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Compressive sampling matching pursuit (CoSaMP), as a conventional algorithm requiring system sparsity and sensitive to step
size, was improved in this paper by approximating the sparsity with adaptive variable step size. In the proposed algorithm
(CoSaMP with variable step size abbreviated as Vss-CoSaMP), the idea of approximating sparsity with adaptive step size was
borrowed from the sparsity adaptive matching pursuit (SAMP) algorithm to determine the sparsity for the CoSaMP algorithm.
The applicability of the CoSaMP algorithm was therefore expanded considerably. On this basis, a step size reduction was
added as the iteration termination condition of an orthogonal frequency division multiplexing (OFDM) system. An adaptive
variable step size algorithm was then put forward to address the CoSaMP algorithm’s sensitivity to step size. It could realize
the required precision at different initial step sizes. A simulation was carried out to analyze the influence of pilot number and
step size in an OFDM system on the algorithm. The algorithms, including SAMP, CoSaMP, and Vss-CoSaMP, were compared
with two sparse channels, revealing that the Vss-CoSaMP algorithm overcame the problem of the CoSaMP algorithm, that is,
the impossibility to forecast the channel sparsity. With the adaptive step size, the proposed algorithm could reach and achieve
better accuracy than the CoSaMP algorithm. Additionally, the proposed algorithm was superior over the SAMP algorithm in
terms of reconstruction, mean square error (MSE), and bit error ratio (BER).

Keywords: adaptive variable step size; compressive sampling matching pursuit (CoSaMP); iteration termination condition;
orthogonal frequency division multiplexing (OFDM); sparsity; sparsity adaptive matching pursuit (SAMP)

1. Introduction

Orthogonal frequency division multiplexing (OFDM), as an
underwater acoustic communication technique, has become
a hot topic in the underwater acoustic communication field
because of its advantages including good resistance to mul-
tipath interference, robustness to frequency selective inter-
ference, and high bandwidth utilization [1–6]. The design
of an OFDM receiver often needs the information of chan-
nel status, which is practically difficult to collect. It is there-
fore very important to explore the channel estimation and
equalization technique as the compensation for the under-
water acoustic channel distortion in an OFDM system.
The underwater data transmission is often troubled by
sparse multipath fading channels. Multiple paths are nor-

mally identifiable. If channel sparsity is fully utilized, chan-
nel estimation will be more accurate. Compressive sensing is
one of the main methods taken in sparse channel estimation
[7–11]. Greedy algorithm delivers the fastest reconstruction
among compressive sensing algorithms [12–16]. As a greedy
algorithm, sparsity adaptive matching pursuit (SAMP)
[17–20] is most favored since it uses step size to gradually
approximate channel sparsity K . Therefore, the sparsity of
signals is not needed beforehand for the system. However,
the SAMP algorithm may cause underestimation or overesti-
mation. Compressive sampling matching pursuit (CoSaMP)
[21–24] is an improved orthogonal matching pursuit
(OMP) algorithm, and it is very effective for both sparse
and common signals. In channel estimation, it still needs
channel sparsity, which is practically impossible to gather.
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This paper intends to put forward a more effective algorithm
by combining the advantages of such two algorithms.

Hence, the structure of this paper is arranged as follows:
the first part takes the CoSaMP algorithm as the basis and
describes how to address the problem of sparsity for the
CoSaMP algorithm by borrowing the idea of approximating
sparsity with step size from the SAMP algorithm. On this
basis, a step size reduction is added as the iteration termina-
tion condition for the algorithm. An adaptive variable step
size algorithm is therefore proposed to develop the CoSaMP
with variable step size (Vss-CoSaMP) algorithm. It can fur-
ther resolve the problem of sensitivity to fixed step size for
the CoSaMP algorithm.

The second part presents a simulation in three steps. The
influence of pilot number is first analyzed. Subsequently, the
influence of step size on the convergence of the algorithm is
analyzed. The sensing algorithms are compared in terms of
performance in the end, so as to verify the superiority of
the proposed Vss-CoSaMP algorithm.

2. OFDM System Model With Underwater
Acoustic Channel

An underwater acoustic OFDM system is presented in
Figure 1.

Information bits are modulated and mapped into sym-
bols. The constellation symbols obtained by quadrature
amplitude modulation (QAM) are used to convert the seri-
ally transmitted signal into the parallel transmitted signal.
After pilot insertion, X k is obtained. The signal is subse-
quently treated by inverse fast Fourier transform, guard
interval insertion, and parallel-to-serial conversion. The sig-
nal received by the receiver is processed in inverse transfor-
mations to obtain the frequency domain received signal
Y k .

The frequency domain signal between the receiver and
the transmitter is represented by

Y = XH +W = XFh +W 1

where X is the diagonal element matrix of N ×N dimensions
with the signals obtained after inserting the pilot frequency,
F is the fast Fourier transform matrix of N × L dimensions,
Y is the frequency domain received signal of N × 1 dimen-
sions, H is the frequency domain channel response of N ×
1 dimensions, h is the time domain channel response of
L × 1 dimensions, and W is the Gaussian white noise of
N × 1 dimensions.

Under normal circumstances, underwater acoustic chan-
nels are time-varying sparse multipath channels. Compared
with the total length of data frame, each OFDM data block
lasts for a short time. Therefore, the time delay of paths is
regarded to be linear [2].

For this reason, the sparse underwater acoustic channel
impact response can be expressed by

h n = 〠
K−1

k=0
hkδ n − τk 2

where K is the number of paths, i.e., the sparsity of the chan-
nel; hk indicates the gain of the kth path; δ ⋅ is the Kro-
necker delta function; and τk is the delay of the kth path.

It is assumed that B is a P ×N selection matrix used to
locate P pilots from the OFDM signal containing N subcar-
riers. Thus, the pilot signal at the receiver can be expressed by

Yp = XpFph +Wp 3

where Yp = BY is the vector of P × 1, Xp = BXBT is the P × P
matrix, Fp = BF is the P × Lmatrix, andWp = BW is the vec-
tor of P × 1. At the signal receiver, Yp, Xp, and Fp are all
known. In the channel estimation based on the compressive
sensing algorithm, such three known values are used to esti-
mate the channel impact response vector h.

3. Principles of the Algorithms

3.1. SAMP Algorithm for Underwater Acoustic Channel
Estimation. SAMP keeps the atomic selection principle of
the matching pursuit algorithm. It is greatly distinguished
from other matching pursuit algorithms by being adaptive.

The procedure of the SAMP core algorithm is as given in
Algorithm 1.

The SAMP algorithm utilizes step size to gradually
approximate the sparsity K , so that the system does not
require the sparsity of signal beforehand. This greatly
expands the applicability of the reconstruction algorithm,
since it is often impossible to determine the sparsity of sys-
tem or signal beforehand in practice.

3.2. CoSaMP Algorithm for Underwater Acoustic Channel
Estimation. CoSaMP is a classical greedy algorithm put for-
ward by Needell and Tropp in 2008 [21]. As an improved
OMP algorithm, it is very effective for both sparse and com-
mon signals. However, it still needs channel sparsity before-
hand in practical channel estimation. The procedure of the
CoSaMP algorithm is presented in Algorithm 2.

The CoSaMP algorithm borrows the idea of combined
algorithms to guarantee its speed. With its strict restriction
over error, the signal is very accurately reconstructed. Mean-
while, compressed measurement signal y often exists with
noise. In other words, there is noise interference apart from
y =Φx, so that we have y =Φx + e, where e is the noise.
Compared with other greedy reconstruction algorithms,
the CoSaMP algorithm has stronger resistance to noise
interference. However, as revealed in the procedure of its
core algorithm, the CoSaMP algorithm needs the input of
signal sparsity. The number of selected atoms is determined
by sparsity K × 2. In practice, it is impossible to obtain the
sparsity of system or signal beforehand, so that the applica-
bility of the CoSaMP algorithm is significantly limited.

The SAMP algorithm is adaptive, so that it can recon-
struct a signal by gradually approximating the unknown
sparsity. Thus, it can effectively resolve the problem of
unknown sparsity. Nevertheless, fixed step size plays a sig-
nificant role in the reconstruction accuracy and efficiency
of the SAMP algorithm. When the step size is too small, it
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may realize high accuracy, but at an unbearable cost of time
(underestimation). When the step size is too large, the sup-
port set may exceed the sparsity K , resulting in overestima-
tion. Reconstruction is not satisfying in both cases.

3.3. Proposed Algorithm for Underwater Acoustic Channel
Estimation. Considering the advantages and disadvantages
of the SAMP and CoSaMP algorithms, an improvement is
proposed from two approaches:

1. Improving the CoSaMP algorithm based on the
SAMP algorithm

In this approach, the idea of approximating sparsity with
step size is borrowed from the SAMP algorithm to address
the problem of sparsity for the CoSaMP algorithm, so as to
greatly expand the applicability of the CoSaMP algorithm.

2. Eliminating the influence of fixed step size on the
SAMP algorithm by introducing variable step size

Input: Sensing matrix A (M ×N dimensions), sampling vector y, signal-noise ratio i, step size S;
Output: Approximation ĥ of K-sparsity to the unknown channel impact response h;
Initialize:

ĥ = 0 (Initialize the column vector for saving estimations)
F0 =∅ (Initialize the support set to save the column serial numbers of the selected sensing matrix)
r0 = y (Initialize the residual error as the sampling vector)
L = S (Initialize the size of the support set as the step size of initial input)
j = 1 (Initialize the step size expansion counter)
k = 1 (Initialize the subscript)
IterMax =M (Determine the maximum number of iterations)

Repeat
Sk =max A′ ∗ rk−1 , L (Select and save the subscripts of L values with the largest inner product)
Ck = Fk−1 ∪ Sk (Expand the candidate set)
G =max A†

ck
∗ y , L (Obtain and save the subscripts of L values with the largest least squares solution)

r = y − AcA
†
cy (Obtain the residual error of this iteration)

if iteration termination condition tol is satisfies,
break the loop

else if rk 2 > = rk 2
j = j + 1 (The support set is expanded by 1)
L = j × S (Expand the support set)

else
Fk =G (Update the support set)
rk = r (Update the residual error)
k = k + 1

end
until the iteration termination condition is satisfied or the maximum number of iterations is reached
Output: ĥF =A†

Fy

Algorithm 1: Procedure of the SAMP core algorithm.
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Figure 1: An underwater acoustic OFDM system.
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The SAMP algorithm is affected by fixed step size; thus,
the idea of variable step size is introduced in this paper. In this
idea, step size varies adaptively. As for the SAMP algorithm,
the step size can be increased by s or s/2 when the candidate
set is expanded. In this case, good accuracy of reconstruc-
tion can be achieved regardless of different step sizes. After
the initial step size is input into the improved algorithm,
that is, Vss-CoSaMP, it can be adaptively reduced to achieve
gradual approximation.

The Vss-CoSaMP algorithm is compared with the
CoSaMP algorithm as shown in Table 1.

The Vss-CoSaMP algorithm is compared with the SAMP
and CoSaMP algorithms as follows:

1. Procedure of the Vss-CoSaMP algorithm. As shown
in Table 1, the initial step size is first input to start
the iteration. A step size reduction condition is then
set. If satisfied, the step size is reduced by half, that
is, S = S/2. The condition for expanding the support
set in the SAMP algorithm is introduced into the algo-
rithm. If satisfied, the support set is expanded to L =
L + S/2. If not, it is still L. However, if the condition
for step size reduction is not satisfied, L changes as
it does in the SAMP algorithm.

2. Determine the condition for termination of iteration
tol. Based on the sparsity of the configured channel,
the optimal reconstruction is achieved by constantly
changing the number of iterations. With the number
of iterations for the optimal reconstruction, the final
values of rk 2 at different signal-noise ratios (SNRs)
are obtained. The variation of rk 2 with the SNR is
observed to fit a trend line equation as the condition
for termination of iteration for the algorithm. The
condition for termination of iteration is adjusted with
the simulation curve of the trend line equation.

In this paper, the simulation is conducted under two
underwater acoustic channels with a sparsity of 4 and 10,
respectively. The trends of the condition for termination of
iteration tol in Step 7 of the Vss-CoSaMP algorithm in
Table 1 are obtained as shown in Figures 2(a) and 2(b).
Based on the trend curves, the constant terms in the polyno-
mial are adjusted. Thus, the condition for termination of
iteration tol of the Vss-CoSaMP algorithm with two spar-
sities is determined to be rk 2 ≤ 14 25 ∗ exp −0 114 ∗ i
and rk 2 ≤ −3E − 09i6 − 6E − 07i5 + 8E − 05i4 − 0 0038i3 +
0 1054i2 − 1 9218i + 18 1125, respectively.

Iteration termination condition plays a significant role in
the reconstruction performance of the algorithm. If the pre-
cision of the condition is set too high, it is impossible to
break the loop during each iteration. Therefore, the algo-
rithm is forced to have the maximum number of iterations,
which takes much time. More clutter signals are caused to
significantly undermine the reconstruction performance of
the algorithm. Reconstruction may even fail. In this paper,
the iteration termination condition tol of the algorithm is
established for the OFDM system model, and it is particu-
larly applicable in this case.

3. Determine the condition for reduction of step size. As
discovered in the simulation, the value of the condi-
tion for termination of iteration tol is decreasing
within a range. When the condition for reduction of
step size is larger, the step size of the Vss-CoSaMP
algorithm will be reduced earlier, and it is easier to
achieve the reconstruction accuracy as good as the
CoSaMP algorithm. When the condition for reduc-
tion of step size is smaller, the algorithm will satisfy
the condition for reduction of step size later, which
may easily cause overestimation and make it difficult
to achieve the intended effect. Moreover, the value
of the condition for termination of iteration tol is

Input: Sensing matrix A (M ×N dimensions), sampling vector y, signal-noise ratio i, sparsity K ;
Output: Approximation ĥ of K-sparsity to the unknown channel impact response h;
Initialize:

ĥ = 0 (Initialize the column vector for saving restorations)
F =∅ (Initialize the support set to save the column serial numbers of the selected sensing matrix)
r = y (Initialize the residual error as the sampling vector)
IterMax = K (Determine the maximum number of iterations)

Repeat
Js =max A′ ∗ r , 2K (Select and save the subscripts of 2K values with the largest inner product)
Is = F ∪ Js (Expand the candidate set)
F =max A†

IS ∗ y , K (Take the subscripts of K values with the largest least squares solution, remove the redundant atoms
from the candidate set, and update the support set)

r = y −AFA
†
Fy (Obtain the residual error of this iteration, and update the residual)

if Iteration termination condition tol is satisfies,
break the loop

end
until the iteration termination condition is satisfied or the maximum number of iterations is reached
Output: ĥF = A†

Fy

Algorithm 2: Procedure of the CoSaMP algorithm.
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reduced fast in the early stage, but such reduction
slows down in the late stage. Considering the influ-
ence of time and accuracy, the median value is taken
as the value of the condition for reduction of step size
for the algorithm. After all, the condition for reduc-
tion of step size in the simulation of two underwater
acoustic channels with a sparsity of 4 and 10 is set
as rk 2/exp −0 114 ∗ i < 100 and rk 2 − 3E −
09i6 − 6E − 07i5 + 8E − 05i4 − 0 0038i3 + 0 1054i2 −
1 9218i < 19, respectively.

4. Experimental Analysis and Comparison

4.1. Influence of System Pilot Number on the Performance of
Algorithms. In the simulation, the channel noise of the sys-
tem was white Gaussian noise with SNR = 18 dB. The pilot
interval was 5. There were 256 subcarriers in total. The sig-
nal was treated by QAM. The fixed step size of SAMP was
S = 4, and the sparsity of simulated channel was K = 4. The

input of CoSaMP was K = 4. The initial step size of Vss-
CoSaMP was S0 = 4. The mean square error (MSE) and bit
error ratio (BER) curves of three algorithms varied with
the pilot number within a value range of [20, 100] as illus-
trated in Figures 3 and 4, respectively.

As revealed in Figure 3, the MSE in three algorithms
decreases with the increase of the pilot number. This varia-
tion is more noticeable in the CoSaMP and Vss-CoSaMP
algorithms, revealing their better performance than the
SAMP algorithm. It is noted that the SAMP algorithm has
better MSE than the CoSaMP algorithm in the beginning.
After the pilot number reaches 30, the CoSaMP algorithm
clearly surpasses the SAMP algorithm in terms of MSE. Dur-
ing the value range of the pilot number, the Vss-CoSaMP algo-
rithm always has a better MSE than the CoSaMP algorithm.

The comparison of Figures 3 and 4 reveals the similar
variation tendency of BER and MSE curves in such three
algorithms. The Vss-CoSaMP algorithm has a better BER
than the CoSaMP algorithm.

Table 1: Differences between the CoSaMP algorithm and the Vss-CoSaMP algorithm.

Step CoSaMP algorithm Vss-CoSaMP algorithm

1
Input: Sensing matrix A (M ×N dimensions), sampling vector y,

signal-noise ratio (SNR) i, step size K
Input: Sensing matrix A (M ×N dimensions),

sampling vector y, SNR i, step size S;

2 Initialize ĥ, F, r, IterMax Initialize ĥ, F0, r0, L, k, IterMax

3
Calculate the inner products of sensing matrix and residual error,
select the subscripts with the maximum values of 2K term to

expand the candidate set (2K term)
No difference (2L term)

4
Calculate the least squares solution for signal approximation,
and select the subscripts with the maximum values of K term

to remove the redundant atoms from the candidate set
No difference

5 Update the support set for signal approximation No difference

6 Update the residual error No difference

7
Judge the iteration termination condition. If satisfied,

break the iteration loop. If not, the number of
iterations increases by 1, and enter Step 3

Judge the iteration termination condition. If satisfied,
break the iteration loop. If not, enter Step 8

8 None Judge the step size reduction condition. If satisfied, S = S/2

9 None
Judge whether it satisfies rk 2 ≥ rk−1 2.

If satisfied, L = L + S/2, or start the next iteration
10 Output ĥF =A†

Fy No difference
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Figure 2: Tendency of iteration termination condition.
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4.2. Influence of Step Size on the Performance of Algorithms.
In the simulation, the pilot number was 100 with the
other conditions as given in Figure 3. The fixed step size
of the SAMP algorithm was S = 3, 4, 5. The initial step size
of the Vss-CoSaMP algorithm was S0 = 3, 4, 5. The perfor-

mance curves of the SAMP algorithm and the proposed
Vss-CoSaMP algorithm are as given in Figures 5 and 6,
respectively.

As shown in Figure 5, the MSE curves of the SAMP algo-
rithm with different step sizes differ significantly from each

20 30 40 50 60 70 80 90 100
Pilot number

10−3

10−2

10−1

100

M
SE

CoSaMP
SAMP
Vss-CoSaMP

Figure 3: Influence of pilot number variation on mean square error in the algorithms.
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Pilot number
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Figure 4: Influence of pilot number variation on bit error ratio in the algorithms.
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other within the range of SNR. When the SNR does not
change, but the step size increases from 3 to 5, the MSE of
the algorithm increases gradually. In other words, the
increasing step size causes lower reconstruction accuracy of
the SAMP algorithm. Hence, overestimation occurs when
the step size of the SAMP algorithm increases. This must
be attributed to the principles followed by the SAMP algo-
rithm. When the step size is 1, the SAMP algorithm has
the highest accuracy, but higher requirements for time.
When the step size is too large, the efficiency is great, but
the reconstruction accuracy is unacceptable. In practice,

the step size must be determined in terms of both time
and accuracy.

In Figure 6, the MSE curves of the Vss-CoSaMP algo-
rithm with different initial step sizes basically coincide with
each other. It means that the Vss-CoSaMP algorithm can
adjust to the variation of step size to some extent. When
the step size varies within a certain range, it has very little
influence on the reconstruction accuracy.

After comparing such two figures, it is found that the
proposed Vss-CoSaMP algorithm resolves the problem of
accuracy variation with different fixed step sizes for the
SAMP algorithm. In other words, the Vss-CoSaMP algo-
rithm allows a wide range of step size while ensuring the sat-
isfying accuracy.

4.3. Performance Comparison of Sensing Algorithms. The
simulation conditions are the same as indicated in
Figure 5. When the sparsity of the underwater acoustic
channel is K = 4, the fixed step size of the SAMP algorithm
is s = 4, the sparsity of the CoSaMP algorithm is K = 4, and
the initial step size of the Vss-CoSaMP algorithm is S0 = 4.
The sparsity of underwater acoustic channel is adjusted to
K = 10, but other simulation parameters remain unchanged.
The sparsity of the CoSaMP algorithm is K = 10, the fixed
step size of the SAMP algorithm is s = 8, and the initial step
size of the Vss-CoSaMP algorithm is S0 = 8. The BER varia-
tion curves of the OFDM system with the SNR for the three
algorithms are illustrated in Figure 7.

4.3.1. Performance Comparison in Terms of BER. As revealed
in Figure 7(a), the BER of the three algorithms is basically
consistent within the SNR range of 0–12dB. Starting from
SNR = 13dB, the CoSaMP algorithm and the Vss-CoSaMP
algorithm have better BER than the SAMP algorithm. The
curves of the CoSaMP algorithm and the Vss-CoSaMP algo-
rithm basically coincide with each other. As shown in
Figure 7(b), starting from SNR = 3dB, the CoSaMP algo-
rithm and the Vss-CoSaMP algorithm have better BER than
the SAMP algorithm. Evidently, the Vss-CoSaMP algorithm
and the CoSaMP algorithm have equivalent accuracy when
BER is taken as an indicator for measuring the performance
of the algorithms.

Meanwhile, the comparison of Figures 7(a) and 7(b)
reveals that when the sparsity is K = 4, the BER of the
Vss-CoSaMP algorithm is 0.1408, 0.0369, 0.0033, and
1 9231e − 04 for 5 dB, 10 dB, 15 dB, and 20 dB; and the
SNR of the Vss-CoSaMP algorithm is 0.3031, 0.1106,
0.0360, and 0.0085 for 5 dB, 10 dB, 15 dB, and 20 dB. It is
evident that the BER of the algorithms improves with the
increase of the sparsity when the simulation conditions
remain unchanged.

4.3.2. Performance Comparison in Terms of MSE. The simu-
lation conditions are the same as given in Figure 7. The per-
formance curve of three algorithms varied with the SNR in
terms of MSE as shown in Figure 8.

As illustrated in Figure 8, the Vss-CoSaMP and CoSaMP
algorithms have a better MSE than the SAMP algorithm
within the SNR range of 0–30dB. When the SNR is 12 dB,

0 5 10 15 20 25 30
SNR (dB)

10−4

10−3

10−2

10−1

100

M
SE

SAMP-3
SAMP-4
SAMP-5

Figure 5: Influence of step size variation on the mean square error
of the SAMP algorithm.

0 5 10 15 20 25 30
SNR (dB)

10−4

10−3

10−2

10−1

100

M
SE

Vss-CoSaMP-3
Vss-CoSaMP-4

Vss-CoSaMP-5

Figure 6: Influence of step size variation on the Vss-CoSaMP
algorithm.
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the difference between them is more noticeable. The MSE
curve of the Vss-CoSaMP algorithm basically coincides with
that of the CoSaMP algorithm. The Vss-CoSaMP algorithm
has a slightly better MSE than the CoSaMP algorithm.

After analyzing Figures 7 and 8, it is found that the Vss-
CoSaMP algorithm can predict channel sparsity beforehand,

and adaptive step size enables it to be as accurate as or even
more accurate than the CoSaMP algorithm.

4.4. Channel Impact Response Reconstruction Comparison of
Three Algorithms. The sparsity of underwater acoustic
channel was K = 8. The sparsity of the CoSaMP algorithm

0 5 10 15 20 25
SNR (dB)

10−6

10−5

10−4

10−3

10−2

10−1

100
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R

CoSaMP
SAMP
Vss-CoSaMP

(a) K = 4

0 5 10 15 20 25 30

SNR (dB)

10−4

10−3

10−2

10−1

100

BE
R

CoSaMP

SAMP

CoSaSAMP

(b) K = 10

Figure 7: Performance comparison in terms of bit error ratio.
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was K = 8. The fixed step size of the SAMP algorithm was
S = 8. The initial step size of the Vss-CoSaMP algorithm
was S0 = 4. The SNR was 20. The inserted pilot number was
100. The impact response of three algorithms is illustrated in
Figure 9.

After analyzing Figure 9, it is found that the CoSaMP
and Vss-CoSaMP algorithms can more satisfactorily recon-
struct a channel than the SAMP algorithm compared with

the ideal channel. The impact response of the channel recon-
structed by the SAMP algorithm is troubled by lots of inter-
ference responses at 0–100ms. The impact response of the
channel reconstructed by the CoSaMP and Vss-CoSaMP
algorithms is basically identical to the impact response of
the ideal channel. It is evidently concluded that the Vss-
CoSaMP algorithm delivers better reconstruction than the
SAMP algorithm with the input step size of 4.
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(a) K = 4
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(b) K = 10

Figure 8: Performance comparison in terms of mean square error.
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Figure 9: Channel impact response comparison of the three algorithms.
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5. Conclusion

This paper presents a sparse channel estimation method for
an underwater acoustic OFDM system, that is, CoSaMP-
based sparse channel estimation algorithm with adaptive
variable step size (Vss-CoSaMP). Compared with the
CoSaMP algorithm, the proposed Vss-CoSaMP algorithm
does not require system sparsity beforehand, so as to expand
its practical applicability. Moreover, it borrows the idea of
variable step size to overcome the SAMP algorithm’s sensi-
tivity to initial step size, so that it can ensure the satisfying
accuracy with different step sizes. Experiments have been
carried out to statistically determine the iteration termina-
tion condition and variable step size condition suitable for
the OFDM system. As proved in the performance compari-
son in terms of MSE and BER, the Vss-CoSaMP algorithm is
superior in resolving the problems of sparsity and sensitivity
to step size.
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