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The rapid development of mobile Internet has promoted the rapid rise of cloud computing technology. Mobile terminal devices
have greatly expanded the service capacity of mobile terminals by migrating complex computing tasks to run in the cloud.
However, in the process of data exchange between mobile terminals and cloud computing centers, on the one hand, it
consumes the limited power of mobile terminals, and on the other hand, it results in longer communication time, which
negatively affects user QoE. Mobile cloud can effectively improve user QoE by shortening the data transmission distance,
reducing the power consumption, and shortening the communication time at the same time. In this paper, we utilize the
property that genetic algorithm can perform global search seeking the global optimal solution and construct a dynamic task
scheduling model by combining the device-cloud link. The task scheduling model based on genetic algorithm and random
scheduling algorithm is compared through comparison experiments, which show that the assignment time of the task
scheduling model based on genetic algorithm is shortened by 11.82% to 48.51% and the energy consumption is reduced by
22.28% to 47.52% under different load conditions.

1. Introduction

Accompanied by the rapid popularization of the 5G net-
work, the booming development of cloud computing tech-
nology, and people’s extensive use of mobile terminals,
including cell phones, iPads, tablets, drones, and the Internet
of Things (IoT), cloud computing [1] has gained explosive
development in the field of mobile Internet, in particular
mobile cloud computing (MCC). Mobile terminals are play-
ing an increasingly important role in people’s lives. How-
ever, mobile devices have limited computing power and
cannot perform operations such as complex data processing
and large-scale computing. Mobile cloud computing (MCC)
is an emerging cloud service model that allows users to con-
nect their mobile devices to mobile cloud servers to accom-
plish various tasks or leave them to a central cloud to
perform complex computing tasks.

By establishing a connection between the mobile device
and the cloud, the task is given to the cloud through the
mobile network, and when the cloud finishes executing the
task, the execution result is returned to the terminal through
the mobile network [2, 3]. With the increasing complexity of
tasks to be handled by mobile devices and the increasing
dependence of users on mobile devices, reducing the energy
consumption of mobile devices to extend the usage time has
become an important research direction. In the process of
submitting tasks and receiving execution results from the
cloud, mobile devices need to consume a lot of power. The
current mobile terminal battery storage capacity is generally
small, and frequent data exchange will significantly shorten
the use of mobile devices. Paczkowski [4] pointed out that
the short battery life is the most prominent point that affects
the iPhone user experience. To address these problems,
researchers have proposed the concept of “cloudlet.” A

Hindawi
International Journal of Aerospace Engineering
Volume 2024, Article ID 9922714, 17 pages
https://doi.org/10.1155/2024/9922714

https://orcid.org/0009-0001-7970-0610
https://orcid.org/0009-0001-2239-2258
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2024/9922714


cloudlet is a small, trusted cloud with computing power that
can be connected to a nearby mobile device. Such a cloudlet
can minimize the power consumption required for task
transfer and can reduce the time delay [5]. At the same time,
handing over tasks or data to a microcloud is fully achievable
for the user because of the computational and storage capa-
bilities of the microcloud. Efficient embedded task schedul-
ing algorithms are more capable of improving operational
efficiency and reducing the energy consumption of micro-
clouds [6, 7]. The mobile device cloud architecture is shown
in Figure 1.

UAV technology has made rapid development in recent
years, and related research for UAV on-board equipment
cloud has become a hotspot. Loke [8] provides services to
mobile users based on airborne equipment and optimizes
the configuration of airborne equipment and ground facili-
ties according to the problems arising from different sce-
narios to provide the best QoS and QoE, reliability,
scalability, etc. According to Yang et al. [9], to balance
the load of a multi-UAV-assisted mobile edge computing
(MEC) system, a multi-UAV deployment mechanism based
on differential evolution (DE) is proposed, which models
the access problem as a generalised assignment problem
(GAP) and then solves the problem with a near-optimal
solution algorithm, and based on this, a deep reinforcement
learning (DRL) algorithm is proposed for UAV task sched-
uling, which improves the UAV task execution efficiency.
Xie et al. [10] proposed a geometry-based layout algorithm
to generate the optimal layout position of UAVs to achieve
more energy-efficient task scheduling. A low-complexity
divide-and-conquer scheme was proposed for the noncon-
vex task scheduling and resource allocation problem, which
decomposed the original problem into three subproblems
to solve them separately. Extensive simulation results show

that the framework has good energy efficiency. Zhou et al.
[11] design a task scheduling strategy to minimize the off-
loading and computational delays of all tasks given the
UAV energy capacity constraints. The online scheduling
problem is first formulated as an energy-constrained Mar-
kov decision process (MDP), while a new deep risk-
sensitive reinforcement learning algorithm is developed to
assess the risk of each state, and a large number of simula-
tion results show that the algorithm reduces the task pro-
cessing latency by 30% compared to the probabilistic
configuration method while satisfying the UAV energy
capacity constraint.

The development of IoT technology has enriched the
microcloud application scenarios, and the access of diverse
sensors and end devices puts forward a severe test for the
microcloud’s task scheduling capability. To solve the above
problems, the main contributions of this paper are as
follows.

(i) Constructs a dynamic scheduling model for micro-
cloud tasks by taking advantage of the characteris-
tics of the overall exploration strategy of the
genetic algorithm and the optimized search method
that does not rely on gradient information or other
auxiliary knowledge during computation, but only
on the objective function and the corresponding fit-
ness function that affects the search direction

(ii) Determines the optimal parameters of the model in
the MDC environment through experiments

(iii) The performance of the dynamic task scheduling
model based on a genetic algorithm is verified
through experiments
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Figure 1: Mobile device cloud architecture.
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2. Related Works

Along with the development of cloud computing, its power-
ful storage capacity as well as computing power provides ser-
vices for more and more users. And in recent years, with the
rapid development of mobile devices, mobile cloud comput-
ing has become the focus of researchers. Many applications
require a relatively large amount of computation, so if they
are run on mobile devices, it may lead to a device system
performance bottleneck [12]. Based on this, researchers have
come up with the concept of mobile cloud computing; based
on the mobile cloud model, if a mobile device user wants to
use this type of application, he or she can give the computa-
tional task to the cloud to perform. Other applications such
as image retrieval, speech recognition, gaming, and naviga-
tion applications can be run on the mobile device system;
however, they consume a relatively large amount of power,
and therefore, it is not a good option to leave them to be exe-
cuted by the mobile device itself.

The explosive development of mobile devices, especially
the extremely rapid development of UAVs, has provided a
broad application prospect for mobile device cloud. Sun
et al. [13] proposed a new big data framework that exploits
the parallel processing capability of cloud computing to pro-
cess large-scale remote sensing data while incorporating task
scheduling strategies to further exploit the parallelism of the
distributed processing stage. The approach first analyzes
remote sensing applications and characterizes them as
directed acyclic graphs (DAGs). The obtained DAG is used
to represent the application to develop an optimization
framework that combines distributed computing mecha-
nisms and task scheduling strategies to minimize the total
execution time. By determining an optimal scheme for task
partitioning and task allocation, high utilization of cloud
computing resources can be achieved, which significantly
improves the speed of remote sensing data processing. Zhou
et al. [14] first formulated the MCPS security maximization
problem as a mixed integer nonlinear programming
(MINLP) problem and then proposed a decomposition algo-
rithm to derive the optimal task scheduling solution without
degrading performance transforming it into a mixed integer
linear programming (MILP) problem. The derived task
scheduling solution determines the allocation of all tasks,
the frequency of operation, the order of execution, and the
selection of security services. Simulation results show that
the system security level of this solution is improved by an
average of 20.38% and 65.11% when compared to the exist-
ing and baseline approaches. Kim et al. [15] proposed a col-
laborative task scheduling approach for IoT-assisted edge
computing, where the edge node decides where to offload
edge tasks among participating IoT devices based on offload
execution time and energy consumption, and each IoT
device decides when to execute the offloaded tasks consider-
ing local task execution. Experimental results show that it
outperforms other scheduling algorithms in terms of dead-
line satisfaction for time-critical tasks.

Scholars have carried out in-depth research on cloud
task scheduling for airborne mobile devices from multiple
perspectives using a variety of advanced techniques. Pandit

et al. [16] proposed a task scheduling system based on a
two-stage neural network (NN), in which the first stage con-
sists of a feed-forward neural network (FFNN) and convolu-
tional neural network (CNN) that decides whether the data
streams can be analyzed (executed) in the resource-
constrained environment (edge/fog) or directly forwarded
to the cloud. In a resource-constrained environment (fog)
to be analyzed (executed) or forwarded directly to the cloud,
the second stage consists of the RL module scheduling all the
tasks sent by the first-stage neural network to the fog layer in
the available fog devices. Experimental results show that the
combination of RL and task clustering algorithm signifi-
cantly reduces the communication cost. Yang et al. [17] pro-
posed a task scheduling algorithm considering the reliability
of equilibrium tasks based on a simplified model, a mathe-
matical tool based on the game theory work, and a task
scheduling model for computing nodes. In the cooperative
game model, the game strategy is used in the computation
of the rate allocation strategy of the task on the node. The
analysis of the experimental results shows that the algorithm
has better optimization results. Lakhan et al. [18] designed a
dynamic application-partitioning workload task-scheduling-
secure (DAPWTS) algorithm framework, which consists of a
minimum cut algorithm, searching for nodes, energy-
enabled scheduling, fault scheduling, and a security scheme,
to minimize the node’s energy consumption, and securely
minimum cut algorithm to divide the application into local
nodes and edge nodes. Simulation results show that
DAPWTS outperforms the existing baseline approach by
30% in terms of energy consumption, deadline, and applica-
tion failure in the system. Du et al. [19] proposed an efficient
tactical edge mobile cloud service model to solve the prob-
lems of military operations, limited device access, lack of
edge tactical mobility, and edge information fusion process-
ing capabilities in the tactical edge network environment.
The model can provide flexible tactical edge information
exchange and information processing capabilities. It is adap-
tive to the frontline battlefield environment in terms of col-
laborative sensing, decision-making, time delay, and energy
requirements.

Numerous scholars have achieved fruitful results by
applying a variety of techniques in their research on task
scheduling for mobile devices. In this paper, we decompose
the device tasks by level, then use a genetic algorithm for ini-
tial task allocation, and finally schedule each one-way task to
finally achieve the goal of high efficiency and low energy
consumption task scheduling.

3. Methodology

3.1. Overall Research Program. In a mobile device cloud
environment, a group of mobile devices is highly collabora-
tive in executing tasks, and the system cannot operate nor-
mally if any of the mobile devices run out of power. To
ensure that the system execution time is as long as possible,
it is necessary to coordinate the execution of tasks among
devices, to achieve a balanced consumption of energy by
each device and minimize the overall energy consumption
while improving the throughput of task execution. On this
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basis, the corresponding system model is constructed to real-
ize the transformation from practical problems to mathe-
matical problems.

Based on the analysis of the characteristics of the mobile
device cloud environment, the mobile device cloud architec-
ture is divided into three levels, i.e., the central cloud, the
microcloud, and the mobile device cloud. Each device can
be connected to different levels of clouds to communicate
with each other and transfer tasks to accomplish the overall
task. Since mobile devices in the same mobile device cloud
environment are working together to accomplish tasks, it is
necessary to process the group tasks into a series of ordered
subtasks before assigning them to improve the efficiency of
task execution.

Before task scheduling, the purpose of effectively
improving the efficiency of selecting schedulable objects
can be realized by defining a handshake protocol. To
improve the task throughput rate and reduce energy con-
sumption as much as possible, this paper adopts a genetic
algorithm for the initial task scheduling algorithm and pro-
poses a dynamic scheduling strategy for the MDC environ-
ment in the subsequent scheduling problems caused by the
changes of the task or the location of the mobile device.
Based on the above framework, this paper proposes to solve
the initial task scheduling algorithm based on genetic algo-
rithm and dynamic task scheduling algorithm for mobile
devices in the cloud environment of mobile devices. The
overall task flow chart is shown in Figure 2.

3.2. Initial Task Scheduling Algorithm Based on Genetic
Algorithm. Genetic algorithm has a strong global search abil-
ity, can explore the entire problem space, through iteration

to find the global optimal solution, and has a strong parallel-
ism ability, for distributed edge computing equipment has
good adaptability and is very suitable for edge computing
equipment task scheduling field. The initial task scheduling
algorithm is designed based on the genetic algorithm,
because the genetic algorithm has higher efficiency and bet-
ter convergence and can find an optimal scheduling and
allocation scheme in a shorter time, and the genetic algo-
rithm is relatively simple.

Genetic algorithms are capable of evaluating multiple
solutions in the exploration space at the same time, reducing
the risk of falling into local optima, while the algorithms
themselves are easy to parallelize. It is also self-organizing,
self-adaptive, and self-learning. When the genetic algorithm
uses the information obtained from the evolutionary process
to self-organize the search, the individual with a large degree
of adaptation has a higher probability of survival and obtains
a genetic structure that is more adapted to the environment,
which improves the algorithm’s robustness. Genetic algo-
rithms provide a framework for the exploitation of optimal
solutions for realizing dynamic task scheduling.

3.2.1. Mapping of Task Scheduling Scheme to Chromosome.
The coding scheme of the chromosome represents the map-
ping relationship from the task scheduling scheme to the
chromosome, and this paper defines the mapping relation-
ship as follows: the length of the chromosome is the number
of tasks, in which each element corresponds to a task, and
the value of each element represents the number of the
mobile device to which the task is assigned, as shown in
Figure 3, which shows the mapping from the task scheduling
scheme to the chromosome.

Where the chromosomes can be represented as an array,
the subscript of the array corresponds to the number of the
task, i.e., Ti, and the value of the array element is the number
of the mobile device, i.e., Di, to which the task Ti is assigned.
Generating an initial population means randomly generating
a certain number of chromosomes, which means that tasks
are randomly assigned to mobile devices according to prob-
ability. For example, when assigning 10 subtasks to 3
devices, if after population initialization, a chromosome of
{0, 1, 2, 2, 1, 2, 0, 1, 0, 2} is generated, it means that the task
T1 is executed on the mobile device D1.

3.2.2. Design of the Evaluation Function of the Fitness Value
of Chromosomes. Adaptation degree is based on a specific
evaluation standard set for a certain problem; this standard
is used to measure the advantages and disadvantages of each
individual and then according to the standard filter out the
better individual, continue to inherit, and finally get the
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Figure 2: Overall program flow chart.
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Figure 3: Mapping of task scheduling scheme to chromosomes.
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optimal solution. The fitness function is transformed from
the objective function, and in this paper, the objective func-
tion is defined by the dual criteria of time and cost. We
define the objective function as follows:

f x = α ∗ Total time + β ∗ Total energy, 1

where Total time is the total time spent to perform all the
tasks resulting from the computation and Total energy is
the total energy spent by each device to perform all the tasks
and the sum of the transmission energy required to assign
the tasks. α and β correspond to the percentage of time
and energy spent, respectively,α + β = 1.

The scheduling goal in this paper is to minimize the
objective function, so the objective function f x number is
transformed into the fitness function F x , and the fitness
value function is shown in the following equation:

F x =
Cmax − f x , f x < Cmax,

0, else,
2

where Cmax is a sufficiently large constant. Since our goal is
to find the solution that makes the fitness function as large
as possible, we need to subtract the value of the objective
function from a sufficiently large constant to achieve the goal
of finding a better solution.

3.2.3. Design of Chromosome Crossover and Mutation. The
initial operation of chromosome crossover is to select genet-
ically good individuals, which will be subjected to crossover
operation so as to obtain better offspring individuals. In this
paper, the OX crossover operator [20] is used to randomly
determine the crossover locations of the parent chromo-
somes and to determine the lengths of the gene segments
to be exchanged based on a predetermined crossover rate,
which is then interchanged to generate two daughter chro-
mosomes. Next, the fitness values of the daughter chromo-
somes are calculated, and if the daughter individual is
superior to the parent individual, i.e., the fitness value of
the daughter chromosome is greater than that of the parent
chromosome, then the parent individual is removed from
the population and the daughter individual is added; and if
the parent individual is superior to the daughter individual,
then the fitness values of the daughter individual and the
worst individual (i.e., the individual with the smallest fitness
value) in the population are compared. If the offspring indi-

vidual is superior, the worst individual is removed from the
population, and the offspring individual is added; otherwise,
the parent individual is reselected for this round of crossover
operation.

As shown in Figure 4, when the crossover rate is 0.6, the
paternal chromosomes cross over to produce the chromo-
somes of the offspring.

Chromosome mutation also comes from the principle
that when organisms reproduce, the genes of the parent gen-
eration are mutated, leading to further development of pop-
ulation diversity and better evolution. In genetic algorithms,
the chromosome mutation operation can improve the local
search ability of the algorithm and, to a certain extent, effec-
tively solve the problem of early convergence, which is con-
ducive to the maintenance of chromosome diversity. The
scheduling algorithm based on the genetic algorithm in this
paper is essential to migrate a subtask to another device for
execution.

In this paper, the random mutation method is used, i.e.,
according to the mutation rate, certain bits of the chromo-
some are randomly selected and randomly mutated to
become a legal genetic bit, i.e., the number of the device to
which a certain task is assigned. Figure 5 shows the sche-
matic diagram of the chromosome after mutation of the
original chromosome when the mutation rate is 0.3.

3.2.4. Design and Implementation of Initial Task Scheduling
Algorithm Based on Genetic Algorithm. As mentioned above,
the design of the initial task scheduling algorithm can be
completed. The termination conditions of the algorithm
are (1) the algorithm finds a feasible solution and the sched-
uling ends normally and (2) the number of invalid iterations
of the algorithm exceeds the preset maximum allowable
number of iterations, forcing it to terminate and taking the

Paternal chromosome 1

Chromosome crossover

Paternal chromosome 2

Zygote chromosome 1

Zygote chromosome 2

0 1 2 2 1 2 20 1 0

2 0 0 1 2 2 01 0 1 2 0 2 2 1 2 00 1 1

0 1 0 1 2 2 21 0 0

Figure 4: Schematic diagram of chromosome crossover.

Original chromosome

Chromosomes after genetic mutation

Chromosome

0 1 1 2 1 2 20 1 0

0 0 1 2 0 2 20 1 1

Figure 5: Schematic representation of chromosome variation.
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final iteration solution as the optimal solution. The algo-
rithm description is shown in Algorithm 1.

In the initial stage of the scheduling algorithm, the struc-
ture graph is first processed and the priority of each node,
i.e., its depth, is calculated. The initial population is gener-
ated based on each initial information. The initial popula-
tion is generated based on each initial information. The
specific process of initial population generation is that the
tasks are first divided into different subsets according to
their depth (priority), and the number of subsets is h + 1,
where h is the maximum value of the node depth in the task
structure graph. The nodes with depth i are in the subset S i
0 < i < h , and for each subtask in the subset S i , the
assigned mobile device number is randomly assigned, which
means that the task is randomly assigned to a mobile device,
which corresponds to the result that the value corresponding
to each locus of the chromosome is one of the middle 1 ~m,
where m represents the total number of mobile devices.

As mentioned above, after randomly assigning tasks to
mobile devices, there is a queue of subtasks on each mobile
device, and each subtask corresponds to a priority level; for
each device, its task scheduling policy is that the subtasks it
owns are listed in order of priority, and the tasks with high
priority are executed first. After processing all the tasks on
each mobile device, a task scheduling policy, i.e., chromo-
some, is obtained. By performing the above operations mul-
tiple times, multiple chromosomes are obtained and the
initial population can be formed.

After generating the initial population, it is necessary to
calculate the fitness value of each solution according to the
fitness formula and output the optimal solution if it is judged
to be a feasible solution; if it is not a feasible solution, it is
necessary to generate the next-generation population
according to the selection strategy and then carry out the
hybridization and mutation operations with the hybridiza-
tion probability and the mutation probability, respectively,
to allow the population to have more possibilities, which is
conducive to finding a feasible solution more quickly. The
above operations are repeated until an optimal solution is
found or the number of evolutionary generations exceeds a
set threshold, and the algorithm ends.

The genetic algorithm can perform a global search to
seek the global optimal solution, but when the task size
grows, the exploration space rapidly expands causing the
genetic algorithm to need more time to complete the global
search. And when the task size continues to expand, the time
complexity of the algorithm increases dramatically [21], so it
is difficult to adapt to task scheduling tasks with huge task
sizes using this algorithm alone.

4. Dynamic Task Scheduling Algorithm for
Mobile Devices

For each level of subtasks, when the initial scheduling of the
task is complete, the execution of the task begins. However,
during task execution, task rescheduling is required for
mobile devices due to the following situations:

(1) When a device is in a low energy state, its remaining
task queue needs to be rescheduled

(2) When a device detects that it cannot finish executing
a task before the deadline of a task, it needs to
reschedule the task

(3) When there is a change in the connection between
devices that affects the migrated tasks, the tasks need
to be rescheduled

Therefore, dynamic task scheduling is required for
mobile devices when the above situations occur. In the fol-
lowing section, the important concepts and models in
dynamic task scheduling are first described in detail.

4.1. Device-Cloud Connection Model. Since the mobile
devices are in motion in the MDC environment, they are
not in the same position. In this case, a certain device may
disconnect from another device, microcloud, or central
cloud at any time and, at the same time, establish a new con-
nection with another device, microcloud, or central cloud,
which leads to the fact that the task migration has to be
adjusted at any time according to the change of the position
between the devices and the connection to ensure that the

INPUT: Data related to subtask structure, equipment, task energy time consumption, etc.
OUTPUT: The optimal solution obtained from the calculation
Begin
1. calculate the priority of each node in the graph
2. Generate the initial solution group Pop t t = t
3. Calculate the fitness value of each solution in the cluster.
4. if the termination condition of the algorithm is not satisfied, perform step 5, otherwise go to step 9.
5. using the idea of evolutionary strategy, perform the selection mechanism to form the next generation
of solutions Pop t + 1 t = t + 1
6. perform hybridization with probability pc
7. perform the mutation operation with probability pm
8. Calculate the fitness value of each solution in the cluster, and use the elite strategy to preserve the optimal solution.
9. output the best solution, the algorithm terminates
End

Algorithm 1: Initial task scheduling algorithm based on genetic algorithm.
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task can be completed successfully. And the result can also
be returned normally.

We define the changes in the connection model between
the device and the cloud at different moments during the
execution of the task by the device due to the changes in
the deployment location of the microcloud and the location
of each mobile device.

As shown in Figure 6, we define four dynamic connectiv-
ity models between devices and the cloud and the corre-
sponding changes in task migration due to the mobility of
the device when the device hands over the task to another
device or the cloud for execution.

4.1.1. Migration Model between Microclouds. In Figure 6(a),
the initial situation is that devices A and B are in the network
coverage of base station RSU-1 and therefore connectable to
microcloud Cloudlet-1, devices D and E are in the network
coverage of microcloud base station RSU-2 and therefore
connectable to microcloud Cloudlet-2, and device A
migrates a certain task to be executed by microcloud
Cloudlet-1 in the base station in the area covered by RSU-
1. When device A moves from the area covered by RSU-1
to the area covered by RSU-2, it means that device A will
be disconnected from the microcloud Cloudlet-1 and enter
the network coverage area of the microcloud Cloudlet-2,
and therefore, the task that was originally performed by
Cloudlet-1 needs to be transferred to be performed by
Cloudlet-2, and then, device A will connect to Cloudlet-2
by connecting to RSU-2 to continue the communication.

4.1.2. Microcloud Internal Migration Model. In Figure 6(b),
the initial scenario is that devices A and B are in the network
coverage of base station RSU-1 and therefore connectable to
the microcloud Cloudlet, devices D and E are in the network
coverage of microcloud base station RSU-2 and therefore
also connectable to the microcloud Cloudlet, and device A
migrates a certain task to be executed by the microcloud
Cloudlet in the base station RSU-1’s region. When device
A moves from the area covered by RSU-1 to the area covered
by RSU-2, since both RSUs are connected to the same
microcloud, it can continue to communicate with the micro-
cloud Cloudlet even if there is a change in the network to
which device A is connected, so there is no need to migrate
the task, and it is sufficient that it is still left to be executed by
the microcloud Cloudlet. However, switching the signal
from RSU-1 to RSU-2 requires a time interval, so the con-
nection between device A and the microcloud may be tem-
porarily disconnected.

4.1.3. Microcloud-Device Intercloud Migration Model. In
Figure 6(c), the initial situation is that devices A, D, and E
are in the network coverage of the base station RSU-2 and
therefore can be connected to the microcloud Cloudlet,
device B is in the network coverage of the microcloud base
station RSU-1 and therefore can also be connected to the
microcloud Cloudlet, and at the same time, devices A, D,
and E form a single cloud of devices and device E relocates
the tasks to be executed by device A. When device A moves
from the area covered by RSU-2 to the area covered by RSU-

1, the connection between E and A is disconnected, so the
device cloud formed by A, D, and E is dissolved, but devices
D and E are still friendly neighbors and can still form a
mobile device cloud. At this point, since device E has a task
to give to device A for execution, the task needs to be given
to another device to continue execution due to the move-
ment of device A. At this time, since device D and device
E are friendly neighbors, the task can be handed over to
device D for execution, while at the same time, device E is
in the area covered by RSU-2, i.e., device E can continue to
communicate with the microcloud Cloudlet, and therefore,
the task can also be handed over to the microcloud for con-
tinued execution.

4.1.4. Microcloud-Central Intercloud Migration Model. In
Figure 6(d), the initial situation is that devices A and D are
in the network coverage range of the base station RSU-2
and therefore can connect to the microcloud Cloudlet and
device B is in the network coverage range of the microcloud
base station RSU-1 and therefore can also connect to the
microcloud Cloudlet, but device E is neither in the network
coverage range of the RSU-1 nor in the network coverage
range of the RSU-2, and therefore, device E is not connect-
able to the microcloud Cloudlet. Meanwhile, devices A and
E form a device cloud, and E is not connectable to D. Device
E migrates tasks to device A for execution. When device A
moves from the area covered by RSU-2 to the area covered
by RSU-1, the connection between E and A is disconnected,
and at this time, since devices D and E are not connectable
and E is not covered by RSU-2, device E cannot hand over
the task to other devices or Cloudlet for execution, and then,
device E can only choose to transfer the task to the central
cloud for further execution. In this case, device E will con-
nect to the central cloud via long-distance communication,
such as 5G, and continue to execute the task.

As mentioned above, when there is a situation where a
task needs to be rescheduled due to the movement of a
device, when a device does not have enough energy to exe-
cute its remaining task queue, or when it is not able to finish
executing a task before the deadline of the task, it is neces-
sary to schedule the task immediately to ensure that it exe-
cutes properly and returns the results.

4.2. Dynamic Scheduling System Model. The model is divided
into three main parts, each of which has its functional mod-
ule that handles a variety of information. The first part is the
mobile device cloud, in which devices are friendly neighbors
that can transfer tasks and return results to each other.
When device A needs to migrate out a task, it immediately
searches for friendly neighbors that can perform this task,
and if found, it migrates this task to the most suitable mobile
device B for execution according to the scheduling algo-
rithm; the second component is the microcloud, which can
receive task requests from device A and can communicate
with all devices under the Wi-Fi coverage of this microcloud,
scheduling to find a task-executable device C and migrate it
to the mobile device as an intermediate point for transfer-
ring data between the original mobile device A and mobile
device C. If a task-executable device is not found, the
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microcloud can also give the task to be executed locally at an
additional cost; the third component is the central cloud,
which can be used to perform tasks that need to be migrated
when neither the mobile device nor the microcloud can do
the job, but this comes at an additional cost.

Figure 7 shows the overall model of the dynamic sched-
uling system.

The dynamic scheduling system mainly consists of the
following components, each of which includes different
modules:

(i) Mobile device function module: detect module, exe-
cute module, schedule module, and receive module

(ii) Microcloud functional modules: detect module, exe-
cute module, schedule module, and receive module

(iii) Central cloud functional module: detect module,
execute module, and receive module

Each module is responsible for different information
processing, and these functional modules interact with the
functional modules of other devices to accomplish tasks
together.

4.2.1. Detailed Working Model Description of the Dynamic
Scheduling System. As shown in the dynamic scheduling sys-

tem structure model diagram above, the specific working
modes of the scheduling system are as follows.

(1) The First Level of Dynamic Scheduling. When the detec-
tion module of a device detects the need for scheduling tasks,
it first needs to judge which task or tasks are most suitable
for scheduling through the scheduling module and then
send the handshake protocol to the friendly neighboring
devices of the device through the sending module of the
device. After receiving the handshake protocol, the friendly
neighboring device will hand over the handshake protocol
to the scheduling module for analysis and then return the
handshake protocol through the sending module.

When the requesting device receives the returned hand-
shake protocol, it makes the judgment on all the returned
protocols, analyzes the friendly neighboring devices that
can receive the task, selects the most suitable device, and
sends out the task to be relocated through the sending mod-
ule, and the receiving device receives the task through the
receiving module and then hands it over to the scheduling
module of the device for arranging the order of processing
the task. After giving the task to the execution module for
execution, the task result is returned to the requesting device
through the sending module.

At the same time, the detection module of the requesting
device and the receiving device will detect the movement
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and position of each other, and if it is found that the
connection with each other will be disconnected, it will
notify each other in time, and then, the requesting device
needs to restart the scheduling module and reschedule
the uncompleted task to the other device to continue to
complete.

(2) The Second Level of Dynamic Scheduling. When the
requesting device receives the returned handshake protocol
from a friendly neighboring device and judges that there is
no friendly neighboring device that can accept the task that
needs to be migrated, it sends the handshake protocol to
the microcloud that can be connected through the sending
module of the device. After the microcloud receives the
handshake agreement, it hands over the handshake agree-
ment to the scheduling module for analysis, and the schedul-
ing module determines which mobile devices are within the
network coverage area of the microcloud and then sends the
handshake agreement to these mobile devices through the
sending module of the microcloud.

When the mobile device receives the handshake proto-
col, it gives the handshake protocol to the scheduling mod-
ule for analysis and then returns the handshake protocol
through the sending module. When the microcloud receives
the returned handshake protocol, it judges all the returned
protocols, analyzes them for the devices that can receive
the task, selects the most suitable device, and returns the
handshake protocol to the requesting device through the
sending module. The scheduling module of the requesting
device selects the most suitable device by analyzing all the
returned results and then sends the information to the
receiving module of the microcloud through the sending
module. The microcloud then sends out the tasks that need
to be migrated through the sending module, the receiving
device receives the tasks through the receiving module, then
the scheduling module of the device arranges the order of
the tasks to be processed, and finally, the task is handed over
to the executing module to execute the tasks. At the same
time, the detection module of the microcloud and the receiv-
ing device will detect each other’s movement and position,
and if it is found that the connection with each other will
be disconnected, it will notify the other party in time, and
then, the microcloud needs to restart the scheduling module
and reschedule the unfinished tasks to other devices to con-
tinue to complete. After the task is completed, the device
returns the result to the microcloud and then to the request-
ing device.

If the microcloud does not find a device that can accept
the task after receiving the returned handshake protocols
from all the devices within the network coverage, it will
judge whether it can complete the task through the schedul-
ing module and then return the handshake protocols to the
receiving module of the requesting device through the send-
ing module, and the scheduling module of the requesting
device, after judgment, decides which microcloud is the most
appropriate for executing the task and then sends the task to
the receiving module of the microcloud through the sending
module. After the microcloud accepts the task, it is sched-

uled by the scheduling module and then handed over to
the execution module to complete the task. After completing
the task, the result is returned to the requesting device
through the sending module.

At the same time, the detection module of the requesting
device and the microcloud will detect each other’s move-
ment and position, and if it finds that the connection with
the other party is going to be disconnected, it will notify
the other party promptly, and then, the requesting device
will need to restart the scheduling module and then resched-
ule the uncompleted task to the other device to continue to
complete.

(3) The Third Level of Dynamic Scheduling. If neither the
friendly neighboring devices of the requesting device nor
the microcloud returns the handshake protocol and finds a
device that can accept the task, the task is sent to the receiv-
ing module of the central cloud through the sending module,
and the central cloud accepts the task and gives it to the exe-
cution module to complete the task. After completing the
task, the result is returned to the requesting device through
the sending module.

At the same time, the detection module of the request-
ing device and the central cloud will detect each other’s
movement and position, and if it finds that the connec-
tion with each other will be disconnected, it will notify
the other party in time, and then, the requesting device
needs to restart the scheduling module and reschedule
the uncompleted task to the other device to continue to
complete.

4.3. Task Scheduling Decision-Making and Algorithm Design.
To ensure optimal task scheduling, we propose a handshake
protocol. This protocol involves a device sending handshake
information to neighboring devices before scheduling a task.
It aims to identify the most suitable neighboring device for
task transfer. Upon receiving this information, neighboring
devices assess their ability to execute the task and respond
accordingly. This process helps the original device make
informed scheduling decisions. In this way, if the friendly
neighboring device cannot perform other redundant tasks,
it can directly return a “no” message, so that the original
device does not have to take this device into account when
scheduling. When the friendly neighboring device can com-
plete the task, it will return other necessary reference infor-
mation, and then, the original device can make a judgment
based on this information, which can improve the schedul-
ing efficiency.

Figure 8 shows the process of scheduling at the first level,
i.e., within the mobile device cloud, when the requesting
device needs to schedule a task.

5. Experiments and Analysis of Results

5.1. Experimental Program

5.1.1. Experimental Environment. The system development
in this paper is divided into two main parts: task
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decomposition and simulation testing of the scheduling
system. The experimental part of this paper is developed in
C++ programming language, under the Windows 10 system,
using Visual Studio 2021. The experimental environment is
as follows:

(1) Operating system: Windows 10

(2) Memory size: 32G

(3) CPU: Intel® Core™ 2 Duo CPU 2.00GHz

(4) Development platform: Visual Studio 2021

5.1.2. Experimental Program on Task Decomposition. In this
paper, the decomposition process of tasks is completed by
analyzing computationally intensive task procedures, trans-
forming tasks into graph structures, then merging the nodes
in the graph into independent nodes, and finally merging the
independent nodes into business logic units. Among them,
for the generation of task graph structure, the test proce-
dures in this paper are classical computationally intensive
procedures, including matrix multiplication procedure,
matrix inverse procedure, Gaussian function procedure,
convex package problem procedure, and traveling quotient
problem procedure.

The entire procedure is transformed into a graph struc-
ture, where each node holds detailed information related to
that node for subsequent analysis. The data structure of the
specific task structure graph is defined as Algorithm 2.

For different types of statements and structures in a pro-
gram, the corresponding data structures and methods of
constructing nodes are different. Based on the task structure
graph, the graph structure is retraced from bottom to top,
and if the data dependency value between a node and the
previous node is greater than the threshold set in this paper,
the two nodes are merged into an independent unit. Finally,
the independent units are merged based on business logic to
get the final subtask.

5.1.3. Experimental Program on Task Scheduling Algorithms.
Based on the previously described scheme, an experimental
comparison of the performance of the scheduling algorithm
of this paper and the random scheduling algorithm is carried
out. The experimental data generation scheme is as follows:

(1) Randomly generate the matrix ETC m, n , where
each element size is within the range of Fan 1, 100 ,
and ETC i, j denotes the estimated running time of
subtask Ti on mobile device Pj

(2) Randomly generate the matrix Trans m, n , where
each element size is in the range of 1, 100 , and
Trans i, j denotes the data transmission delay
between device Pi and device Pj

(3) A subtask structure graph is a directed loop-free
graph representing scheduling constraint relation-
ships between individual subtasks, which is gener-
ated by the scheme described above. For a structure
graph G, let G = <T , E, ETC > , where T is the set
of subtasks, which is the set of directed edges in the
E subtask structure graph, and ETC is the estimated
running time matrix

Based on the above data, the verification of the experi-
mental performance of the task scheduling algorithm is car-
ried out. Among them, the number of mobile devices is set
to five, their initial coordinate positions are randomly gener-
ated, and the horizontal and vertical coordinate ranges are
all within the range of 1, 500 , and there are two micro-
clouds with randomly generated coordinates. The experi-
mental program is that the tasks are scheduled with the
algorithm of this paper and the random scheduling algo-
rithm, respectively, and for each group of tasks, the test is
performed ten times, and the average of the time-
consuming and energy-consuming values is recorded.
Among them, the stochastic algorithm uses random assign-
ment of tasks in the initial assignment of tasks, and in the

Neighbouring equipment A Neighbouring equipment B

1 41. Decision-making on redeployments
2. Send handshake protocol
3. Return handshake protocol
4. Scheduling decision
5. Send task

3
2

5 2
3

Figure 8: Schematic diagram of task scheduling within the mobile cloud.

11International Journal of Aerospace Engineering



subsequent dynamic scheduling process, if a device needs to
schedule a task, a task is randomly selected to be called out
and selected to be randomly dispatched to a device for
execution.

5.2. Analysis of Experimental Results

5.2.1. Generation of Task Structure Diagrams. To decompose
the task into subtasks, it is first necessary to construct a task
structure diagram based on the task procedure before the
next step of analysis can be carried out. The process of con-
structing a task structure diagram involves analyzing the
statements and structure of the program using the features
of sequential, branching, and looping structures and then
constructing the structure diagram. Figure 9 shows a sample
program and the corresponding constructed task structure
diagram.

The part of the task structure diagram that builds the
result of running the program is shown in Figure 10.

Once the task structure graph is constructed, the nodes
in the graph are traversed from the bottom up, and indepen-
dent units are constructed by scanning and tracking large
data and merging neighboring nodes whose data dependen-
cies exceed a specific threshold. And then through the con-
cept of the business logic unit, the independent units are
merged to construct the business logic unit, and finally, the
task is decomposed into a series of subtasks. Figure 10 shows
the running screenshot of the construction procedure of the
task structure graph.

5.2.2. Impact of Combining Standalone Units on Energy
Savings. Due to the findings in the literature [22] that the
mobile device migration task activates the network interface
of the device when the task is successfully transmitted, the
interface does not immediately switch to a low-power state
but continues to remain in a high-power state for tens of
seconds, which leads to unnecessary energy loss; to address
this issue, this paper adopts the scheme of merging inde-
pendent units into business logic units to reduce unneces-
sary energy loss.

According to the literature [22], for the 5G interface of
iOS9, the tailing time is measured to be 9 seconds. Therefore,
based on this theory, the scheme of merging independent
units is experimentally tested in this paper. The specific
scheme is to randomly schedule tasks between devices in
the case of merging standalone units into business logic
units and in the case of not merging standalone units,
respectively, and, at the same time, record the total energy
consumption of all devices. In this case, the total number
of devices is 5, and the number of tasks varies incrementally.

Figure 11 shows a comparison of the energy consump-
tion of mobile device migration tasks based on standalone
units and business logic units, respectively. The number of
tasks refers to the number of independent units, and the
number of tasks varies from 10 to 80, and the energy con-
sumption required for the execution of each task on the
device is randomly generated, with case 1 being “subtasks
based on independent units” and case 2 being “subtasks
based on business logic units.” In case 1, 60% of the tasks
are randomly selected for scheduling, and in case 2, 60% of
the tasks are still selected for scheduling, trying to make
the basic known content consistent in both cases. As can
be seen from the figure, the energy consumption of the
equipment is significantly reduced after merging the standa-
lone units, and, as the number of tasks increases, the energy
consumption advantage becomes more obvious. Therefore,
merging standalone units into business logic units extends
the life cycle of the device. The business logic unit is the
smallest logical unit that the user can feel, so compared to
the standalone unit, migrating the tasks of the business logic
unit between devices is completely acceptable to the user,
even though the latency will increase.

5.2.3. Effect of Parameters of Initial Task Scheduling
Algorithm Based on Genetic Algorithm. The initial task
scheduling algorithm in this paper is designed based on the
genetic algorithm, and in the genetic algorithm, several
important parameters include crossover rate, mutation rate,
maximum number of iterations, and initial population size,
which need to be considered to be determined. At present,
researchers generally believe that a crossover rate of 0.6 to

class Graph{
string name; //name of the function
int anum; //number of arguments to the function
vector<string> argname; //list of arguments of the function
int begin_pos; //start position of the node
int end_pos; //end position of the node
bool isok; //Is the function built?
string type; //The type of the node
int relation; //To determine the relation of the node to the previous node when traversing from the bottom up.
string content; //Content of the node
Graph * next; //Points to the next node which is the node of the iterative relation.
Graph * brother; //Points to the brother node, the node in the juxtaposition relationship.
Graph * father; //Points to the father node.
Graph * child; //Points to the child node.
};

Algorithm 2: Definition of data structures for task structure graphs.
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1 and a variation rate of about 0.1 to 0.4 will be more favor-
able to the results of the genetic algorithm. Therefore, in this
section of the paper on scheduling, the above two parame-
ters are first tested to find the best value for this problem.
As shown in Table 1, for a given known background, i.e., 5
mobile devices, 50 tasks, and other conditions are also deter-
mined, the values of time to task completion and total

Child
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Child

Child

Child

Child

Child
i < 10;

}

}

For

Return sum; Sum + = a [i];

int sum = 0;

int sum (int a [10]) {

Function:
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int i = 0;

i++;

int sum (int a [10]){

}

}

int sum = 0;

for (int i = 0; i < 10; i ++){

sum+ = a [i];

return sum;
Child NextBrother

sample program Structure of the mandate

Figure 9: Task structure diagram schematic.

Figure 10: Screenshot of the constructor running for the task
structure diagram.
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Table 1: Testing the parameters of the initial task scheduling
algorithm based on the genetic algorithm.

No. PXOVER PMUTATION Time (s) Energy (J)

1 0.8 0.1 371 540

2 0.8 0.2 418 552

3 0.8 0.3 461 596

4 0.8 0.4 483 733

5 0.7 0.1 323 668

6 0.7 0.2 341 661

7 0.7 0.3 351 651

8 0.7 0.4 412 597

9 0.6 0.1 358 565

10 0.6 0.2 333 580

11 0.6 0.3 346 600

12 0.6 0.4 427 635

Table 2: Determination of initial scheduling algorithm parameters.

No. Parameters Value

1 Crossover rate 0.8

2 Variation rate 0.1

3 Population size 100

4 Maximum number of iterations 1000
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energy consumption change when different combinations of
crossover rate (PXOVER) and mutation rate (PMUTA-
TION) are taken. In this, for each case, 10 sets of data are
tested and then averaged.

As can be seen from the table, when PXOVER is 0.8 and
PMUTATION is 0.1, the energy and time consumption are
relatively small, so we define the relevant parameter values
as shown in Table 2.

(1) The crossover rate determines the length of the chro-
mosome segments exchanged during chromosome
crossing over and is taken as 0.8

(2) The mutation rate determines the number of genes
that are mutated during chromosome mutation and
is taken as 0.1

(3) Define the population size as 100

(4) The maximum number of iterations is defined as
1000

5.2.4. Evaluation of Scheduling Algorithm Performance.
Based on the previously described scheme, we conducted

an experimental comparison of the performance of the
scheduling algorithm of this paper and the random schedul-
ing algorithm, assuming five devices, respectively, and the
predicted running time of each subtask on different mobile
devices and the predicted transmission delays between the
mobile devices are randomly generated. The tasks were
scheduled using the algorithm of this paper and the random
scheduling algorithm, respectively, and for each set of tasks,
the tests were performed ten times, and the average of the
elapsed time and energy consumption values was recorded.
Among them, the random algorithm uses random assign-
ment of tasks in the initial assignment of tasks, and in the
subsequent dynamic scheduling process, if a certain device
needs to schedule a task, a task is randomly selected to be
called out and selected to be randomly scheduled to a certain
device for execution.

Table 3 shows the performance comparison between this
paper’s algorithm and the randomized algorithm. As shown
in Figure 12 for the test results of the two algorithms, it can
be seen that the scheduling algorithm based on the genetic
algorithm in this paper is better than the random scheduling
algorithm in terms of energy consumption and throughput
rate, respectively, and in terms of time consumed, the

Table 3: Performance comparison between this algorithm and randomized algorithm.

No. Task_num Time_GA (s) Time_random (s) Energy_GA (J) Energy_random (J)

1 10 121 235 198 258

2 20 291 392 296 564

3 30 463 623 601 831

4 40 606 724 847 1208

5 50 818 1011 999 1336

6 60 1082 1227 1157 1766

7 70 1312 1558 1622 2087

8 80 1393 1851 1921 2696
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Figure 12: Comparison of the performance of this algorithm and the randomized algorithm.
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advantage increases significantly with the increase in the
number of tasks. The reason is mainly that the genetic algo-
rithm is an optimization scheme formed after exploring the
whole domain of the problem space, so it has better adapt-
ability to different task loads and task types, and the algo-
rithm has higher robustness and efficiency.

From the above figure, it can be seen that the algorithm
of this paper is better than the random scheduling algorithm;
this is because, in the process of initial task allocation, this
paper adopts the genetic algorithm for scheduling. As dis-
cussed in Section 3.2, the genetic algorithm finds the most
robust solution by comprehensively exploring the problem
space. This approach maximizes the fitness function
(equation (2)) F x , ensuring the minimization of the
objective function (equation (1)) f x . Given the known
information required for task scheduling, the genetic algo-
rithm can find a better solution in a relatively short
period, and the time consumed is relatively short. In the
subsequent dynamic scheduling process, since the algo-
rithm adopted in this paper first performs the call-out
decision judgment within the requesting device and selects
the optimal device among the neighboring devices for
scheduling, the optimal solution can be obtained, which
saves energy consumption and reduces the time delay. In
conclusion, the proposed task scheduling algorithm for
mobile device cloud has better performance; in particular
when the number of tasks increases, it can save a lot of
energy consumption and time.

5.3. Practical Application Environment Validation. Face rec-
ognition, i.e., an application that acquires a stream of image
data from a camera in real time, is currently used in several
domains. We have applied the computational slicing method
of the stateful data stream application studied in this paper
to the face recognition program for Android mobile of our
related work and built a backend server for face recognition
image processing and training library. The computational
nodes of this face recognition program can be divided into
initialization and face image ingestion nodes, face localiza-
tion nodes, image preprocessing nodes, extraction of face
image feature vector matrix nodes, training library compar-
ison to confirm face identity nodes, and face identity recog-

nition result confirmation nodes. The data flow model of the
relationship of each computational node is shown in
Figure 13.

Initialization and face image ingestion are the first nodes
that must be performed on the mobile, and the identity con-
firmation result is the last node, which is ultimately per-
formed on the mobile. Therefore, while the mobile
application implements the above computation nodes, the
server also implements the face positioning computation
interface, the image preprocessing interface, the interface
for extracting the feature vector matrix of the face image,
and the interface for confirming the identity of the face by
comparing the training libraries. The detailed parameters
of the application are given in Table 4.

The initial computational cut-schemes in the application
are all locally executed, i.e., initial chromosome {1, 1, 1, 1, 1,

Initialisation & face
image capture

Face positioning

Image preprocessing

Extraction of face
image feature vector

matrix

Training library
comparison to

confirm face identity
Identification results

Figure 13: Data flow model for face recognition application computational node.

Table 4: Application detail parameters.

(a)

Node
number

Local execution
time

Execution time on
cloud

State data
volume

① 1.5 s — 2.3MB

② 0.9 s 0.093 s 1.2MB

③ 0.7 s 0.065 s 3.1MB

④ 1.1 s 0.012 s 1.1MB

⑤ 2.6 s 0.023 s 2.4MB

⑥ 0.3 s — 0.1MB

(b)

Transmission side Transmission data volume

①-② 2.3MB

①-③ 2.3MB

②-④ 1.2MB

③-④ 1.5MB

④-⑤ 0.5MB

⑤-⑥ 0.1MB
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1}, and log logging is done to record the network bandwidth,
node cut-schemes, and execution time. We did 50 sets of
experiments, and Table 5 shows the top 10 sets of records
sorted by network bandwidth.

As shown in Figure 14, from the analysis of the experi-
mentally recorded results, the computational slicing approach
performs better as the network bandwidth increases and
the application execution time decreases. The scheme with
all nodes executing on the cloud also decreases its execu-
tion time as the network bandwidth increases, but the slope
of the decrease is smaller than that of the computational
slicing scheme. The scheme uses all nodes executing locally;
basically, its execution time is larger and has the worst
performance.

6. Conclusion

In this paper, we proposed a task decomposition strategy
and task scheduling algorithm for mobile devices in a cloud

environment for the task scheduling problem to maximize
the data throughput rate of mobile devices by minimizing
energy consumption. The main research content of this
paper is as follows.

(1) Combined with the characteristics of the mobile
device cloud, this paper constructed a dynamic task
scheduling model by taking advantage of the overall
exploration strategy of the genetic algorithm and the
optimization search method, which did not rely on
the gradient information or other auxiliary knowl-
edge in the computation process, and only relied
on the characteristics of the objective function and
the corresponding fitness function that affects the
search direction. Aiming at the objectives of mini-
mizing energy consumption and maximizing
throughput rate, task scheduling algorithms in the
MDC environment are proposed, including the task
scheduling algorithm based on a genetic algorithm,
which was applied to the allocation process of sub-
tasks at each level

(2) The correctness of the granularity of this task
decomposition algorithm was verified by experimen-
tally proving that merging independent units could
reduce energy consumption, and the parameters of
the genetic algorithm-based task scheduling algo-
rithm were tested to determine the optimal parame-
ters in the MDC environment

(3) The task scheduling model based on the genetic algo-
rithm and random scheduling algorithm were com-
pared by comparison experiments, which showed
that the allocation time of the task scheduling model
based on the genetic algorithm was shortened by
11.82%~48.51% and the energy consumption was
reduced by 22.28%~47.52% under different load
conditions

The rapid development of IoT and the continuous emer-
gence of new types of sensors and mobile terminals bring
numerous challenges to MDC task scheduling. In future
research, the research on data privacy protection of task
scheduling algorithms in the MDC environment should be
strengthened to prevent the leakage of users’ private data.
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