricultural UAVs [19], tests were conducted to
identify the time taken to cover 1 acre of paddy land
and the area sprayed with a full tank capacity of 10 litres.
The results of these experiments are given in Table 8. It is
found that UAVs operated at 4m/s cover a large area and
consume only 6 minutes to cover an acre. However, both
methods could not cover an acre of land with full tank
capacity.

4.1.4. Manual Spraying vs. UAV Spraying. Two acres of
paddy land were allotted on the premises of Kumaraguru
Institute of Agriculture, Tamil Nadu. One acre was used
for manual spraying and the other for UAV spraying, as
shown in Figures 29 and 30. The type of crop and spray fre-
quency are given in Table 9. The comparison of crop yield
for both manual and UAV methods is given in Table 10.
As anticipated, crops sprayed with UAVs yielded 16% higher
than the manual method. Further, the usage of UAV
reduced the operating cost by 50% for an acre as compared
with manual mode.

The experiments conducted on thrust measurement sug-
gested that a 23-inch propeller seems to be more power effi-
cient for a given thrust. Although 24 inches performed better
in most cases, in terms of power consumption, a 23-inch
propeller is suitable for better endurance. Based on the
experiments, recommendations on the selection of nozzles,
orifice diameter, and the height of the spray are given in
Tables 8–10. Since the required cone angle is between 80°

and 110°, the suitable operating pressure is 4 bar. However,
depending on the pesticides or herbicides, the pressure can

be fixed. Despite the fact that the cone angle is expected to
be between 80° to 110°, for better application of chemicals,
in select cases, it is expected to operate at low pressures.
For example, herbicides need to be sprayed at between 2
and 3 bar. Flat fan nozzles are recommended when the spray
has to be percolated to the bottom, whereas full cone nozzles
are recommended for shallow penetration. For instance,
paddy is a crop where the stems are thin but dense crop,
in such cases flat fan is preferred so as to reach the inner sur-
faces of the stem, whereas banana cultivation requires a large
area, needs to be covered, and does not require penetration;
hence, full cone is preferred.
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Table 8: Field testing of flat fan nozzle.

Flow rate
UAV operating

velocity
Area coverage
for 10 litres

Time taken to
cover 1 acre

2 litres/min

3m/s

0.8 acre 7.05min

3 litres/min 0.68 acre 7.05min

4 litres/min 0.45 acre 7.05min

2 litres/min

4m/s

0.92 acre 5.56min

3 litres/min 0.76 acre 5.56min

4 litres/min 0.53 acre 5.56min

Drone Manual

Figure 29: Manual vs. UAV spraying.
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5. Conclusion and Future Work

The endurance of UAVs is dependent on the overall weight
and usage of battery motors and propellers. As the trend for
the usage of UAVs is increasing and the government of
India’s policy is favouring the usage of UAVs in farming, it
is necessary to develop an affordable UAV with better

endurance to make the small- and medium-scale farmers
use this technology. As part of this research, it was aimed
to reduce the weight of the UAV to increase the endurance
of UAVs. The purpose is to minimize chemical use and max-
imize battery life by determining the optimal nozzle and
operating parameters based on the link between pressure
and the area covered. To effectively implement precision

(a) (b)

Figure 30: (a) UAV spraying. (b) Manual spraying.

Table 9: Type of crop and spray frequency.

Variety Coimbatore 54

Crop type Hybrid

Tillering stage 100 days to 120 days

No. of times sprayed

3 times (depending on the weather conditions and pest attack)
After transplanting
(i) First spray: tillering stage—28th day—pesticides
(ii) Second spray: panicle initiation—50th day
(iii) Third spray: pest’s attack—62nd day

Table 10: Comparative study of manual spraying and UAV spraying.

Description Manual spraying UAV spraying

Crop Paddy Paddy

Area 1 acre 1 acre

Time taken to spray 2.5 hours 7min

Crop damage Yes No

No. of people required 3 2

Water quantity required 100 litres 20 litres

Fertilizers/pesticides required 200ml (depending on the type) 150ml (usually 20% less than manual)

Operating cost

Rs 40 per tank. For 1 acre, manual spray
10 tanks = Rs 400

Labor cost for mixing the pesticides
and water on an average = Rs 100 per acre
Supply the meals to the operator = Rs 100

Total = Rs 600 per acre

Battery cost = Rs 100 per acre
Operator cost = Rs 200 per acre

Labor cost for mixing the pesticides
and water on an average = Rs 100 per acre

Total = Rs 400 per acre

Area coverage per day Maximum of 3 acres per person 20 acres per UAV

Yield obtained 2.4 tons per acre 2.8 tons per acre
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farming, it is necessary to develop an AI system to identify
the crop stress level. Based on this research, the following
conclusions are made:

(1) The reduction in weight of the body increased the
UAV’s endurance by 10% under no load conditions,
and in the full load conditions, it was reduced by 8%
as compared to commercially available UAVs

(2) The usage of materials for UAV is one of the impor-
tant factors in deciding the overall weight of the
UAV. The design changes are made in the arm struc-
ture, which reduced the weight by 5%. The weight
reduction was achieved by selecting lightweight
materials without compromising the factor of safety.
Both arm sections were manufactured with ABS
material. The larger section was attached to the fuse-
lage, and the smaller section held the propeller. Both
were screw jointed. The structural stability of the
arm was analysed in FEA and found to be well
within the limit and offered a factor of safety of 6

(3) The UAV component selection and the thrust mea-
surement to lift a 10 kg payload were experimentally
measured in a custom-made experimental setup for
3 propeller sizes. It was found that a 23-inch propel-
ler was the most energy-efficient propeller for a given
agricultural UAV

(4) With selected materials and custom-made arms, the
weight was reduced by 5%, and the cost was reduced
by 30%

(5) The relationship between nozzles for their orifice
diameters vs. pressure and cone was established. The
performance of nozzles was measured experimentally
and found that the minimum pressure required is 4
bar to achieve a good cone angle and large coverage
area. Suggestions on the selection of nozzle and oper-
ating conditions were given for 5 crops which are
cultivated largely in Tamil Nadu, India

(6) To enable precision farming, the usage of AI is neces-
sary; hence, in this work, a dataset of lemon leaf images
was created. The processing of the images was analysed
using CNN, random forest, and logistic regression tech-
niques. It was found that the CNN was more suitable
due to the 99% accuracy it yielded with nearly 30% less
computational time as compared with the other two

After the detailed explanation of this work’s conclusions,
the possible extensive study from this work is also given
below for further action:

(1) Although this work was limited to the change of
material and structure of arms, it is necessary to try
the combination of materials to reduce the weight.
For instance, the larger part of the arm can still be
ABS, and the smaller section could be made with
carbon fibre. It will not reduce the weight and may
increase the payload capacity

(2) Overall structural analysis by changing the materials
of landing gear, frames, and tanks needs to be con-
ducted to investigate the effect on overall weight

(3) Although this work is more focused on establishing
the nozzle performance parameters, droplet size
needs to be measured. Further, it can also be ana-
lysed for very high pressures

(4) The research concluded that CNN is the best suit for
precision farming, it is necessary to implement it in
the UAV and analyse the consumption of chemicals.
Further, it is necessary to create the UAV dataset for
stress levels for plants such as paddy, guava, tur-
meric, and areca nut which are widely cultivated in
the state of Tamil Nadu, India
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