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This study presents a detailed numerical analysis of nonlinear aeroelastic behavior in a two degree of freedom (DOF) model,
focusing on plunge and pitch motions and employing the continuation method (CM) with an adaptive step size control
algorithm. The research incorporates free-play nonlinearity at the plunge hinge, a common structural nonlinearity in
aeronautics that can induce detrimental limit cycle oscillations (LCOs) during flight. By examining three scenarios—linear
response, unhindered plunge motion, and nonlinear stiffness behavior—the study assesses the effects of free play on flutter and
LCO phenomena, including discontinuity-induced bifurcations like grazing bifurcation. Additionally, the study explores
parameter variation for nonlinear flutter analysis, revealing the dynamics of grazing bifurcation and its impact on LCO
behavior. The research also demonstrates the method’s superior accuracy in flutter speed estimation and mode-switching
identification, despite higher computational demands. The findings underscore the diminishing influence of nonlinear free-play
behavior on LCO amplitude, providing insights with significant implications for aeroelastic design and aircraft safety.
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1. Introduction

The investigation of aeroelasticity, a critical aspect of mili-
tary and commercial aircraft design, encompasses the exam-
ination of interactions among aerodynamic, structural
elastic, and inertial forces [1]. Within this context, both flut-
ter and limit cycle oscillation (LCO) emerge as critical con-
siderations for ensuring flight safety, gathering escalating
attention and concern from the scientific and practitioner
communities [2–5]. The nominal flutter is characterized as
an infinitesimally small oscillation poised at the threshold
of dynamic instability [6], while LCO represents a postflutter
phenomenon distinguished by a relatively substantial and
consistent amplitude and frequency, governed by the non-
linear characteristics of the system [7]. LCO denotes a self-
sustained, steady-state fluid-induced vibration, typically trig-
gered by either gradually surpassing the critical flutter speed
or by a sudden external disturbance, such as a gust force.
The majority of LCOs can be categorized into two distinct

types [8]: benign LCO and detrimental LCO, both diverging
from linear oscillations due to the amplitude of oscillatory
behavior being independent of initial conditions. The benign
LCO, or “good” LCO as depicted in Figure 1(a), consistently
exhibits stability or attraction. This signifies that if an aero-
elastic system experiences a benign LCO, any sudden aug-
mentation or reduction in oscillatory amplitudes tends to
converge toward the benign LCO state, irrespective of the
initial condition and forcing function. In contrast, the detri-
mental LCO, or “bad” LCO, as illustrated in Figure 1(b),
invariably demonstrates instability or repulsion, indicating
that trajectories in the proximity of the limit cycle will
diverge from the detrimental LCO state.

The prevalence of flutter and LCO phenomena in actual
aircraft flight dynamics is predominantly instigated by vari-
ous structural nonlinearities. These include, but are not lim-
ited to, the presence of external stores, free play, hysteresis,
and cubic stiffness, as substantiated in seminal works
[9–12]. Prior investigations have established, through both
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numerical [13] and empirical methodologies [14], the coex-
istence of both detrimental and benign LCO manifestations
at velocities below the conventional flutter threshold in air-
craft exhibiting free play nonlinearity within a singular con-
trol surface. Free play nonlinearity, a significant contributor
to structural irregularities, commonly originates from factors
such as spring fatigue, loose linkage, or joint slippage. This
phenomenon is characterized by a range of structural
motion devoid of restorative forces or torque as depicted
in Figure 2. Consequently, such conditions may precipitate
LCOs through Hopf bifurcation mechanisms [15]. Accord-
ing to the directives outlined in Guidance Military Specifica-
tion [16], aircraft featuring movable control surfaces are
mandated to ensure that the free play gap angle remains
within specified limits to mitigate the risk of LCOs and
potential structural failure. However, the required limits in
practice are usually too conservative to meet and thus
increase the cost of manufacturing and additional costs asso-
ciated with inspection [17]. Consequently, there is a notable
interest in the development of an effective methodology for
assessing the impact of control surface free play on LCO.
Such an approach is of high interest during the preliminary
stages of design, manufacturing, and inspection, offering
potential cost savings and efficiency improvements [18].

The literature is replete with both numerical and exper-
imental inquiries into the aeroelastic characteristics of sys-
tems exhibiting free-play nonlinearity. Focused attention
has been given to flutter and LCO phenomena. Investiga-
tions have encompassed various forms of LCOs on rigid
wing models with free play in pitch motion, as demonstrated
in studies by Yang and Zhao [19]; Lee, Price, and Wong [20];
Liu, Wong, and Lee [21]; and Vasconcellos et al. [22]. Addi-
tionally, comprehensive studies have been conducted on a
flexible, fully movable wing model with a free play gap in
the pitch shaft, with corresponding flutter responses detailed
in Tang and Dowell [23, 24]. The LCO responses of typical
wing sections with varying degree of freedom (DOF)—in-
cluding plunge, pitch, and control surface motion as
explored by Block and Strganac [25]; Ko, Strganac, and Kur-
dila [26]; and Singh and Yim [27], or an expanded four
DOFs incorporating an additional leading control surface
motion as in Panta et al. [28]; Tang, Li, and Dowell [29];
and Mannarino and Dowell [30]—have also been thor-

oughly investigated. Complex dynamical behaviors of a con-
ceptual two-dimensional airfoil with both structural and
aerodynamic nonlinearities excited by different types of
external loads are thoroughly investigated by Liu, Xu, and
Li [31] and Guo et al. [32], and an overview of recent devel-
opments related to this field is provided by Liu et al. [33].

At its core, the study of both flutter and LCO phenom-
ena is an exploration of fluid-structure interaction (FSI)
problems. A direct approach to analyzing these phenomena
involves coupling fluid dynamics (via Euler/Navier–Stokes
equations) with structural modal equations within the time
domain, a method effective in monitoring the onset of
dynamic instabilities. This coupling, as applied in computa-
tional structure dynamics (CSD)–computational fluid
dynamics (CFD) solvers, has yielded accurate time-domain
solutions for LCO/flutter predictions, as evidenced in the
work of Robinson, Batina, and Yang [34]. However, this
time-domain approach is notably time-intensive, particu-
larly in predicting LCO/flutter onset, due to the requirement
for multiple iterative and ad hoc simulations to accurately
delineate the flutter boundary within a given aerostructural
system, as noted by Schuster, Liu, and Huttsell [35]. To cir-
cumvent this drawback, numerous unsteady aerodynamic
reduced-order models (ROMs) have been developed. For
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Figure 1: (a) Flutter and limit cycle oscillations. (b) Stable limit cycle oscillations in phase space (Source: Adapted from Dowell [8]).
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instance, the harmonic motion method, a lower-order linear
aerodynamic model, offers a more pragmatic and efficient
estimation of LCO, as outlined by Greco et al. [36] and
Thomas, Dowell, and Hall [37]. In recent studies, Liu et al.
[38] have introduced a novel linear matrix inequality
(LMI) approach using convex optimization techniques, that
demonstrates the numerical solvability of all uncertainties
encountered during maneuvering processes. This method
is not only pertinent to spacecraft attitude control but also
applicable to second-order system applications.

Therefore, the crux of addressing the flutter challenge
lies in the development of an efficient, accurate, nonlinear
aeroelastic analysis tool, balancing computational expedi-
ency with robust physical interpretation. In evaluating the
impact of multiple structural nonlinearities on flutter and
LCO phenomena, translating linearized unsteady aerody-
namic responses into the frequency domain emerges as a
more viable alternative. This approach allows for the decou-
pling of structural dynamic equations from the repeated exe-
cution of costly CFD solvers, facilitating a swifter analysis of
aeroelastic systems. In frequency-domain aeroelastic analy-
ses, it becomes imperative to track aeroelastic modes as
functions of dynamic pressure (or airspeed) to assess critical
growth rates. However, this task grows increasingly complex
in aircraft models exhibiting single or multiple structural
nonlinearities. Traditional eigenvalue analysis methods often
struggle with closely clustered modes in the distribution of
eigenvalues and eigenmodes, leading to heightened sensitiv-
ity and potential discontinuities or misidentification of
modes at mode-switching points. Such numerical challenges
have been observed in commercial software relying on clas-
sical eigenvalue methods [39].

In this investigation, we conduct a comprehensive
numerical analysis of the nonlinear aeroelastic behavior in
a two DOF aeroelastic model, specifically focusing on plunge
and pitch motions. This analysis is facilitated by an innova-
tive and efficient methodology, namely, the continuation
method (CM) augmented with an adaptive step size control
algorithm. In this model, the aerodynamic response to oscil-
latory frequencies is presumed linear for minimal deflec-
tions, a common assumption in aeroelastic studies. A
critical aspect of our study is the incorporation of free-play

nonlinearity at the plunge hinge—a typical structural non-
linearity observed in practical aeronautical contexts. This
nonlinearity is known to potentially induce LCOs that can
be detrimental during flight. Our research specifically delves
into the influence of this nonlinearity on the aeroelastic
response, particularly in terms of LCO manifestation. Our
analysis stratifies the problem into three distinct scenarios:
(i) a linear structural response in the absence of free play
motion; (ii) an unhindered plunge motion with no transla-
tional stiffness, as the motion amplitude remains within
the free play gap angle; and (iii) a nonlinear stiffness behav-
ior in the plunge motion when the amplitude exceeds the
gap angle. This nonlinear stiffness is attributed to the pres-
ence of free play, introducing a complex behavior in the
structure. Moreover, the study extends to evaluate the
impact of this free-play nonlinearity on flutter and LCO
phenomena, encompassing an exploration of discontinuity-
induced bifurcations, such as grazing bifurcation. These
investigations are pivotal in enhancing our understanding
of the complex interplay between structural nonlinearities
and aeroelastic responses, with significant implications for
the design and safety of aerial vehicles.

2. Two DOF Airfoil Sections With
Structural Nonlinearity

2.1. Mathematical Description. Consider a two-dimensional
typical section of an aircraft wing with two DOFs, that is,
plunge motion h and pitch motion α as presented in
Figure 3. Both plunge and pitch motions are measured rela-
tive to the elastic axis located at a1 from the middle point of
the chord. The direction of the airspeed V is assumed to be
the positive x-direction. The quantity xa is the dimensionless
length scaled by the half-chord length b between the center
of gravity and the elastic axis of the wing section. For a
two DOF airfoil as depicted in Figure 3, the linearized
governing equations can be expressed into the following
Equation (1) of the matrix form under the linearization
assumption:

Mq +Dq +Kq = Faero 1

Airspeed V

b

h

K�

D�

Dh Kh

y

x

xa

a1

b

c

Figure 3: Two degree of freedom airfoil section.
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where

M =
m Sα

Sα Iα
,D =

Dh 0
0 Dα

, K =
Kh 0
0 Kα

, q =
h

α

where M, D, and K are the mass matrix, damping, and stiff-
ness matrix, respectively. m is the total mass of the wing,
Sα =mxab is the static mass moment, Iα is the mass moment
of inertia, Kh is the plunge stiffness, and Kα is the rotational
stiffness. Dh and Dα are the structural damping which is
modelled by viscous damping proportional to the velocity
of plunge and rotation, respectively. The aerodynamic forces
Faero consists of the aerodynamic lift force L and the
moment M around the elastic axis are given in the following
Equations (2) and (3) based on the Theodorsen theory:

L = −2πρV2b
b
2V α + b

2V2 h −
b2a

2V2 α

− 2πρV2b C k
h
V

+ C k α + C k 1 − 2a b
2V α

2

M = π
1
2 ρV

2 · 2b ab
V

bα + ab2

V2 h −
a2b2

V2 bα

−
0 5b
V

bα −
0 125b2
V2 bα + 2πC k · 12 ρV

2

· 2b 0 5 + a bα + b
V
h + 0 5 − a b

V
bα

3

where C k is the Theodorsen coefficient which is the func-
tion of the reduced frequency k = ωb/V . The structural non-
linearity considered in the present study is the typical free-
play behavior. It is assumed to occur in the translational
motion, that is, the plunge motion h. It is allowed to move
freely within a specific range where the restoring force drops
to zero. The relationship between the restoring force Fh t
and displacement h t can be expressed in the following
Equation (4) as a piece-wise function.

Fh t =
0 h < δh

Kh h t − δh h ≥ δh h > 0
Kh h t + δh h ≥ δh h < 0

4

where δh is the gap range for the plunge motion. Due to the
existence of the free-play phenomenon, the aeroelastic sys-
tem will consequently experience a nonlinear behavior when
the amplitude of the plunge motion exceeds δh. Equation (4)
in the form of a piece-wise function cannot be used directly
in the flutter analysis conducted in the frequency domain.
An alternative nonlinear function in the continuous form
is hence needed to approximate the restoring force based
on the described function method as outlined in Danowsky,

Thompson, and Kukreja [17]. Assume that the plunge
motion follows a harmonic way presented in Equation (5):

h = h sin ωt 5

where h > δ is the oscillatory plunge amplitude. The restor-
ing force Fh t in Equation (4) can be expended by the
Fourier’s series in the following Equation (6):

Fh t = A0 + 〠
∞

n=1
An cos nωt + Bn sin nω 6

where

A0 =
1
2π

2π

0
Fh t d ωt

An =
1
2π

2π

0
Fh t cos nωtd ωt

Bn =
1
2π

2π

0
Fh t sin nωtd ωt

The higher order of harmonic components is considered
to contribute little to the final resulting force; hence, the
approximate Fh t takes the following form in Equation
(7) by keeping only the first fundamental components:

Fh t ≈ A0 + A1 cos ωt + B1 sin ωt 7

It is necessary to calculate the equivalent stiffness, Kheq,

as a continuous function of h, which is the amplitude of
the harmonic plunge motion. Let A0 = A1 = 0, φ1 = arcsin
δ/h , then B1 is calculated as follows:

B1 =
1
2π

2π

0
Fh t sin ωtd ωt

= 4
π

π/2

φ1

Kh h sin ωt − δ sin ωtd ωt

= 4Khh
π

π/2

φ1

sin2ωtd ωt −
4Khδ

π

π/2

φ1

sin ωtd ωt

= Khh
π

π − 2 arcsin δ

h
− 2 δ

h
1 − δ

h

2

Now, rewrite the Fh t as follows in Equation (8) and
the equivalent translational stiffness Kheq can be obtained:

Fh t = B1 sin ωt = B1
h

× h sin ωt = Kheq × h t 8

Kheq =
Kh

π
π − 2 arcsin δh

h
− 2 δh

h
1 − δh

h

2
9
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Noted that the equivalent stiffness Kheq in Equation (9)
is expressed as the continuous nonlinear function of the
amplitude h. Consequently, Kheq can deviate substantially
from its nominal values with varying amplitudes and
hence could affect the aeroelastic behavior significantly.
The structural parameters chosen for the aeroelastic model
by Tang, Dowell, and Virgin [40] are listed in Table 1.

3. Numerical Algorithm for Aeroelastic Analysis

Assuming the solution of Equation (1) is of the form

q = qept = h α
T
ept 10

and substituting Equation (10) into Equation (1) leads to

p2M + pD +K h −DdynΨAIC k q = 0 11

where Ddyn = 0 5ρV2 is the dynamic pressure and ρ is the
density of the air. ΨAIC k are the aerodynamic influence
coefficient matrices which are functions of reduced fre-
quency k at a certain Mach number. In the present study,
it is a 2 × 2 matrix that consists of lift coefficient Cl and
moment coefficient Cm which can be calculated as follows:

ΨAIC k =
Cl−h k Cl−α k

Cm−h k Cm−α k
= Faero
Ddynq

In the context of aeroelastic systems, the state variables p

and q are defined as p = σ + ωi and q = h α
T
, respectively,

where q denotes the complex eigenvector. The parameter σ
represents the growth rate, which serves as a crucial indica-
tor of the stability of the aeroelastic system, while ω signifies
the oscillation frequency. It is noteworthy that the critical
state of the system, characterized by σ = 0, marks the initia-
tion of the flutter phenomenon, denoted as V =V f . Addi-
tionally, it is imperative to acknowledge that the stiffness
matrix K is inherently a nonlinear function of the plunge
amplitude h. For a comprehensive examination of the flutter
characteristics, it becomes imperative to solve the nonlinear
flutter equations defined in Equation (11). This equation

encompasses nonlinear structural variables and necessitates
the application of an appropriate numerical algorithm for
resolution. In the current study, we employ the modified
CM coupled with an adaptive step size control algorithm.
The foundational principles underlying this approach are
succinctly summarized as follows:

H x, λ = λf x + 1 − λ g x = 0 12

The system of nonlinear equations represented by f x = 0
necessitates a solution, whereas functions g x = 0 are either
already known or relatively straightforward to solve. To
facilitate the incremental tracking of solutions from g x
to f x , a parameter λ is introduced and systematically
increased from 0 to 1. This enables the continuous tracing
of solutions along the continuation function H x, λ = 0 in
the above Equation (12), where the path spans from H x,
λ = 0 = g x to H x, λ = 1 = f x . Depending on the differ-
ent selection of the continuation parameter λ, the CMs can
be divided into two categories, that is, natural parameter
CM or artificial parameter CM. In the natural parameter
CM, λ is selected as a system parameter that possesses a
physical interpretation. Conversely, in the artificial parame-
ter CM, λ is constructed artificially without any physical
meanings. In engineering practices, the CM predominantly
utilizes a natural parameter for λ, integrating both f x
and g x within the governing equations. For instance, in
our research, the airspeed V is selected as the continuation
parameter for the mode tracking task, where H x, λ repre-
sents the governing Equation (1). In this context, the specific
formulations of f x and g x become secondary, as the pri-
mary focus shifts to resolving the solutions of H x, λ = 0,
that is, the governing equations of the airfoil model under
varying airspeeds V . Throughout the tracking process, solu-
tions are acquired using a predictor–corrector scheme at
each incremental step. During the prediction phase, the
Jacobian matrix J , which encapsulates the partial derivatives
of the nonlinear function H x, λ with respect to x as pre-
sented in Equation (13), is computed. Additionally, the
tangent vector υ is determined as part of the predictive
computation shown in Equation (14). This sets the stage
for subsequent correction phases in the iterative scheme.

J x =H ′ x = ∂Hi

∂xj
13

Jυ = 0 υ λ = 1 14

The predicted solution, for example, at step N , that is,
x̂N , λN is computed following Equations (15) and (16) from
the corrected solution xN−1, λN−1 at the step N − 1:

x̂N = xN−1 + Δλυ 15

λN = λN−1 + Δλ 16

In the corrector phase, Newton–Raphson’s method is
employed to compute the corrected solution as shown in
Equation (17), wherein incremental adjustments are made

Table 1: Structural parameters of the aeroelastic model.

Parameter Value

Semichord length (b) 0.127m

Span length 0.52m

Elastic axis (a1) −0.5 b
Mass of wing (m) 3.293 kg

Static mass moment (Sα) 0.08587 kg∙m
Location of C.G. (xa) 0.434

Translational stiffness (Kh) 2818.8N/m

Rotational stiffness (Kα) 37.3N∙m/rad

Structural damping (Dh) 2.105Nm∙s/m
Structural damping (Dα) 0.0225Nm∙s/rad
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to improve the accuracy of the solution obtained in the pre-
diction phase. This iterative process is reiterated until either
the absolute tolerance εa, expressed as εa > H , is met or
the maximum iteration number is reached. The parameter
Δλ represents the step size applied in the iterative correction
process, guiding the incremental adjustments toward the
accurate determination of the solution along the tracking
curve.

x̂i+1N = x̂iN − J x̂iN
−1
H x̂iN 17

The careful selection of the step size Δλ along the track-
ing curve is paramount, as it significantly influences the con-
vergence and stability of the algorithm. Inappropriately large
step sizes may lead to convergence to erroneous solutions or
divergence, compromising computational efficiency. Con-
versely, setting the step size to an unnecessarily small value
may sacrifice computational efficiency without providing
substantial benefits. To address this critical aspect, a local
control algorithm is employed in this study for adaptive step
size adjustment. This algorithm dynamically adjusts the step
size computed by Equations (18) and (19) during the iterative
process, optimizing its magnitude to ensure a balance
between computational efficiency and solution accuracy.

Ωσ =
σi − σj

1 + σiσ j
18

Δλi =
ηΔλ0 0 <Ωσ ≤ ε

Δλ0 Ωσ > ε
19

where Ωσ is the closeness index to assess the proximity
between two solution curves, both η and ε are small positive
constants, and Δλ0 is the initial step size. σi and σj are the
growth rate of oscillation for the ith and jth aeroelastic mode,
respectively. In the present study, the tracking results for
aeroelastic modes (growth rate σ vs. airspeed V) are illus-

trated. When using smaller step sizes (Δλ∗ = 1m/s and 0.5
m/s), the continuation algorithm successfully tracks plunge
and pitch modes, revealing the development of flutter phe-
nomena. However, with a larger step size (Δλ∗ = 2m/s), the
algorithm fails to distinguish between the two aeroelastic
modes correctly. It struggles to converge the solution of the
plunge mode to the correct path, and at higher airspeeds
(V > 4m/s), the two aeroelastic modes, σh and σα, become
indistinguishable. This numerical failure is attributed to the
selection of an improper large step size (Δλ∗ = 2m/s),
emphasizing the importance of careful step size tuning in
continuation algorithms to ensure accurate and reliable
tracking of solution curves (Figure 4).

4. Results and Discussions

In this section, the study presents and discusses results to
highlight the key features of the proposed methods. The
numerical algorithm, detailed in Section 3, is applied to solve
the linearized aeroelastic equations of the test model
depicted in Figure 3. The aeroelastic responses obtained
from this numerical solution are then presented and sub-
jected to discussion. Furthermore, flutter analyses are con-
ducted for both linear and nonlinear structural systems
using the modes tracking approach. The outcomes of these
analyses are presented and thoroughly discussed. This
includes an examination of the aeroelastic responses and
an exploration of the findings related to flutter phenomena
in both linear and nonlinear structural systems. The inten-
tion is to provide a comprehensive understanding of the
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Figure 4: Modes tracking with fixed step size (a) Δλ∗ = 1 and 0.5m/s and (b) Δλ∗ = 2m/s for h = 2 2δ

Table 2: Tested cases due to free play effect of plunge motion.

Case no. Plunge motion (h) Pitch motion (α)

1 Linear Linear

2 Free play h < δh Linear

3 Nonlinear h = 1 01 ~ 5 0δh Linear

6 International Journal of Aerospace Engineering



performance and characteristics of the proposed methods,
drawing insights from the results obtained through the
applied numerical algorithm.

The behavior of the equivalent stiffness, Kheq, is dictated
by three scenarios, based on the relationship between the gap
angle δh and the oscillation amplitude h of the plunge
motion: (a) When δh = 0, the absence of free play motion
results in a linear structure, implying a constant equivalent
stiffness, that is, Kheq = Kh. (b) For δh ≠ 0 and h < δh, the
plunge oscillates freely within the gap range, leading to
Kheq = 0. (c) When δh ≠ 0 and h > δh, the equivalent stiffness
Kheq becomes a nonlinear function of the oscillation ampli-

tude h according to Equation (9). This nonlinearity induces
a nonlinear behavior in the structure due to free play. Real-
istically, all the above three situations could occur. The study
investigates various cases, as outlined in Table 2, to compre-

hensively analyze the behavior of the system under different
conditions. This approach allows for a thorough exploration
of the effects of free play on the equivalent stiffness and the
resulting structural behavior.

4.1. Case 1: Flutter Analysis of Aeroelastic Model With Linear
Structural Properties. The provided passage describes a flut-
ter analysis of the aeroelastic model shown in Figure 3,
assuming linear structural properties (case no. 1). This anal-
ysis is compared with the results of an airfoil having a
trailing-edge control surface (3 DOF system addressed in
Yu, Damodaran, and Khoo [3]). The nominal stiffness for
the plunge motion is restored by setting the free-play gap
(δ = 0) to eliminate nonlinear free-play behavior. The gov-
erning equations (Equation (11)) become independent of
the LCO amplitude, that is, h. The results are presented in
Figure 5, showing the modes tracking (variation of the
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Figure 5: (a) Modes tracking and (b) frequency tracking for linear flutter analysis Kheq = Kh .
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growth rate of all structural modes vs. airspeed) in
Figure 5(a) and frequency tracking (variation of the frequen-
cies of all structural modes vs. airspeed) in Figure 5(b). The
adaptive step size in the CM is utilized. The plunge mode
goes into flutter first at the estimated flutter speed V f , which
is determined to be 23.9m/s. Near the flutter speed, the
oscillating frequencies of the two associated aeroelastic
modes (arising from the plunge and pitch mode) show a
phenomenon called “frequency coalescence,” indicating
energy transfer between the two modes, which is commonly
considered to be a potential cause of flutter. Comparisons
are made with a 3 DOF aeroelastic model (indicated in blue),
which exhibits a slightly lower flutter speed at 23.4m/s. For
verification, the flutter analysis results for the linear struc-
tural system (gapless) through modes tracking are also com-
pared with published results in Conner et al. [14]. The
comparison is tabulated in Table 3. This comprehensive
analysis provides insights into the flutter characteristics of
the aeroelastic model under consideration and establishes
comparisons with existing models and published results for
validation purposes.

Table 4 provides a comparison between the estimated
flutter speed V f and the total number of iterations needed
to complete the modes tracking analysis using the CM
algorithm with adaptive step sizes against several fixed step
sizes. The adaptive step size approach demonstrates either
enhanced efficiency or increased accuracy compared to fixed
step sizes. For instance, when comparing the adaptive step
sizes Δλ∗max of 0.5 m/s and Δλ∗min of 0.1 m/s with the reference
case using the smallest fixed step size Δλ∗ of 0.05m/s), the
adaptive approach achieves the same estimated flutter speed
of 23.9m/s while reducing the total iterations required by

more than 59%, from 504 to 85. This highlights the improved
efficiency of the adaptive step size methodology.

Moreover, it is important to note that using a fixed step
size of Δλ∗ ≥ 2m/smight lead to algorithm failure due to the
misidentification of mode-switching phenomena. Figure 6
illustrates an example of erroneous results due to misidenti-
fied aeroelastic mode switching when using a fixed step size
of Δλ∗ of 2m/s. In this case, the tracking of two aeroelastic
modes arising from the pitch mode and the plunge mode
is not properly executed, resulting in a single tracking path
after an airspeed V of 13m/s. This comparison underscores
the advantages of employing adaptive step sizes in the modes
tracking analysis, emphasizing either enhanced efficiency or
increased accuracy over fixed step sizes while mitigating the
risk of algorithm failure due to mode misidentification.

In order to validate the findings, a comprehensive CFD
simulation is carried out, wherein the airfoil is directly inte-
grated with the CFD solver in the time domain. The primary
objective of this simulation is to determine the flutter speed
for comparison with the data presented in Table 3. The out-
comes are illustrated in Figure 7, revealing a flutter speed
close to V = 24m/s. This observation is attributed to the sta-
bilization of the airfoil displacement at an airspeed of V = 24
m/s, as depicted in Figure 7(a), and its divergence at an air-
speed of V = 24 5m/s, as shown in Figure 7(b). The flutter
speed obtained from the full-order CFD simulation is found
to be in excellent agreement with the current result
(V f = 23 9m/s) derived from the aerodynamic ROM and
theCM.However, it is important to note that the time domain
approach is computationally demanding for predicting the
onset of LCOandflutter phenomena, as it necessitates numer-
ous exhaustive and ad hoc runs for a given coupled aerostruc-
tural system. In contrast, the proposed methods in this study
enable the rapid determination of the flutter speed within a
few minutes. It is worth highlighting that both cases, as
depicted in Figure 7, required several hours per simulation
to gather sufficient data for assessing the flutter speed, in con-
trast to the efficiency of the proposed methods.

In the context of nonlinear flutter analysis, a specific test
case featuring h = 1 5δ is selected to facilitate a comparative
assessment with the adaptive step size control algorithm.
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Figure 6: Misidentification of modes switching for flutter analysis
of linear structure (Δλ∗ = 2m/s).

Table 4: Computational effort and estimates of flutter speed using
different step sizes in continuation method for linear flutter
analysis.

Case no. Step size Δλ∗ (m/s) Iterations run
Flutter speed
V f (m/s)

1 ≥ 2 Failure Failure

2 1 26 22.1

3 0.5 51 24.8

4 0.25 101 24.3

5 0.1 251 23.5

6 0.05 504 23.9

7 Adaptive step size 85 23.9

Table 3: Modes tracking results for gapless flutter analysis versus
experimental data.

Present study Numerical Experiments

ωh (Hz) 4.455 4.455 4.375

ωα (Hz) 9.218 9.218 9.125

Flutter speed (m/s) 23.9 23.9 20.6

Flutter frequency (Hz) 6.09 6.112 5.47
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The CM detailed in Section 3 is employed for this purpose.
The LCO amplitude which exceeds the gap angle δ by a fac-
tor of 1.5 is deliberately chosen to induce a pronounced non-
linear effect on the structure. The real part of λ λ = σ + ωi
for plunge and pitch modes, which serve as indicators of
aeroelastic stability, is systematically monitored as the flight
speed V is incrementally increased as part of the continua-
tion process. The corresponding equivalent stiffness Kheq is

computed using Equation (9), yielding Kheq h = 1 5δ =
617 6N/m. Through the application of modes tracking anal-
ysis procedures, the findings are presented in Figure 8.

In Figure 8, the employment of an adaptive step size
within the CM is evident. Specifically, when the modes
crossing region, delineated by the red ellipse, is identified
within the airspeed range of 5m/s to 15m/s, the step size
is automatically adjusted to 0.1m/s. This adaptive modifica-
tion is implemented to preemptively mitigate the potential
divergence of the solver or misidentification of aeroelastic
modes. In contrast, conventional point solution methods
may necessitate manual intervention by the analyst, intro-
ducing a potential source of confusion and difficulty, espe-
cially in scenarios where two aeroelastic modes exhibit
close proximity without intersecting. Outside the modes
crossing region, a pragmatic restoration of the step size to
0.5m/s ensues, thereby optimizing computational efficiency.
In instances related to the neutral points regions, denoting
the manifestation of instabilities in the plunge mode at an
airspeed of V = 32 4m/s, the step size undergoes another
reduction. However, in this case, the reduction aims to
enhance the accuracy in estimating the critical (lowest) flut-
ter speed. Additionally, Figure 8 offers a detailed examina-
tion of the growth rate σ versus airspeed in proximity to
these regions through zoomed variations presented as inset
figures. This detailed visualization contributes insights into
the aeroelastic behavior in the vicinity of critical regions.

4.2. Case 2: Flutter Analysis of Aeroelastic Model With
Complete Free Play Kheq = 0, h < δ . In this examined case,
the rotational displacement, denoted as pitch α, is assumed
to remain linear. While the translational motion, repre-
sented by plunge h, is considered to undergo a complete
free-play motion, devoid of any rotational stiffness, that is,
Kheq = 0. This assumption is grounded in the oscillation

amplitude being smaller than the gap angle ( h < δ). The
outcomes of the two-mode tracking analysis for this config-
uration, employing the CM with adaptive step sizes (Δλ∗max
of 0.5m/s and Δλ∗min of 0.1m/s) and a fixed step size (Δλ∗

of 1m/s), are presented in Figures 9(a) and 9(b). The onset
of the flutter phenomenon is identified at an airspeed of
V f = 36 5m/s, attributed to the pitch mode. Furthermore,
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Figure 7: Flutter analysis of 2 DOF system with linear structural properties (case 1 in Table 2) using full-order CFD simulation in the time
domain for (a) V = 24m/s and (b) V = 24 5m/s.
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Figure 9(a) delineates modes switching phenomena occur-
ring around an airspeed of 27m/s. The adept handling of
the modes switching phenomenon is evident as the adaptive
reduction of the step size Δλ∗ from 0.5m/s to 0.1m/s is
implemented when approaching the proximity of the
switching region, as depicted within the red box. Conversely,
Figure 9(b) illustrates a typical failure within the numerical
scheme of the CM when a fixed step size is employed for
the same case. This failure arises from the incorrect identifi-
cation of the two switched aeroelastic modes, particularly
evident in the red box of Figure 9(b), at an airspeed V of
30m/s, attributable to the use of a fixed and excessively large
step size. This discrepancy underscores the significance of
adaptive step size strategies in capturing nuanced aeroelastic
phenomena accurately.

4.3. Case 3: Parameter Variation in Nonlinear Flutter
Analysis Kheq = Kh, h /δ = 1 0 ~ 3 0 . Parameter variation

serves as an alternative methodology for nonlinear flutter
analysis, obviating the necessity for repeated modes tracking.
This approach involves systematically varying the LCO
amplitudewithin theCMalgorithmwhile directlymonitoring
the flutter speed V f for diverse amplitudes of the displace-
ments of structural modes. Specifically, the investigation
focuses on maintaining linearity in the rotational displace-
ment α, while concurrently varying the normalized amplitude
of the plunge motion, denoted as h /δ, across a spectrum
ranging from 1.0 to 3.0. This exploration accommodates non-
zero free-play gap angles, that is, δ ≠ 0. Given the airfoil’s
oscillation at freestream velocities below the linear flutter
speed, Figure 10(a) presents the normalized LCO amplitude
variation with increasing airspeed. Notably, a continuous
decrease in normalized amplitude is observed, transitioning
from 3.0 to 1.3 as the airspeed V varies from 27m/s to 34m/
s. Subsequently, at V = 34m/s, a subtle decrement in ampli-
tude from 1.3 to 1.15 is observed. This abrupt change, termed
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Figure 9: Modes tracking for flutter analysis with plunge motion free-play using (a) adaptive step size and (b) fixed step size.
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Figure 10: Variation of the normalized LCO amplitude with increasing airspeed using (a) modes tracking and (b) parameter variation based
on CM solver.
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“grazing bifurcation” following the nomenclature of Kowalc-
zyk et al. [41], signifies a pivotal event in the LCO behavior.
After the occurrence of the grazing bifurcation, the LCO
amplitude undergoes a continual decrease in airspeed,
extending from 34m/s to 35.5m/s. To gain deeper insights
into the dynamics associated with grazing bifurcation, scru-
tiny of Figure 10(b) is imperative. This figure, derived from
the parameter variation approach within the CM solver,
delineates the stable part of the detrimental LCO curve, that

is, the curve BC and the unstable part of the detrimental
LCO curve, that is, the curve BD within the red dashed square.
As articulated by Van Rooij [42], the unstable LCO behaves
like a repeller, while the stable LCO functions as an attractor.
Consequently, as the normalized LCO amplitude decreases
with increasing airspeed, reaching point D, any incremental
airspeed rise triggers a precipitous drop in amplitude from
point D to point C, aligning with the observations in
Figure 10(a). Similarly, if the LCO amplitude diminishes with

airspeed along the unstable LCO curve CA to the saddle-node
bifurcation point A, a sudden jump from A to B transpires.
This dichotomy implies that if the oscillation amplitude
remains below the unstable LCO amplitude, it tends to decay
to zero. Conversely, if the postdisturbance oscillation ampli-
tude surpasses that of the unstable LCO, a stable LCO ensues.
As the LCO amplitude increases, the influence of nonlinear
free-play behavior gradually diminishes, becoming negligible
as the LCO speed approaches the threshold for the gapless
flutter curve beyond a normalized plunge amplitude of h /δ
of 24.

5. Conclusions

In this study, we elucidate the efficacy of an advanced
adaptive step size control algorithm, developed within the
framework of the CM, and its applicability to two typical
aeroelastic analysis tasks: modes tracking and parameter var-
iation. To benchmark its performance in these areas, partic-
ularly in modes tracking and modes switching, the results
derived from the CM are cross-checked with extant numer-
ical and experimental data. A notable outcome of this
research is the enhanced accuracy in flutter speed estimation
achieved by the CM with adaptive step size, in comparison
to conventional eigenvalue analysis or the p-k method. This
increased precision is attributed to a denser concentration of
interpolation points in the vicinity of the flutter onset, result-
ing from the algorithm’s step size reduction. Compared to
the traditional eigenvalue methods and the fixed step size
CM, the proposed algorithm shows an obvious advantage
in managing the challenge of mode switching. This is pri-
marily due to its innovative step size control mechanism,
which allows for adaptive adjustments of the step size in
proximity to switching points. This adaptability ensures a
delicate balance between accuracy, stability, and computa-
tional efficiency, effectively reducing the risk of numerical
inaccuracies or misidentification of aeroelastic modes. It is,
however, important to acknowledge that, relative to tradi-
tional methods, the algorithm proposed in this paper
demands greater computational resources. Nonetheless, the

trade-off is justified, particularly when considering two
practical aspects: (1) In preliminary design phases where
repeated tracking of multiple modes with varying system
parameters is essential, the risk of algorithmic failure and
subsequent mode misidentification can lead to substantial
time consumption and possibly necessitate manual correc-
tion by researchers. (2) With the ongoing enhancement of
computer processing capabilities and the adoption of paral-
lel computing across multiple central processing units
(CPUs), the gap in computational efficiency between classi-
cal methods and our proposed algorithm is expected to nar-
row. Additionally, this study observes a marginal increase in
flutter speed (from 23.4m/s to 23.9m/s) in the current
model compared to the aeroelastic responses of a 3 DOF air-
foil section. However, under the influence of complete free-
play behavior in plunge motion, the flutter speed escalates
by a significant 52.7%. In the realm of nonlinear flutter anal-
ysis, a consistent reduction in flutter speed is noted (from
35.5m/s to 27.2m/s) as LCO amplitudes increase. This study
highlights that as the LCO amplitude escalates, the impact of
nonlinear free-play behavior progressively wanes, becoming
negligible when the LCO speed converges with the threshold
of the gapless flutter curve.

Nomenclature

D: damping matrix
J: Jacobian matrix
K: stiffness matrix
M: mass matrix
q t : state vector for airfoil movement
H: continuation method equations
ΨAIC: aerodynamic influence coefficient matrices
v: tangent vector in the predictor of continuation

algorithm
a1: location of the airfoil rotation axis
xa: dimensionless length between the center of gravity

and the elastic axis
Dh: structural damping to the plunge motion
Dα: structural damping to the pitch motion
Ddyn: dynamic pressure
Fh: the restoring force to the plunge motion
Kh: spring stiffness for plunge motion (per span)
Kheq: equivalent translational stiffness for plunge motion

(per span)
Kα: rotation stiffness for pitch motion (per span)
L: the lift force
M: the moment around the elastic axis
Sα: first moment of inertia of airfoil about the elastic axis
Iα: second moment of inertial of airfoil about elastic axis
V : flight speed
V f : flutter velocity
ωf : flutter frequency
c: airfoil chord length
h: plunge motion of airfoil
m: total mass of the wing model
ρ: air density
α: pitch motion of airfoil
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λ∗: continuation parameter
Δλ∗N : step size of continuation parameter in nth iteration
δh: gap angle for the plunge free-play motion
ω: oscillating frequency
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