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This paper investigates the threat assessment method and target assignment algorithm in multi-UAV cooperative air combat
decision-making. To address the uncertainty and dynamic changes in multiple threat attributes and attribute information of
UAV targets, we propose a UAV target dynamic threat assessment method based on intuitionistic fuzzy multiattribute
decision-making. Firstly, we propose a mixed situation information representation method to represent interval-valued fuzzy
data appropriately. Secondly, we employ the normal distribution weight assignment method to fuse the multi-time situation
information. Then, by incorporating the analytic hierarchy process and entropy method, we determine the normalized threat
value of the target considering both objective situation data characteristics and decision-maker preferences. Finally, a
simulation example is provided to validate the rationality of our proposed algorithm. For solving the multi-weapon multi-target
assignment problem, a target assignment method based on the VNS-IBPSO algorithm is introduced. This method improves upon
the limitations of the BPSO algorithm, such as limited local search capability and premature convergence, by combining variable
neighborhood search and an improved binary particle swarm optimization algorithm. Simulation results show that the proposed
threat assessment method can obtain reasonable threat assessment results under complex dynamic environments. The proposed
VNS-IBPSO algorithm can solve the target assignment model quickly and efficiently based on the assessment results, therefore
ensuring that the UAV mission planning system makes the correct combat plan.

Keywords: interval-valued intuitionistic fuzzy number; multi-weapon multi-target assignment; threat assessment; VNS-IBPSO;
weight optimization model

1. Introduction

Multi-UAV system has attracted increasing attention due to
their high robustness, strong adaptivity, flexible scalability,
and other advantages. In the military field, multi-UAV
cooperative air combat has gradually become an important
development trend of future war. It can not only improve
combat efficiency and reduce combat losses but also reduce
casualties and has broad application prospects. Air combat
decision-making is the key for UAVs to win in air combat
[1] and is a dynamic process that changes with the battlefield
environment, requiring real-time adjustments to maximize
the effectiveness of cooperative operations based on external
interference and various internal uncertainties [2]. The
Observe, Orient, Decide, and Act (OODA) loop combat the-

ory [3] states that multi-UAV cooperative air combat
decision-making encompasses several elements, including
threat assessment, target assignment, maneuver decision,
and motion planning [4, 5]. Among them, threat assessment
serves as the basis for target assignment, and its accuracy and
timeliness have a decisive impact on the entire decision-
making process. Target assignment, on the other hand, is
the comprehensive utilization of the threat assessment
results, which requires the optimal allocation of various pos-
sible targets to ensure the maximization of combat effective-
ness. With the continuous improvement of the intelligence
level of UAV cluster combat, the future air war will pay more
attention to self-organization and self-coordination. There-
fore, the study of threat assessment and intelligent target
assignment methods in uncertain environments to realize

Wiley
International Journal of Aerospace Engineering
Volume 2024, Article ID 9980746, 17 pages
https://doi.org/10.1155/2024/9980746

https://orcid.org/0009-0008-3118-6211
https://orcid.org/0000-0002-2629-6749
https://orcid.org/0000-0002-7087-1069
https://orcid.org/0000-0002-4206-0736
https://orcid.org/0000-0002-4970-8435
https://creativecommons.org/licenses/by/4.0/


the coupling synergies of multilevel air combat decision-
making is a critical research of cooperative air combat deci-
sion-making.

In the context of UAV air combat decision-making, it is
imperative to base the process on an assessment of the bat-
tlefield environment. By obtaining reasonable assessment
results, it is possible to ensure that the mission planning sys-
tem generates the appropriate combat plan. Several threat
assessment methods have been developed in the past to
address this problem, for example, analytical hierarchy pro-
cess (AHP) [6], fuzzy set theory [7], Technique for Order
Preference by Similarity to Ideal Solution (TOPSIS) [8],
and multiple attribute decision-making [9]. However, the
aforementioned methods fail to account for the impact of
changes in air combat situational information. Conse-
quently, several methods for processing situational informa-
tion under dynamic conditions have been introduced. Qiang
et al. [10] proposed an improved group generalized intuitio-
nistic fuzzy soft set (I-GGIFSS) method for dynamic assess-
ment of air target threat. Wang et al. [11] used dynamic
Bayesian network inference to estimate the target threat at
different time slices. Kun et al. [12] obtained time series
weights by a Poisson distribution method based on multiple
target posture data. Intelligent optimization methods have a
wide range of applications in various fields due to their
excellent adaptivity and robustness [13]. For target threat
assessment, Yu et al. [14] trained an LSTM neural network
for LSS flying target threat assessment. Cao et al. [15] pro-
posed a target threat assessment algorithm based on linear
discriminant analysis and improved glowworm swarm opti-
mization algorithm to optimize extreme learning machine.
Multi-UAV cooperative air combat typically operates in
dynamic and unpredictable environments, requiring real-
time threat assessment. In order to better capture the com-
plete dynamics of UAV target behavior and subtle variations
indicative of potential threats, short time series data are
employed for dynamic threat assessment of UAV targets.
Short time series data are susceptible to noise and uncer-
tainties, stemming from environmental factors, sensor inac-
curacies, or intermittent communication. Managing and
filtering out noise while preserving relevant threat informa-
tion becomes crucial for effective threat assessment.

Multi-UAV cooperative air combat typically takes place
in a formation, and there has even been the emergence of
large-scale UAV swarm fighting as a representative mode.
Due to the large scale of the problem and the high complex-
ity of the solution, the traditional exact algorithms are diffi-
cult to meet the timeliness requirements of the decision-
making of air combat [16–18]. With the continuous progress
of artificial intelligence technology, solving large-scale target
allocation problems based on intelligent optimization algo-
rithms has gradually become the mainstream of research.
Intelligent optimization algorithms are able to seek the
approximate optimal solution of the problem within a lim-
ited time, providing fast and effective support for UAV
cooperative air combat decision-making. Zhen et al. [19]
proposed an improved cooperative target assignment
scheme based on a contract network protocol for target
attack mission of heterogeneous UAV swarm. Xing et al.

[20] proposed a self-organized offense–defense confronta-
tion decision-making algorithm for a dynamic swarm versus
swarm UAV combat problem. Song et al. [21] established a
realistic UAV target assignment model and proposed a dif-
ferential evolution algorithm to solve the problem. Zhao
et al. [22] developed an improved hybrid genetic algorithm
to solve multi-weapon multi-target assignment (MWMTA)
problem in uncertain environment. In addition, considering
the issue of cooperative task assignment for heterogeneous
UAVs, Gao et al. [23] proposed an improved multiobjective
genetic algorithm, which incorporates a natural chromo-
some encoding format and specially designed genetic opera-
tors. The algorithm can effectually tackle the unavoidable
deadlock phenomenon while preserving the randomness of
the population. It is worth noting that the application of
reinforcement learning–based methods in intelligent air
combat decision-making is becoming increasingly prevalent
and is currently a hot topic of research [24].

In summary, due to the difficulty of accurate modeling of
the battlefield environment, the existence of uncertainty, and
the measurement information of UAVs being prone to
errors, it is necessary to introduce multiple uncertainties into
air combat threat assessment to enable the decision-making
system to make the most suitable decisions. In addition, tra-
ditional intelligent algorithms may fall into the “premature
convergence” trap under large-scale complex scenarios.
Therefore, designing an improved intelligent optimization
algorithm that can effectively solve the problem of collabora-
tive multitarget attack decision-making under uncertain
environments is also a key focus of this article.

This study primarily examines the issue of threat assess-
ment and MWMTA in the context of air combat. However,
as aircraft stealth continues to improve, along with an
increase in interference and sensor measurement error, the
uncertainty of acquired information is also on the rise. The
primary contributions of this article are summarized as
follows:

1. In terms of threat assessment, a UAV target threat
assessment model is constructed, representative threat
factors are selected, and interval-valued intuitionistic
fuzzy number characterization is used to address the
uncertainty and incompleteness in the threat factor
information.

2. An evaluation method based on dynamic interval
value intuitionistic fuzzy multiattribute decision-
making is presented. For the time-varying nature of
the enemy posture, time series weights are generated
based on the normal cumulative distribution to fuse
multimoment posture information. At the same time,
an indicator weight optimization model integrating
AHP method and entropy weight method is pro-
posed, and the subjective and objective weight charac-
teristics are comprehensively considered.

3. A novel target assignment algorithm, Variable Neigh-
borhood Search and Improved Binary Particle Swarm
Optimization (VNS-IBPSO), is introduced to address

2 International Journal of Aerospace Engineering



the MWMTA problem. By enhancing the update strat-
egy of Binary Particle Swarm Optimization (BPSO)
and incorporating the variable neighborhood search
(VNS) operator, it effectively addresses the limitations
of local search capability in the initial phase and global
search capability in the later phase of particle evolution.
Simulation results demonstrate that the VNS-IBPSO
algorithm effectively and efficiently identifies the optimal
allocation scheme with excellent convergence properties.

The reminder of this article is organized as follows: Sec-
tion 2 depicts the multi-UAV-coordinated air combat sce-
nario and system model of target threat assessment and
MWMTA. Section 3 introduces the target threat assess-
ment method and process in detail. Section 4 analyzes the
proposed VNS-IBPSO algorithm for solving MWMTA
problem. In Section 5, the performance of the proposed
algorithm was tested. Finally, Section 6 summarizes the
article and proposes future development directions.

2. Problem Description and Modeling

A brief description of a multi-UAV-coordinated air combat
scenario is given. To simplify the problem, it is reasonable to
assume that enemy target situational information has been
obtained through the search phase. Assume that the number
of our UAVs is m and the number of enemy UAVs is n. The
total number of weapon resources carried by all UAVs is q
and weapon resources carried by each UAV is qi, i ∈ 1, 2,
⋯,m . Our UAVs continuously obtain K time slices of sit-
uational information; time set is noted as t = t1, t2,⋯,tk
.Considering the threat factors of the enemy target and
establishing threat assessment model. A list of key symbols
used is provided in Table 1.

Figure 1 shows the UAV cooperative air combat
decision-making flow based on the above parameters.
Through the proposed threat assessment method, the
dynamic threat assessment of the adversary UAV target is
carried out. Next, weapon target assignment scheme is gen-
erated after receiving the synthetic threat assessment.
Among them, the following key issues need to be addressed.

2.1. Selection of Threat Assessment Factor for UAV Targets.
Target threat assessment should start with threat assessment
factor selection from target situational information. It usu-
ally incorporates static and dynamic threat assessment fac-
tors. The static threat assessment component, which is
usually fixed, represents the adversary UAV’s static features
including target mobility, electronic countermeasure capa-
bilities, and battle radius. The dynamic threat assessment
element focuses on target motion scenario information, such
as relative angle, speed, height, and distance, between the
opponent and our UAV. Threat assessment parameters are
chosen based on UAV cooperative air combat characteris-
tics, as follows.

2.1.1. Speed Threat Factor. The radial velocity of the enemy
UAV target is selected as the speed threat factor, and the
near direction is positive and the far direction is negative.
The faster the radial velocity of the UAV is, the stronger

the maneuverability is and the greater the offensive advan-
tage is. At the same time, the faster the speed can make the
UAV get rid of the target or complete the pursuit of the tar-
get. It belongs to benefit-oriented factor.

2.1.2. Height Threat Factor. The target height refers to the
vertical nearest distance between the target height plane of
the enemy UAV and our UAV. The UAV at a higher altitude
will occupy a more favorable attack position, and the corre-
sponding weapon load can also obtain higher kinetic energy
through the conversion of potential energy. Therefore, the
higher target, the greater threat to us. It belongs to benefit-
oriented factor.

2.1.3. Distance Threat Factor. The target distance refers to
the projection distance on the horizontal plane of the con-
nection between the both sides. Usually, the closer the
enemy UAV’s target distance is, the more obvious the attack
intention to us, the shorter defense time is, and the greater
threat to us is. It belongs to cost-oriented factor.

2.1.4. Angle Threat Factor. The target angle threat can be
described by the target entry angle. The target entry angle
refers to the angle between the connecting line between the
target and our UAV and target UAV speed direction. The
smaller the entry angle is, the more obvious the target attack
intention is and the greater the threat to us. It belongs to
cost-oriented factor.

2.1.5. Radar Cross Section (RCS) Threat Factor. The enemy’s
stealth performance is directly related to whether it is
detected by airborne sensors. The smaller the RCS, the better
the enemy’s stealth performance, the smaller the probability

Table 1: Symbol definitions.

Symbol Definitions

m The number of our UAVs

n The number of enemy UAVs

q The number of our weapons

s The number of threat evaluation factors

qi The number of weapons carried by each UAV

qj The number of weapons assigned to each UAV

tk Moment tk
Uq×n Weapon target assignment matrix

Qq×n Target damage probability matrix

Vq×n
The comprehensive threat assessment matrix of enemy

UAVs to our UAVs

Ri
tk

Target situational information matrix obtained by ith

UAV in moment tk

pkj
The damage probability of our kth weapon to the jth

enemy target

Sij
The threat assessment value of the jth enemy UAV to our

ith UAV

ojl The lth threat factor value of the jth enemy UAV
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of being detected by airborne radar, and the greater the
threat to us. It belongs to cost-oriented factor.

2.1.6. Type Threat Factor. The threat degree of different
UAV types is different. In this study, the UAV target types
are considered according to the combat function, which
can be divided into four categories: attack UAV, interference
UAV, scout UAV, and bait UAV.

2.2. Description of Mixed Situational Information in Treat
Assessment. Due to data collecting difficulties, target behav-
ior variability, and intelligence information conflict, target
situational knowledge is unclear and fragmentary. Threat
assessment using set numerical forms to express ambiguous
information may provide erroneous, simplistic, and mislead-
ing conclusions that may impair decision-making. To define
the uncertainty and incompleteness of target situational
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Figure 1: Flow of multi-UAV cooperative air combat decision-making.
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information, we construct mixed situational information
using interval-valued numbers, intuitionistic fuzzy numbers,
precise numbers, categorical variables, and other data types.
Target situational information matrix obtained by ith UAV
in moment tk is Ri

tk
= ojl n×s, j ∈ 1, 2,⋯, n and l ∈ 1, 2,

⋯, s . The lth threat factor value of the jth enemy UAV is
ojl, and the representation of ojl are as follows.

2.2.1. Interval Number Representation. Considering the
detection error of the airborne sensor, the error is set to be
Δτ. Then, it can be expressed by an interval number οjl ∈
ο jl , οjl , the upper limit of it is ο jl = ojl − Δτ and the lower
limit of it is οjl = ojl + Δτ. ojl is the initial attribute value
detected by the airborne sensor.

2.2.2. Intuitionistic Fuzzy Number Representation. Consider-
ing that there are omissions or intelligence conflicts in the
collection process of target situational information, then it
can be expressed by an intuitionistic fuzzy number οjl =
μjl, νjl, πjl , where μ jl is the membership degree, νjl is the
nonmembership degree, and πjl = 1 − μjl − νjl is the hesi-
tancy degree. They are calculated as follows:

If it belongs to benefit-oriented factor,

μ jl =
ο jl

∑n
j=1 οjl

2
, νij =

οjl

∑n
j=1 οij

2
1

If it belongs to cost-oriented factor,

μjl =
1/οjl

∑n
j=1 1/ο jl

2
, νij =

1/ο jl
∑n

j=1 1/οjl
2

2

2.2.3. Classification Variable Representation. When the
threat factor value is a categorical variable, it is usually
described by linguistic variables such as “very high,” “high,”
“general,” and “low” based on domain knowledge. It needs
to be transformed into the corresponding intuitionistic fuzzy
number. The threat factor values corresponding to different
types of UAV targets are shown in Table 2.

2.2.4. Interval-Valued Intuitionistic Fuzzy Number
Representation. Interval-valued number can be regarded as
a special fuzzy number. In order to facilitate the subsequent
calculation, when threat factor values are described as intui-
tionistic fuzzy number, it can be transformed into an
interval-valued intuitionistic fuzzy number: οtkjl = μtkjl , 1 − νtkjl
.

After processing, the uncertain target situational infor-
mation in complicated dynamic environments can be appro-
priately represented for target dynamic threat assessment.
Section 3 details the threat assessment methodology and
procedure.

2.3. Construction of Multiweapon and Multitarget Allocation
Model. In this work, we assumed that all missions that were
assigned would be finished simultaneously. This assumption

could be divided into several assumptions, which are listed
below.

Assumption 1. Assume that there is no time consumption
for a UAV when conducting assignment. It means that every
UAV could start and finish assignment simultaneously.

Assumption 2. Assume that the MWMTA problem would
only be solved once and all assign operations would be
started right after the allocation solved.

Assumption 3. Each UAV can use any number of weapon
resource it carries to attack a target. Every weapon must be
assigned to targets, and each weapon can only attack one
target.

Assumption 4. The damage probability between the kth mis-
sile to the jth target is already known and is labeled as pkj.

The threat value of the jth target against our ith UAV is also
calculated beforehand through the threat assessment.

Denote xkj as the decision variable of the kth weapon

assigned to the jth target. When xkj = 1, it represents the

kth weapon assigned to the jth target. When xkj = 0, then
means no assign. If the kth missile is assigned to the target
j, the survival probability of target j is 1 − pkj. After perform-
ing a coordinated attack, survival probability of target j
becomes r

k=1 1 − pkj
xkj . Moreover, let Sij be the threat

value of the jth target to our ith UAV, and the remaining
threat can be written as Sij

q
k=1 1 − pkj

xkj . Accordingly,
the remaining threat of the targets after a round of engage-
ment and the maximum operational efficiency of weapon
resources can be derived as the global utility function:

min F = 〠
n

j=1
〠
m

i=1
Sij

q

k=1
1 − pkj

xkj

max E = 〠
n

j=1
1 −

q

k=1
1 − pkj

xkj

3

where F denotes the minimum threat value of enemy resid-
ual targets and E denotes the destruction of enemy UAV tar-
get with the greatest probability.

The constraint condition is

s t

〠
n

j=1
xkj ≤ 1

〠
q

k=1
xkj ≤ qj

〠
q

k=1
〠
n

j=1
xkj ≤ q

4
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where constraint 1 denotes that a weapon can only be
assigned to a UAV target individually, constraint 2 denotes
that up to qj weapons can be assigned to attack jth target,
and constrains 3 indicates that the max number of weapons
can be used is q.

The multiobjective optimization problem is simplified
into a single-objective optimization problem by linear
weighting method. The penalty function method is used to
deal with the constraints. Therefore, the improved objective
function model is

min G x = θ1 〠
n

j=1
〠
m

i=1
Sij

q

k=1
1 − pkj

xkj

+ θ2 n − 〠
n

j=1
1 −

q

k=1
1 − pkj

xkj

+M ⋅ 〠
q

k=1
min 0, 1 − 〠

n

j=1
xkj

2

5

where M is a penalty factor of the penalty function; it is
mainly used to punish the error that one weapon resource
attacks more than one target at the same time in the solution
space; it is necessary to conduct iterative numerical experi-
ments to determine an appropriate penalty factor.

To summarize, Figure 2 illustrates the flowchart for the
comprehensive target processing, which includes threat
assessment and target assignment. Section 3 and Section 4
provide detailed explanations of the particular techniques
and steps involved.

3. Interval-Valued Intuitionistic Fuzzy
Multiattribute Decision-Making-Based
Dynamic Threat Assessment

3.1. Timing Weighting Model. Time will affect air battle situ-
ation information. Current air combat scenario information
most affects threat assessment. Situation data closer to the
present is more important. However, merely using current
data for assessment and neglecting historical knowledge
can narrow the assessment results and undermine logic. It
is important to study the relationship between air combat
situation and threat assessment at multiple times. Refer to
[25], for discrete time series data; this paper establishes a
time series weight–solving model based on the normal
cumulative distribution. It adopts the cumulative distribu-

tion function algorithm of the normal distribution to solve
the time weight series. The normal cumulative distribution
function is expressed as

Ftk
μK , σK =

1
2πσK

k

−∞
exp −

t − μK
2

2σ2K
dt, 

k = 1, 2,⋯, K , t > 0

6

The special function based on the error function is
expressed as

ϕ z =
1
2

1 + erf
z − μK
2σK

7

where K is the number of continuous moments, μk denotes
the mean value of the set K , and σK denotes the std value
of the set K ; they refer to

μK =
1 + K
2

8

σK =
1
K
〠
K

k=1
k − μK

2 9

Based on the cumulative distribution function of normal
distribution, the weight of time series is calculated as

η tk =
Ftk

μK , σK

∑p
k=1Ftk

μK , σK
=

k
0 exp − t − μK

2/2σ2
K dt

∑p
k=1

k
0 exp − t − μK

2/2σ2K dt

10

where η tk is the weight of tk.

3.2. Threat Factor Weight Optimization Model. AHP [6] and
entropy methods [26], based on subjective expert experience
and objective data, respectively, reflect the weight of target
danger features from many perspectives. Thus, we anticipate
to identify a best threat factor weighting approach by com-
bining the two. Assume that the weight obtained by AHP
is ŵ = ŵ1, ŵ2,⋯, ŵl,⋯ŵs

T , l ∈ 1, 2,⋯, s . The weight
obtained by entropy method is w = w1,w2,⋯,wl,⋯,ws

T ,
l ∈ 1, 2,⋯, s . The objective function of threat factor weight
optimization model is

min w = 〠
s

l=1
α wl −wl

2 + 1 − α wl − ŵl
2 11

The constraint condition is

s t 〠
s

l=1
wl = 1,wl > 0 12

where α is the preference coefficient; when the expert expe-
rience is more accurate and reliable, take a larger value; oth-
erwise, take a smaller value. In this article, take α = 0 5.

Table 2: The threat factor quantification value corresponding to
different types of UAV.

Target type Linguistic variables
Intuitionistic
fuzzy number

Attack UAV Very high (0.90, 0.05)

Interference UAV High (0.75, 0.10)

Scout UAV General (0.50, 0.25)

Bait UAV Low (0.25, 0.20)

6 International Journal of Aerospace Engineering



3.3. Procedure of the Dynamic Threat Assessment. The
decision-making process of threat assessment based on
dynamic intuitionistic fuzzy multiattribute decision-making
is shown in Figure 3.

The specific steps are as follows.

Step 1. Based on the mixed situational information process-
ing method in Section 2.2, the threat assessment model is
constructed, and the decision matrix of target situational
information at the moment is established as Rtk

= otkjl n×s
.

Step 2. According to Equations (6)–(10), combined with the
time series weight model, the multitime weighted dynamic
decision matrix is constructed by integrating the multitime
target situational information.

Ri = ojl n×s =

o11 o12 ⋯ o1s

o21 o22 ⋯ o2s

⋮ ⋮ ⋱ ⋮

on1 on2 ⋯ ons

13

Step 3. Since the entropy method needs accurate value to cal-
culate the objective weight, the continuous ordered weighted
average operator method is used to transform the interval-

valued intuitionistic fuzzy number to accurate value accord-
ing to the following equation:

hjl =
1

0

dρ y
dy

1 − vjl − y 1 − vjl − μjl dy 14

where ρ y is a monotone increasing function in 0, 1 . Gen-
erally, ρ y = y t , t > 0, so as to

htkjl =
1 − vjl + t ⋅ μjl

1 + t
15

where t is inversely proportional to the degree of risk aver-
sion of decision-makers.

Step 4. Calculate the weight of threat factors based on AHP
method as ŵ = ŵ1, ŵ2,⋯, ŵs

T . Calculate the weight of threat

factors based on entropy method as w = w1,w2,⋯,wtk
s

T .

Step 5. According to Equation (11) and Equation (12), calcu-
late the optimal weight of threat factors based on threat fac-
tor weight optimization model as W = w1,w2,⋯,ws

T .

Multi-UAV cooperative air combat decision making target processing

Treat assessment Target assignment

Air combat situational
information

Multi-UAV multi-
weapon resources

Modeling the
MWMTAUncertainty situational

information processing
and representation

Modeling of threat
assessment

Calculation of weights
for assessment factors

Results and ranking of
target threat assessment

Particle swarm
initialization

IBPSO searching

Variable neighborhood
searching

Solution of MWMTA

Figure 2: The flowchart of the whole target process.
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Step 6. Calculate the threat assessment value of the enemy
UAVs to our ith UAV according to the following equation:

Vi = RW =

o11 o12 ⋯ o1s

o21 o22 ⋯ o2s

⋮ ⋮ ⋱ ⋮

on1 on2 ⋯ ons

w1

w2

⋮

ws

16

Step 7. The above threat assessment process is carried out for
all UAVs, and the comprehensive threat assessment matrix
of the enemy UAVs to our UAVs can be obtained.

V = Sij m×n =

S11 S12 ⋯ S1n

S21 S22 ⋯ S2n

⋮ ⋮ ⋱ ⋮

Sm1 Sm2 ⋯ Smn

17

where Sij denotes the threat assessment value of the jth

enemy UAV to ith our UAV.

4. VNS-BPSO Algorithm for MWMTA Problem

In this section, VBS-IBPSO optimization algorithm is pro-
posed to solve the MWMTA problem under complex
dynamic environment.

4.1. Concept of BPSO. BPSO is proposed by Kennedy and
Eberhart in the year of 1997, where the PSO algorithm can
solve the discrete combinatorial optimization problem [27].

Using the q × n variables in the weapon target assign-
ment matrix as the solution space, the dimension of it is
d = q × n. Denote Xid as one origin solution with the initial
velocity Vid , and Xid is the binary encoded, as shown in
Figure 4.

The update rule for the ith particle is expressed as follows:

Vid =Vid + ϕ1 ⋅ rand1 ⋅ pbestid − Xid

+ ϕ2 ⋅ rand2 ⋅ gbestid − Xid

18

S Vid = 1 + exp −Vid
−1 19

Xid =
1 rand ≤ S Vid

0 rand > S Vid

20

where pbestid denotes individual optimal particle position, g
bestid denotes global optimal particle position, ϕ1 and ϕ2 are
the coefficient of particle learning from pbestid and gbestid, S
is the sigmoid function [28], and rand is a random number
between 0 and 1.

The rule in Equations (19) and (20) transforms the sum-
mation relationship between velocity and position into a
mapping relationship. This means the greater the speed,
the higher the probability of the position to take 1.

4.2. The Improved BPSO. In the BPSO algorithm, each itera-
tion of the particle is mainly to change its binary sequence.
The concept of probability of the bit changing is proposed
in Ref. [27], assuming that a bit of binary codes is 0; then,
the probability that it changes into 1 is S Vid . Identically,
if it is 1 originally, then the probability that it changes into
0 is 1 − S Vid . The probability of the bit changing is

p Δ = S Vid 1 − S Vid 21

Substitute Equation (19) into Equation (21):

p Δ =
1

1 + exp −Vid
−

1
1 + exp −Vid

2
22

According to Equation (21), the correlation between the
particle speed Vid and p Δ is shown as Figure 4.

The chart shows that the bit change rate is highest at 0
and lowest at 0.25. In the BPSO method, particle updates
depend on individual and global optimal positions. When
the particle velocity approaches 0, the likelihood of bit
changing is 0.25; therefore, it still has 25% chance of jump-
ing at other point. Thus, while the BPSO algorithm has a
great global search ability, it cannot converge to the global
optimal position. As the algorithm iterates, its randomness
increases and its local search ability decreases. Considering
the intrinsic logical relationship of the update rules in the
PSO algorithm and drawing on the probability-based

Target
speed

Target
distance

Mixed-valued
situational

information
representation

Target
height

Target
type

Target
RCS

Target situational information

Target entry
angle

Weights based on
AHP method

Optimization of the final weight

The decision matrix is multiplied
by optimal weights

Threat assessment results

Weights based on
information entropy

method 

Target factors weights

Multi-time weighted
dynamic decision

matrix

Figure 3: Flow of dynamic threat assessment.

8 International Journal of Aerospace Engineering



mapping rules in BPSO, here, we propose an improved
BPSO update strategy:

Vid = Vid + ϕ1 ⋅ rand1 ⋅ pbestid − Xid + ϕ2 ⋅ rand2 ⋅ gbestid − Xid

S Vid =
−1 +

2
1 + exp −Vid

, Vid > 0

1 −
2

1 + exp −Vid
, Vid ≤ 0

Xid = Xid + Trans Vid

23

where the Trans function is as follows:

Trans Vid =

1

0

Xid

if

if

if

rand ≤ S Vid &Vid > 0

rand ≤ S Vid &Vid ≤ 0

rand > S Vid

24

The difference between IBPSO and BPSO is the modifi-
cation of function Trans and S Vid . The correlation
between the particle speed Vid and p Δ after the change
of function is shown in Figures 5 and 6. The probability of
bit changing tends to 0 when the particle velocity tends to
0. Moreover, when the particle velocity is positive, the
binary bit value can only be changed to 1. Otherwise, the
binary bit value can only be changed to 0. This method
makes it easier for the particle swarm to approach the global
optimal particle and improves the local search ability of the
BPSO algorithm.

4.3. VNS Operator. The basic principle of the VNS algorithm
is to obtain a wider search range by changing the neighbor-
hood structure of multiple historical solutions within a local
range [29]. That is, in the case of the same initial solution,
the algorithm can expand a wider search space and has a
more superior ability to jump out of the “premature trap.”
Therefore, on the basis of IBPSO, the VNS operator is intro-
duced to further improve its local search ability. The specific
flow is shown in Figure 7.

The core of VNS is the design of neighborhood search
operation. In this section, three different neighborhood
operations are designed for MWMTA, as follows:

4.3.1. Swap Operation. Suppose that in the MWMTA prob-
lem, the individual optimal solution of the current particle
has been found by the IBPSO algorithm, and the values of
the first and second positions in the solution space are
swapped by the swap operation to obtain its neighborhood
solution by arbitrarily choosing two positions in the solution
space. The specific operation is shown in Figure 8.

4.3.2. Reverse Operation. Suppose the current particle indi-
vidual optimal solution has been obtained, arbitrarily choose
two positions in the solution space and reverse all values
between the first position and the first position by the rever-
sal operation to reverse the ordering. The specific operation
is shown in Figure 9.

4.3.3. Insert Operation. If the value of the former is smaller
than the latter, the value of the former is inserted after the
latter. Conversely, the value at the latter position is inserted
after the former to obtain its neighborhood solution. The
specific operation is shown in Figure 10.

4.4. Implementation of VNS-IBPSO. The pseudocode of
VNS-IBPSO is shown in Algorithm 1. The hyperparameters
that need to be set in advance include particle swarms, pop
size, maximum number of IBPSO iterations, maxiter, learn-
ing coefficient factors ϕ1 and ϕ2, and maximum number of
VNS iterations kmax.

The function Fit is the fitness function according to
Equation (3). The main steps of IBPSO are explained as
follows.

n

… … … …x11 x12 x1n x21 x22 x2n xq1

q × n

xq2 xqn

Figure 4: Binary codes of Xid .
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Step 1. Initialize the particle swarms including its popula-
tion, maximum number of iterations, speed range of particle,
and learning coefficient. Then, calculate the fitness value of
each particle and record pbestid and gbestid .

Step 2. Update the particle swarms according to Equation
(23) and Equation (24). Perform constraint processing on
particles that do not satisfy the constraint and calculate the
fitness value of new particle.

Step 3. Compare the updated fitness value of the particle
with the historical optimal fitness value of pbestid . If the for-
mer is better than the latter, update the pbestid and further
compare its value with the value of gbestid . After compari-
son, determine whether the current particle has been fully
updated; if the update is complete, go to Step 4; otherwise,
update the next particle.

Step 4. Denote k = 1, perform VNS operation on pbestid , and
obtain the neighborhood solution Xid″ . Perform constraint
processing on it and calculate updated fitness value.

Step 5. Compare the updated fitness value of the particle
with the historical optimal fitness value of pbestid . If the for-
mer is better than the latter, update the pbestid and further
compare its value with the value of gbestid . After compari-
son, determine whether the current particle has been fully
updated; if the update is complete, then continue to search
within the local search range of the next neighborhood solu-
tion until k = kmax.

Step 6. If the number of iterations reaches its maximum
value, then return gbestid and exit the algorithm. Otherwise,

Begin

End

Original
solution

Swap
operation Superior Reverse

operation
Insert

operation

Superior
solution

Stop criterion
satisfied

Superior Superior
No

Yes Yes Yes

Yes

No

No

No

Figure 7: Flow of the variable neighborhood search.
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Figure 8: Swap operation.

1 0 0 1 1 1 …

1 1 1 0 0 1 …

Figure 9: Reverse operation.

1 0 0 1 1 1 …

1 0 1 1 0 1 …

Figure 10: Insert operation.
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the iterative process of updating in the next round is started
again from the first particle.

4.5. Algorithm Complexity Analysis

4.5.1. Time Complexity Analysis. The time complexity serves
as a crucial metric for evaluating the computational effi-
ciency of an algorithm in algorithmic analysis. It character-
izes the growth pattern of an algorithm’s running time
with respect to increasing input size, which is contingent
upon the frequency of executing pivotal steps within the
algorithm.

The VNS-IBPSO algorithm mainly contains the follow-
ing steps: random initialization, fitness evaluation, fitness
ranking, neighborhood generation, neighborhood search
ranking, and updating the optimal particle position. Assum-
ing that the number of initialized populations is N , the spa-
tial dimension is d, the maximum number of iterations of
the IBPSO algorithm is Imax, the number of iterations of
the VNS operator is Kmax, the complexity of the random
initialization algorithm is O N ∗ d , the complexity of the
fitness evaluation algorithm is O N , the computational
cost of the updating position stage is O N ∗ d , the com-
plexity of the fitness sorting stage is O N ∗ log N , the com-
plexity of the neighborhood generation stage is O N2 , and

the complexity of the neighborhood search sorting stage is
O N2 . In summary, the time complexity of the method
can be estimated as follows: O N ∗ d + Imax ∗N 1 + log N +
d + kmax ∗ 2N2 .

4.5.2. Spatial Complexity Analysis. The spatial complexity of
the VNS-IBPSO algorithm consists of four main aspects: the
population space, the fitness value space, the neighborhood
search space, and the temporary variable space. In popula-
tion space, it needs to store the position information of each
particle in the population. Therefore, the space required for
the population is O N ∗ d . In fitness value space, it needs
to calculate the fitness value of each particle position and
record the fitness value of the optimal particle. The extra
space required for fitness values is O N . The space of the
set of solutions needed after each operation needs to be con-
sidered in neighborhood search space, which is O N ∗ d .
The extra space required for temporary variables is usually
of constant level and negligible. In summary, the spatial
complexity of the VNS-IBPSO algorithm is O 2N ∗ d +N .

5. Simulation Results and Analysis

The simulations are implemented in the MATLAB R2021a
software environment, and the main configuration of the

Procedure VNS-IBPSO
Initialize the hyperparameters
For each particle i

Generate the position Xid and velocity Vid
Calculate its fitness
Set pbestid = Xid

End for
gbestid = arg max

i
Fit Xid

While iter ≤Maxiter
For i= 1 to popsize
Update the velocity and position of particle i
Perform constraint processing on particles that do not satisfy the constraint
Calculate its new fitness
The new particle is Xid′

If Fit Xid′ > Fit pbestid
pbestid = Xid′

If Fit Xid′ > Fit gbestid
gbestid = Xid′
For k = 1 to kmax
Perform VNS operator on pbestid to get the local optimal value
The new particle is Xid″
If Fit Xid″ > Fit pbestid

pbestid = Xid″
If Fit Xid′ > Fit gbestid

gbestid = Xid″
iter = iter + 1
End while
Record and print process data
End procedure

Algorithm 1: The pseudocode of VNS-IBPSO.
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hardware environment is Win 10 laptop, Intel Core i9-
11900H, 2.50GHz CPU, and 16GB RAM.

5.1. Simulation of Target Threat Assessment. Assume that
after the target search and tracking identification phase,
the adversary UAV cluster consists of six UAVs, marked
as T = T1, T2, T3, T4, T5, T6 . Our is composed of four
UAVs, marked as T = Γ1, Γ2, Γ3, Γ4 . Take Γ1 as an exam-
ple; the target situational information of t1, t2, and t3

moments is obtained as multiattribute decision information
for target threat assessment, based on the interval-valued
intuitionistic fuzzy number for its representation, as shown
in Tables 3 and 4.

Table 5: Target situation index at t3.

Target
Evaluation indicators

Speed (m·s−1) Height (m) Distance (m) Entry angle (°) RCS (m2) Type

1 [0.39, 0.42] 345 3100 [0.43, 0.64] 0.16 [0.90, 0.95]

2 [0.39, 0.42] 350 2000 [0.37, 0.58] 0.15 [0.90, 0.95]

3 [0.38, 0.43] 320 3200 [0.27, 0.50] 0.13 [0.90, 0.95]

4 [0.36, 0.45] 415 3840 [0.15, 0.37] 0.04 [0.25, 0.8]

5 [0.39, 0.43] 305 3210 [0.32, 0.70] 0.08 [0.5, 0.75]

6 [0.37, 0.45] 435 4500 [0.16, 0.64] 0.05 [0.75, 0.90]

Table 6: The comprehensive threat assessment matrix of enemy
UAVs to our UAVs.

Targets
Target threat

1 2 3 4 5 6

1 0.488 0.426 0.400 0.278 0.342 0.414

2 0.254 0.203 0.252 0.601 0.275 0.482

3 0.195 0.341 0.235 0.371 0.164 0.335

4 0.614 0.109 0.631 0.484 0.292 0.195

Table 7: The damage probability of our weapons to the enemy
UAVs.

Weapons
Hit rate

1 2 3 4 5 6

1 0.29 0.92 0.23 0.89 0.14 0.72

2 0.49 0.82 0.41 0.10 0.51 0.37

3 0.33 0.46 0.39 0.90 0.43 0.30

4 0.12 0.38 0.52 0.26 0.71 0.41

5 0.22 0.15 0.44 0.29 0.21 0.13

6 0.61 0.95 0.76 0.32 0.24 0.19

7 0.44 0.56 0.16 0.22 0.88 0.17

8 0.81 0.42 0.35 0.43 0.77 0.90

Table 4: Target situation index at t2.

Target
Evaluation indicators

Speed (m·s−1) Height (m) Distance (m) Entry angle (°) RCS (m2) Type

1 [0.38, 0.41] 362 3270 [0.43, 0.64] 0.16 [0.90, 0.95]

2 [0.39, 0.42] 355 1805 [0.36, 0.57] 0.15 [0.90, 0.95]

3 [0.38, 0.43] 330 3005 [0.27, 0.50] 0.13 [0.90, 0.95]

4 [0.38, 0.43] 405 3705 [0.16, 0.36] 0.02 [0.25, 0.8]

5 [0.39, 0.43] 295 3200 [0.32, 0.70] 0.05 [0.5, 0.75]

6 [0.39, 0.43] 420 4800 [0.17, 0.63] 0.07 [0.75, 0.90]

Table 3: Target situation index at t1.

Target
Evaluation indicators

Speed (m·s−1) Height (m) Distance (m) Entry angle (°) RCS (m2) Type

1 [0.38, 0.41] 350 3320 [0.43, 0.64] 0.16 [0.90, 0.95]

2 [0.39, 0.42] 344 1720 [0.37, 0.58] 0.15 [0.90, 0.95]

3 [0.38, 0.43] 310 2955 [0.27, 0.50] 0.13 [0.90, 0.95]

4 [0.38, 0.43] 400 3600 [0.16, 0.36] 0.02 [0.25, 0.8]

5 [0.39, 0.43] 305 3200 [0.32, 0.70] 0.05 [0.5, 0.75]

6 [0.39, 0.43] 440 4800 [0.16, 0.64] 0.07 [0.75, 0.90]
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According to Equations (6)–(10), the time series weights
are calculated:

η t1 = 0 070, η t2 = 0 333, η t3 = 0 597

According to Equation (11) and Equation (12), the opti-
mal threat factor weights are obtained:

W = 0 174 0 033 0 126 0 326 0 208 0 133 T

According to Equation (15), multimoment weighted
dynamic decision matrix is determined:

R1 =

0 183 0 167 0 165 0 209 0 286 0 195

0 187 0 164 0 091 0 185 0 232 0 195

0 125 0 152 0 152 0 150 0 232 0 195

0 125 0 187 0 187 0 101 0 036 0 110

0 190 0 136 0 162 0 199 0 089 0 132

0 190 0 194 0 243 0 156 0 125 0 173

According to Equation (16), the combined threat value
of enemy UAVs to Γ1 is determined as

V1 = 0 488 0 426 0 400 0 278 0 342 0 414

The above threat assessment process is carried out for
each of our UAVs, and the comprehensive threat assessment
value of enemy UAVs to our UAVs is obtained. The specific
values are shown in Table 5.

5.2. Simulation of MWMTA. After completing the threat
assessment of the enemy UAV targets, the MWMTA phase
is entered. Assume that each UAV carries two weapons,
and the number of weapon resources to attack the same tar-
get is at most two. The target threat of six enemy UAVs to
our four UAVs and the damage probability of our eight
weapons to six enemy UAVs are given in Tables 6 and 7.
To ascertain the efficacy of the VNS-IBPSO algorithm and
do a comparative analysis of its performance, three widely
used algorithms are also tested. They are BPSO, IBPSO,
and hybrid genetic algorithms. The operational parameters
used by the above algorithms are given in Table 8. The curve
of the optimal fitness value, the expected value of operational

effectiveness, and the expected value of residual target threat
are given in Figures 11, 12, and 13.

It can be seen that the VNS-IBPSO algorithm is the first
to reach convergence among the four algorithms and
achieves optimal results on both fronts. After the 11th itera-
tions, the VNS-IBPSO algorithm calculates the optimal fit-
ness value is 1.6186, the optimal value of the residual

Table 8: Operational parameters of comparing algorithms.

Algorithm Main reference Parameters

BPSO [27] Population size = 150, iteration times = 200, learning coefficients factors ϕ1 = ϕ2 = 2

IBPSO [30] Population size = 150, iteration times = 200, learning coefficients factorsϕ1 = ϕ2 = 2

Hybrid
GA

[22]
Population size = 150, iteration times = 200, the weights ω1 and ω2 of target decision model are set to 0.6 and

0.4, penalty factor N = 150

VNS-
IBPSO

This paper
Population size = 150, iteration times = 200, learning coefficients ϕ1=0.8 and ϕ2=0.9, VNS operations times

kmax = 30, penalty factor M = 100
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target threat expectation is 1.2306, and the optimal value of
operational effectiveness expectation is 5.1104. The weapon
target assignment matrix obtained from the solution is

Uq×n =

0 0 0 0 0 1

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

1 0 0 0 0 0

The weapon target assignment scheme is as follows:
Weapon 8 attacks Target 1, Weapon 2 attacks Target 2,
Weapons 5 and 6 attack Target 3, Weapon 3 attacks Target
4, Weapon 7 attacks Target 5, and Weapons 1 and 4 attack
Target 6.

5.3. Comparative Analysis. To mitigate the inherent instabil-
ity and uncertainty of a single experiment, we conducted 100
experiments for each tested algorithm using Monte Carlo
simulation. In each experiment, the algorithms were run
for a maximum of 200 iterations. The variation curves of the
optimal fitness values are shown in Figures 14, 15, 16, and
17. To compare the results of each algorithm more clearly, a
boxplot is given as Figure 18. The statistical analysis of the
algorithm performance is obtained, as shown in Table 9.

The performance comparison of the four algorithms is
discussed as follows:

1. The optimal fitness values achieved by VNS-IBPSO
for addressing the MWMTA problem are the same
as those obtained by Hybrid GA and IBPSO algo-
rithms, indicating the validity of the solution results.
As shown in Table 9, the mean and variance of
VNS-IBPSO are substantially smaller than the other
three algorithms’, indicating that its solution is the
most stable.

2. Figures 14, 15, 16, 17, and 18 show that the VNS-
IBPSO algorithm has a much higher convergence rate

than the other three algorithms because it balances
global and local search ability during each round of
iteration, suppressing immature convergence and
improving solution effectiveness.

3. Because its solution quality and convergence rate are
better than the other three algorithms, VNS-IBPSO
can identify the optimal feasible solution in the quick-
est time when solving the same problem.

4. The VNS-IBPSO increases algorithmic complexity,
especially for problems with long calculation and
solution times. Within the context of this research,
the VNS-IBPSO algorithm has faster convergence,
higher solution efficiency, and better quality than the
other four algorithms.

6. Conclusion

In the context of multi-UAV cooperative air combat, this
paper examines target threat assessment and MWMTA
algorithm in complicated dynamic environments. Due to
target situational information ambiguity and incomplete-
ness, interval-valued intuitionistic fuzzy number representa-
tion is proposed for target threat assessment. Timing
weighting and threat factor weight optimization models
assess and rank UAV targets. The MWMTA challenge is
described as a multiobjective optimization problem to mini-
mize UAV threat and maximize weapon operating effective-
ness. To address the BPSO algorithm’s poor local search and
premature convergence, VNS operator and V-shaped update
scheme are used in a VNS-IBPSO algorithm. Simulation
results suggest that the proposed methods are acceptable
and effective.

This paper addresses the MWMTA problem in the pres-
ence of uncertainties regarding target posture. In practical
air combat scenarios, the task of target assignment encoun-
ters various uncertainties. Firstly, uncertainty arises from
the availability of weapon resources. Secondly, there is
uncertainty associated with the characteristics of the target.
The interplay between these uncertainties introduces addi-
tional complexities to the task of target allocation. Conse-
quently, aligning with combat style characteristics and
considering various uncertain factors, researching multi-
UAV target assignment methods tailored to actual combat
needs is a crucial developmental focus in this field.

Table 9: Algorithm performance statistics analysis.

BPSO IBPSO Hybrid GA VNS-IBPSO

Number of iterations of convergence 20 62 22 9

Single iteration time (s) 0.276 0.108 0.212 0.453

Convergence time (s) 5.52 6.86 4.66 4.08

Fitness interval [1.7598, 2.8563] [1.6186, 2.6649] [1.6186, 1.9763] [1.6186, 1.6316]

Fitness mean 3.0625 1.8025 1.6717 1.6251

Fitness variance 0.0659 0.0363 0.0047 0.0001

15International Journal of Aerospace Engineering



Data Availability Statement

Data will be made available on request to the authors.

Disclosure

This paper was previously published as a preprint version in
Authorea. It is available from https://www.authorea.com/
users/637597/articles/653825-multi-uav-cooperative-air-com
bat-target-assignment-method-based-on-vns-ibpso-algorithm-
in-complex-dynamic-environment.

Conflicts of Interest

The authors declare no conflicts of interest.

Funding

This work was supported by the National Natural Science
Foundation of China (grant no. 11774432).

References

[1] L. Fu, F. Xie, D. Wang, and G. Meng, “The overview for UAV
air-combat decision method,” in The 26th Chinese Control and
Decision Conference (2014 CCDC), pp. 3380–3384, Changsha,
China, 2014.

[2] J. S. McGrew, J. P. How, B. Williams, and N. Roy, “Air-combat
strategy using approximate dynamic programming,” Journal
of Guidance, Control, and Dynamics, vol. 33, no. 5, pp. 1641–
1654, 2010.

[3] W. Yunming, C. Si, P. Chengsheng, and C. Bo, “Measure of
invulnerability for command and control network based on
mission link,” Information Sciences, vol. 426, pp. 148–159,
2018.

[4] X. Wang, B. Li, X. Su et al., “Autonomous dispatch trajectory
planning on flight deck: a search-resampling-optimization
framework,” Engineering Applications of Artificial Intelligence,
vol. 119, p. 105792, 2023.

[5] X. Wang, Z. Deng, H. Peng et al., “Autonomous docking tra-
jectory optimization for unmanned surface vehicle: a hierar-
chical method,” Ocean Engineering, vol. 279, article 114156,
2023.

[6] R. Luo, S. Huang, Y. Zhao, and Y. Song, “Threat assessment
method of low altitude slow small (LSS) targets based on infor-
mation entropy and AHP,” Entropy, vol. 23, no. 10, p. 1292,
2021.

[7] E. Azimirad and J. Haddadnia, “Target threat assessment using
fuzzy sets theory,” International Journal of Advances in Intelli-
gent Informatics, vol. 1, no. 2, pp. 57–74, 2015.

[8] Y. Yin, R. Zhang, and Q. Su, “Threat assessment of aerial tar-
gets based on improved GRA-TOPSIS method and three-
way decisions,” Mathematical Biosciences and Engineering,
vol. 20, no. 7, pp. 13250–13266, 2023.

[9] Q. Changwen and H. You, “A method of threat assessment
using multiple attribute decision making,” in 6th International
Conference on Signal Processing, 2002, pp. 1091–1095, IEEE,
Beijing, China, 2002.

[10] Z. Qiang, H. Junhua, F. Jinfu, and L. An, “Air multi-target
threat assessment method based on improved GGIFSS,” Jour-

nal of Intelligent & Fuzzy Systems, vol. 36, no. 5, pp. 4127–
4139, 2019.

[11] Y. Wang, Y. Sun, J.-Y. Li, and S.-T. Xia, “Air defense
threat assessment based on dynamic Bayesian network,”
in 2012 International Conference on Systems and Informat-
ics (ICSAI2012), pp. 721–724, Yantai, China, 2012.

[12] Z. Kun, K. Weiren, L. Peipei, S. Jiao, L. Yu, and Z. Jie, “Assess-
ment and sequencing of air target threat based on intuitionistic
fuzzy entropy and dynamic VIKOR,” Journal of Systems Engi-
neering and Electronics, vol. 29, no. 2, pp. 305–310, 2018.

[13] J. Zhuang, Y. Chen, X. Zhao, M. Jia, and K. Feng, “A graph-
embedded subdomain adaptation approach for remaining use-
ful life prediction of industrial IoT systems,” IEEE Internet of
Things Journal, pp. 1–1, 2024.

[14] X. Yu, S. Wei, Y. Fang, J. Sheng, and L. Zhang, “Low-altitude
slow small target threat assessment algorithm by exploiting
sequential multifeature With long short-term memory,” IEEE
Sensors Journal, vol. 23, no. 18, pp. 21524–21533, 2023.

[15] Y. Cao, Y.-X. Kou, A. Xu, and Z.-F. Xi, “Target threat assess-
ment in air combat based on improved glowworm swarm
optimization and ELM neural network,” International Jour-
nal of Aerospace Engineering, vol. 2021, Article ID 4687167,
pp. 1–19, 2021.

[16] G. A. Mills-Tettey, A. Stentz, and M. B. Dias, “The dynamic
hungarian algorithm for the assignment problem with chang-
ing costs,” Tech. Rep. CMU-RI-TR-07-27, Robotics Institute,
Pittsburgh, PA, 2007.

[17] O. Kwon, K. Lee, D. Kang, and S. Park, “A branch-and-price
algorithm for a targeting problem,” Naval Research Logistics,
vol. 54, no. 7, pp. 732–741, 2007.

[18] A. G. Kline, D. K. Ahner, and B. J. Lunday, “Real-time heuristic
algorithms for the static weapon target assignment problem,”
Journal of Heuristics, vol. 25, no. 3, pp. 377–397, 2019.

[19] Z. Zhen, L. Wen, B. Wang, Z. Hu, and D. Zhang, “Improved
contract network protocol algorithm based cooperative target
allocation of heterogeneous UAV swarm,” Aerospace Science
and Technology, vol. 119, article 107054, 2021.

[20] D. Xing, Z. Zhen, and H. Gong, “Offense–defense confronta-
tion decision making for dynamic UAV swarm versus UAV
swarm,” Proceedings of the Institution of Mechanical Engineers,
Part G: Journal of Aerospace Engineering, vol. 233, no. 15,
pp. 5689–5702, 2019.

[21] Y. Song, Q. Xi, X. Xing, and B. Yang, “Multi-UAV cooperative
multi-target allocation method based on differential evolution-
ary algorithm,” in 2020 39th Chinese Control Conference
(CCC),, pp. 1655–1660, Shenyang, China, 2020.

[22] Y. Zhao, Y. Chen, Z. Zhen, and J. Jiang, “Multi-weapon multi-
target assignment based on hybrid genetic algorithm in uncer-
tain environment,” International Journal of Advanced Robotic
Systems, vol. 17, no. 2, article 172988142090592, 2020.

[23] X. Gao, L. Wang, X. Yu et al., “Conditional probability based
multi-objective cooperative task assignment for heterogeneous
UAVs,” Engineering Applications of Artificial Intelligence,
vol. 123, article 106404, 2023.

[24] X. Wang, Y. Wang, X. Su et al., “Deep reinforcement learning-
based air combat maneuver decision-making: literature review,
implementation tutorial and future direction,” Artificial Intel-
ligence Review, vol. 57, no. 1, 2024.

[25] Q. Xiao, “Modeling wind speed time series by Chebyshev poly-
nomial expansion method,” Energy Sources, Part A: Recovery,
Utilization, and Environmental Effects, pp. 1–13, 2021.

16 International Journal of Aerospace Engineering

https://www.authorea.com/users/637597/articles/653825-multi-uav-cooperative-air-combat-target-assignment-method-based-on-vns-ibpso-algorithm-in-complex-dynamic-environment
https://www.authorea.com/users/637597/articles/653825-multi-uav-cooperative-air-combat-target-assignment-method-based-on-vns-ibpso-algorithm-in-complex-dynamic-environment
https://www.authorea.com/users/637597/articles/653825-multi-uav-cooperative-air-combat-target-assignment-method-based-on-vns-ibpso-algorithm-in-complex-dynamic-environment
https://www.authorea.com/users/637597/articles/653825-multi-uav-cooperative-air-combat-target-assignment-method-based-on-vns-ibpso-algorithm-in-complex-dynamic-environment


[26] E. Pourabbas, C. Parretti, F. Rolli, and F. Pecoraro, “Entropy-
based assessment of nonfunctional requirements in axiomatic
design,” IEEE Access, vol. 9, pp. 156831–156845, 2021.

[27] J. Kennedy and R. C. Eberhart, “A discrete binary version of
the particle swarm algorithm,” in 1997 IEEE International
Conference on Systems, Man, and Cybernetics. Computational
Cybernetics and Simulation, pp. 4104–4108, Orlando, FL,
USA, 1997.

[28] M. T. Tommiska, “Efficient digital implementation of the sig-
moid function for reprogrammable logic,” IEE Proceedings-
Computers and Digital Techniques, vol. 150, no. 6, pp. 403–
411, 2003.

[29] P. Hansen, N. Mladenović, R. Todosijević, and S. Hanafi,
“Variable neighborhood search: basics and variants,” EURO
Journal on Computational Optimization, vol. 5, no. 3, pp. 423–
454, 2017.

[30] Z. Wu, S. Hu, Y. Luo, and X. Li, “Optimal distributed coop-
erative jamming resource allocation for multi-missile threat
scenario,” IET Radar, Sonar & Navigation, vol. 16, no. 1,
pp. 113–128, 2022.

17International Journal of Aerospace Engineering


	Multi-UAV Cooperative Air Combat Target Assignment Method Based on VNS-IBPSO in Complex Dynamic Environment
	1. Introduction
	2. Problem Description and Modeling
	2.1. Selection of Threat Assessment Factor for UAV Targets
	2.1.1. Speed Threat Factor
	2.1.2. Height Threat Factor
	2.1.3. Distance Threat Factor
	2.1.4. Angle Threat Factor
	2.1.5. Radar Cross Section (RCS) Threat Factor
	2.1.6. Type Threat Factor

	2.2. Description of Mixed Situational Information in Treat Assessment
	2.2.1. Interval Number Representation
	2.2.2. Intuitionistic Fuzzy Number Representation
	2.2.3. Classification Variable Representation
	2.2.4. Interval-Valued Intuitionistic Fuzzy Number Representation

	2.3. Construction of Multiweapon and Multitarget Allocation Model

	3. Interval-Valued Intuitionistic Fuzzy Multiattribute Decision-Making-Based Dynamic Threat Assessment
	3.1. Timing Weighting Model
	3.2. Threat Factor Weight Optimization Model
	3.3. Procedure of the Dynamic Threat Assessment

	4. VNS-BPSO Algorithm for MWMTA Problem
	4.1. Concept of BPSO
	4.2. The Improved BPSO
	4.3. VNS Operator
	4.3.1. Swap Operation
	4.3.2. Reverse Operation
	4.3.3. Insert Operation

	4.4. Implementation of VNS-IBPSO
	4.5. Algorithm Complexity Analysis
	4.5.1. Time Complexity Analysis
	4.5.2. Spatial Complexity Analysis


	5. Simulation Results and Analysis
	5.1. Simulation of Target Threat Assessment
	5.2. Simulation of MWMTA
	5.3. Comparative Analysis

	6. Conclusion
	Data Availability Statement
	Disclosure
	Conflicts of Interest
	Funding



