
Hindawi Publishing Corporation
International Journal of Antennas and Propagation
Volume 2012, Article ID 102495, 7 pages
doi:10.1155/2012/102495

Research Article

Evaluation of the Inductive Coupling between Equivalent
Emission Sources of Components
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The electromagnetic interference between electronic systems or between their components influences the overall performance. It
is important thus to model these interferences in order to optimize the position of the components of an electronic system. In
this paper, a methodology to construct the equivalent model of magnetic field sources is proposed. It is based on the multipole
expansion, and it represents the radiated emission of generic structures in a spherical reference frame. Experimental results for
different kinds of sources are presented illustrating our method.

1. Introduction

The development of semiconductor technology in the last
decades has greatly increased the use of power electronics
in various applications, such as computer power supplies,
voltage converters, electronic ballasts, and variable-speed
drives [1]. Recently, new applications of power electronics
have also appeared in the vehicle industry, such as electric
cars and airplanes. However, the commutation of the
switches (rectifiers, SCRs and triacs, BJTs, MOSFETs, and
IGBTs) generates high currents with high di/dt, and, thus,
a wide bandwidth of unwanted electromagnetic interference
(EMI) pollutes the electromagnetic environment [2].

The electromagnetic compatibility (EMC) is an engineer-
ing domain responsible to ensure that systems, equipment,
and devices can coexist satisfactorily in the same electro-
magnetic environment [3]. Electric cars, for instance, may
encounter malfunction in its electronic systems (ESP, ABS,
ALS, etc) if special care is not taken. The EMI between
the cables of the power electronics and the cables carrying
electronic signals, if they are too close to each other without
proper shielding, may prevent the correct operation of
certain systems [4].

There are not many reliable methods to predict the EMC
of a complex system in the design phase [5], and, thus, in
practice, the EMC design is still carried out by trial and error
[3] causing high development cost in case of malfunctioning
due to EMI, when the prototype is tested.

To ensure the compatibility of cables, equipment, and
systems at the design phase, EMC predictive tools must be
improved [5]. In order to achieve this requirement, fre-
quency domain simulations can be performed utilizing
equivalent models for the EMI sources. For instance, in
power electronics, the range of frequency analyzed can be
restricted from 10 kHz to 50 MHz, which comprises the
common operating range of semiconductor switches utilized
in power converters and frequency harmonics produced by
them.

The EMI is usually established in different ways, for zin-
stance, the near-field coupling between filter components [6–
9] or the coupling between wires [10]. Each coupling phe-
nomenon is thus best modeled by different mathematical
models.

The near-field coupling between filter components can
be well modeled by a methodology based on the multipole
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expansion, which represents the radiation emission in a
spherical reference system (r, θ,ϕ) [6–9], whereas the cou-
pling between wires is usually well modeled by the PEEC
method [10].

This paper presents a methodology to determine the
first two coefficients of the multipole expansion (Q10 and
Q20) of a generic magnetic field source, by a numerical or
an experimental approach, depending upon the complexity
of the source. The numerical approach is rather limited
to simple sources, but the experimental approach has no
limitations over the geometrical complexity of the source.

The experimental approach utilizes an antenna consist-
ing of four loops around the magnetic field source. The
mutual coupling between the loops must be taken into
account when modeling the source, in order to avoid a
significant error, which can be up to 40%.

Finally, the methodology is validated by comparing the
calculated and measured mutual inductance of a modeled
power transformer and a well-known loop.

2. Theory of Multipole Expansion

The multipole expansion can be used to represent electro-
magnetic fields in 3D, assuming that the field is computed
outside a sphere of a given radius that contains the equivalent
source. Figure 1 shows the reference sphere considered [11].

In the case of outgoing radiated emission sources, the
multipole expansion allows expressing the electric and mag-
netic fields as [12]
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where

(i) η =
√
μ/ε is the intrinsic impedance of the considered

environment;

(ii) QTE
nm and QTM

nm are the magnetic and electric coeffi-
cients, respectively. The coefficients QTE

nm describe the
strength of the transverse-electric (TE) components
of the radiated field, while coefficients QTM

nm describe
the strength of the transverse-magnetic (TM) com-
ponents. Each of them corresponds to the equivalent
radiated source. Thus, these coefficients are the
parameters to be identified that characterize the
equivalent model of the radiated field components;

(iii) F1nm and F2nm are the vector spherical harmonics
which are solutions of Maxwell’s equations in free
space, excluding the sphere that involves the sources;

(iv) n is the degree, and m is the azimuthal order.

In our study, only the magnetic source in the near-field
is considered. That is QTM

nm = 0, and it is assumed that the
electric field component is low when compared with the
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Figure 1: Reference adopted in the field computation.

magnetic field. Thus, the computation of the QTE
nm, wrote as

Qnm in (2), is carried out by the radial component Hr , in near
field [12, 13]:
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where Ynm are the normalized spherical harmonics given by
the following expression:

Ynm
(
θ,ϕ

) =
√

(2n + 1)(n−m)!
4π(n + m)!

Pm
n (cos θ)e jmϕ. (3)

One of the main properties of the multipole expansion
to be emphasized is the decrease of the terms of order n
with r−(n+1). This ensures a hierarchy between each order of
the decomposition. The larger is the distance to the source,
the fewer are the terms required to reconstruct the field.
Thus, the accuracy of the mutual inductance computation
is related to the choice of the maximum order description,
noted Nmax. It should be observed that there are (2n + 1)
components for each n order. For an order source equal
to Nmax, it will correspond to Nmax(Nmax + 2) components,
but due to the previously mentioned property (hierarchy
between each order), Nmax can be limited to 5, based on the
present experience of the authors.

3. Multipole Identification

3.1. Numerical Approach. This approach consists in identi-
fying the source utilizing the software Flux2D based on the
finite element method. The software calculates the radial
component of the magnetic induction on a measurement
sphere SM , which contains the source, as shown in Figure 2.
The computation of the Qnm coefficients is achieved by
integrating these components on SM .
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Figure 2: Source modeling Flux2D.

The coefficients of the multipole expansion can be
deduced from (2), based on the following expression:
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)
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where Hr corresponds to the radial component of the
magnetic field on the sphere SM of a radius of r0. This result
is due to the orthogonal property of Ynm base:

�
SM
YnmYn′m′dS =

{
r2

0 , if (n,m) = (n′,m′),

0, otherwise.
(5)

The order of the approximation is not limited for this
identification method. However, the computational time
increases with the order. Moreover, the discretization of the
sphere surface must respect the Shannon theorem in order
to avoid spatial aliasing. For instance, with n = 1, the axes
theta and phi require at least two points each, whereas, for
n = 2, four points are required. For n = Nmax, 2Nmax points
are necessary for each axis.

The numerical approach can be excessively time consum-
ing or require too much memory, if the modeled source is
geometrically complex. The experimental approach is thus
an alternative, and it is suitable for practically any source.

3.2. Experimental Approach. This approach consists in iden-
tifying the source utilizing an antenna and a measurement
equipment. Figure 3 shows the prototype antenna with its
loop sensors corresponding to the dipole (2 loops for the
dipole component Q10), the quadrupole (2 loops for the
quadrupole Q20), and the loop from the standard CISPR16-
1. All mentioned loops were built initially only in the z-
direction. The complete measurement setup is surrounded
by a sphere of radius rM equal to 0.225 m. The short-circuited
loops were proposed as sensors with a flat response within
the 9 kHz–30 MHz frequency range. Although the use of
short-circuited loops corresponds to high values of currents
and thus high sensitivity, the magnetic coupling between
them imposes some constraints to the measurement and
calibration methodology.

Current
probe

Z-dipole
source

Standard

antenna
Q20 1 loop

antenna
Q20 2 loop

antenna
Q10 1 loop

antenna
Q10 2 loop

loop antenna

Figure 3: Prototype antenna.

Based on the multipole expansion of the magnetic
field, the relationship between the fluxes across the surface
delimited by the “sensors set” and the Qnm components of
the expansion can be directly obtained [14, 15]. The quasi-
static approximation was adopted, and, for the maximum
frequency of 30 MHz, it is valid for a rM ≤ 1.7 m. In our case,
assuming the expansion limited to the second order and in
the z-direction (m = 0), we have [15]

Q10 = 108rM
32π

(
ϕ101 + ϕ102

)
,

Q20 = 6125∗ 104r2
M

3π
√

21

(
ϕ201 − ϕ202

)
,

(6)

where ϕnm corresponds to the flux through the loop antenna
given by Figure 3. Thus, for the loop configuration given
by the same figure, the fluxes through the sensors due
to a multipole source will be determined based on the
current measured on each loop, after taking into account
the magnetic coupling effects of the loops and applying the
corresponding antenna factors (AFnm) for i = 1, 2:

ϕ10 i = AF10i10 i,

ϕ20 i = AF20i20 i.
(7)

The correction of the magnetic coupling between the
loop sensors, which can be considered as a postprocessing in
the identification procedure, is treated as follows: the total
concatenated magnetic flux in each loop can be expressed
as the sum of the flux produced by the multipole source
(desired) and the fluxes produced by all the other antenna
loops (undesired). The measured current in loop n is
denoted as i(n)

MES and can be obtained by the following expres-
sion:

i(n)
MES = i(n)

DUT −
5∑

k= 1
k /= n

jωMkni
(k)
MES

rn + jωLn
, (8)

where rn is the resistance and Ln is the self-inductance of the
loop n, Mkn is the mutual inductance between loops k and n,
ω is the angular frequency, and i(n)

DUT is the current in loop n
due to the multipole source only.
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Thus, considering now the measured currents for all the

five loops, one can write (8) in matrix form, solved for i(n)
DUT:

[iDUT]n, 1 = [M]n,n[iMES]n, 1. (9)

The elements of [M]n,n are unitary in the diagonal and
given by ( jωMkn/(rn+ jωLn)) otherwise. The coefficients Q10

and Q20 can then be determined by (6), and (7) utilizing
the set of currents in (9). This procedure was validated
numerically and experimentally, and the results are presented
in the following section.

4. Multipole Identification Results

A vector network analyzer (VNA) and large bandwidth
current probes were utilized to measure the current ratio of
each sensor loop relative to the source, in dB. The frequency
range of all experiments was from 20 kHz to 10 MHz.

Three different magnetic field sources were studied: a
dipole, a quadrupole, and a generic power transformer. The
accuracy of the methodology can be easily verified for the
first two sources by utilizing the following expressions:

Dipole: Q10 = πr2i; Q20 = 0,

Quadrupole: Q10 = 0; Q20 = πr2h0i,
(10)

where r is the radius of the loop and h0 is the distance
between the loops in the quadrupole source. Moreover, for
these 2 sources, it is only necessary to present the results for
the upper (or lower) loop antennas due to the symmetry on
the z-axis with respect to the origin.

The accuracy of the coefficients Q10 and Q20 of the power
transformer can be verified indirectly by calculating [16] and
measuring its mutual inductance with a known circular loop
and then comparing these results. The VNA and the probes
are again used for the measurement.

4.1. Dipole. The measured current ratios loop/source for
a dipole of radius 5 cm aligned in the z-axis for the loop
sensors Q10 1 (loop 2) and Q20 1 (loop 1) are presented in
Figures 4 and 5, respectively. For each figure, there are 6
curves, in which the 3 upper ones correspond to the lower
ones after applying the postprocessing described previously.

Supposing a current of 1 Arms in this dipole and the
symmetry in the z-axis and utilizing the plots in Figures 4
and 5, we can determine the 4 currents of (7) and finally the
components Q10 and Q20 with (6).

4.2. Quadrupole. The measured current ratios for a quadru-
pole of parameters r and h0 both equal to 5 cm are presented
in Figures 6 and 7 in a similar fashion done for the dipole.

4.3. Power Transformer. The measured current ratios loop/
source for a power transformer rated 220 V—20 A are
presented in Figure 8. The experiment was conducted in a
similar manner to the previous ones, although there is no
longer symmetry in the z-axis.

The components of the multipole expansion of the
dipole, the quadrupole, and the transformer and the errors of
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Figure 4: Dipole dB current ratio, sensor Q10 1 (loop 2).
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Figure 5: Dipole dB current ratio, sensor Q20 1 (loop 1).

Table 1: Components of the multipole expansion.

Component Q10 (m·Am2) Q20 (m·Am3) Error (%)

Dipole 7.3 0 7.6 (Q10)

Quadrupole 0 0.63 20 (Q20)

Transformer 66.5 0.82 —

the first two sources relatively to (10) are presented in Table 1.
The frequency considered for these results was 200 kHz,
located on the flat part of the measured curves.
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Figure 6: Quadrupole dB current ratio, sensor Q10 1 (loop 2).
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Figure 7: Quadrupole dB current ratio, sensor Q20 1 (loop 1).

It should be noted that there is a −4 dB and −3.5 dB
difference between the current ratios in Figure 4 and in
Figure 5, respectively. Therefore, the effect of the mutual
inductances in the antenna would correspond to a difference
of 37% and 33% in the calculation of Q10 and Q20,
respectively, for the dipole.

The mutual inductance between this transformer and a
loop can be determined by the following expression:

M12i1 = L2i2, (11)

where M12 is the mutual inductance, i1 the current in the
transformer, L2 the self-inductance of the loop, and i2 the
current in the loop.
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Figure 9: Mutual inductance measurement.

This was done by measuring the ratio of currents using
the VNA and applying an analytical formula for the self-
inductance of a loop [16] as shown in (11). Figure 9 shows
the measurement setup for this case.

5. Computing the Mutual Inductance

Using the equivalent radiated field source model, we can
determine the coupling between two equivalent sources
through the computation of the mutual inductance.
Figure 10 illustrates the configurations regarding the repre-
sentation of two radiating sources (models 1 and 2).

The computation of the mutual impedance between
source 1 and source 2 can be expressed in terms of the
electrical field E and magnetic field H for each source [12]:

Z12 = − 1
i1i2

�
Σ1

(E1 ×H2 − E2 ×H1). (12)
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Figure 10: Representation of two radiating sources.

When the spheres that contain the sources do not
intersect each other, the mutual impedance can be expressed
according to the coefficients of the multipole expansion:

Z12 = 1
i1i2

1
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The expression of the mutual inductance is
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where i1 and i2 are, respectively, the current that flows in
sources 1 and 2, and k is the phase constant.

The coefficients associated to the magnetic transverse
modes of the multipole expansion of sources 1 and 2 must
be expressed in the same reference: a translation is required,
for example, the coefficients of the source 2 can be expressed
in the reference of the source 1.

The rotation of the coefficients Qnm is expressed by using
Euler angles. It should be mentioned that only two angles are
necessary because of the spherical symmetry. The details of
the methodology for determining the rotation matrices for
complex or real coefficients Qnm, are presented in [17, 18].
The translation is based on the “Addition Theorem for Vector
Spherical Harmonics” [18].

The addition theorem links the harmonics evaluated on
r to those evaluated on r′, where r is measured from the
origin of the second spherical basis, whose axes are parallel
to the first as shown in Figure 11. The origin of the second
spherical basis is located in the first by r′′. These 3 vectors are
connected by the relation r = r′ + r′′.

The expression of the translation coefficients Qsnm are:

QTE
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∞∑

n=1

n∑

m=−n
QTE

mn An′,m′,n,m + QTM
nm Bn′,m′,n,m,

QTM
n′m′ =

∞∑

n= 1

n∑

m=−n
QTM

nm An′,m′,n,m + QTE
mn Bn′,m′,n,m.

(15)

The coefficients An′,m′,n,m and Bn′,m′,n,m involve computing
of the Wigner 3 j symbol according to quantum mechanics
[19].
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Figure 11: Translation of a spherical basis.

Table 2: Comparison between mutual inductances.

Height (cm) Measured (nH) Estimated (nH) Error (%)

29.3 3.65 3.17 13

35.8 1.98 1.92 3

Utilizing the Q10 and Q20 of the transformer, it is also
possible to estimate its mutual inductance with the loop in
a simpler manner. This is achieved by using an analytical
expression for the mutual inductance between 2 loops [16],
by considering that Q10 is represented by a loop and Q20 is
represented by 2 loops, both in the z axis. These results are
presented in Table 2.

6. Conclusion

The presented methodology enables the evaluation of
coupling parameters of components by using equivalent
emission sources. This method is composed by two steps. At
first, the equivalent sources which represent the radiated field
component using the multipole expansion representation
are identified. It can be obtained by a numerical or an
experimental approach. Both of them were discussed in
the paper. Secondly, the equivalent sources will be used to
compute the coupling between them, which was represented
by a mutual inductance as a function of the distance that
separates them.

Other kind of multipole expansions like the cylindrical
one can be more suitable for modeling components such as
tracks or cables, and it will also be considered. For example,
in the case of the coupling between a track and a component,
the spherical harmonics method is not very adequate and
other harmonics method should be used.

The method proposed could be helpful when used
together with other circuit simulator methods in the evalua-
tion of equivalent circuit of power electronics devices (R-L-
M-C). This will give us a considerable gain of memory space
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concerning the full model configuration used in EMC filter
numerical simulations.
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