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This work presents an overview of available uniform asymptotic physical optics solutions for evaluating the plane wave diffraction
by some canonical geometries of large interest: dielectric slabs and wedges. Such solutions are based on a physical optics
approximation of the electric and magnetic equivalent surface currents in the involved scattering integrals. The resulting diffraction
coefficients are expressed in terms of the geometrical optics response of the considered structure and the standard transition
function of the Uniform Geometrical Theory of Diffraction. Numerical tests and comparisons make evident the effectiveness and
reliability of the presented solutions.

1. Introduction

As well-known, the ability to describe and solve electro-
magnetic scattering problems is highly valued in many areas
such as radio planning, remote sensing for monitoring and
surveillance of ground, structures and infrastructures, and
through-wall building imaging. Numerical techniques repre-
sent a possible answer, but they have an inherent drawback:
the computation becomes very intensive (if not unmanage-
able) at high frequencies, where asymptotic methods based
on ray-tracing work more efficiently. In this framework,
the Geometrical Theory of Diffraction (GTD) [1] and its
uniform version (UTD) [2] have received considerable atten-
tion because of their peculiarities. When using GTD or
UTD, the first step is to resolve the original problem into
smaller and simpler components, each related to a canonical
geometry, so that the total solution is a superposition of the
contributions from each canonical problem. In other words,
such ray-based methods allow one to solve a large number of
real scattering problems by using the solutions of a relatively
small number of simple problems. In addition, they are easy
to apply, provide physical insight into the radiation and scat-
tering mechanisms arising from the various parts of the

structure and can be combined with numerically rigorous
techniques to obtain hybrid methods.

This paper presents a review of Uniform Asymptotic
Physical Optics (UAPO) solutions for diffraction problems
concerning some typical canonical structures: dielectric slabs
(individually considered or forming junctions) and wedges.
Examples of application are relevant to (a) through-wall
building imaging [3], where the structure can be decom-
posed into plates forming junctions and corners with other
plates and to (b) radar imaging for ground observation,
where the presence of ruptures caused by natural disasters
can be represented in the form of a wedge-shaped fracture
[4].

The starting point for obtaining a UAPO solution is that
of considering the scattering integral and using a PO approx-
imation of the electric and magnetic surface currents related
to the boundary of the object. A further useful approxima-
tion and a uniform asymptotic evaluation of the resulting
integrals allow one to obtain the diffraction coefficients in the
UTD framework. They result to be expressed in terms of the
reflection and transmission coefficients of the structure and
the standard transition function of UTD. Note that also the
heuristic solutions [5–7] have such characteristics, but they
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are not derived by means of a rigorous analytical approach.
Moreover, the time domain UAPO diffraction coefficients
can be determined according to [8] by taking advantage
of the UTD-like formulation of their frequency domain
counterparts. In light of the above statements, the UAPO
solutions have the same effectiveness and ease of handling
of those derived in the UTD context and, in addition, they
have the inherent advantage of providing the diffracted field
from the knowledge of the geometrical optics (GO) field as
the heuristic solutions.

The remainder of this paper is organized as follows.
Section 2 is devoted to the plane wave diffraction from the
edge of a half plane used to model a truncated thin dielectric
slab with finite conductivity. The PO surface currents in the
scattering integral are equivalent sources originated by the
discontinuities of the tangential GO field components across
the layer. The UAPO solution presented in Section 2 can be
extended to junctions by taking into account the diffraction
contributions of the slabs separately. Of course, this useful
feature is due to the linearity of the PO scattering integral. A
lossless dielectric wedge with obtuse apex angle and arbitrary
permittivity is considered in Section 3. Two separate plane
wave diffraction problems relevant to the dielectric region
and the surrounding space are tackled and solved by using
equivalent PO surface currents lying on the internal and
external faces of the wedge. Concluding remarks and future
investigations are highlighted in Section 4.

2. Dielectric Slabs

The diffraction problem considered in this Section refers to a
linearly polarised plane wave impinging on a thin dielectric
slab characterised by thickness d, relative complex permit-
tivity εr , and relative permeability μr = 1 and represent-
ed by a lossy penetrable half plane surrounded by free
space (see Figure 1). The angles β′ and φ′ fix the incidence
direction: the first is a measure of the skewness with respect
to the edge (β′ = 90◦ corresponds to the normal incidence),
and the latter gives the aperture of the edge-fixed plane of
incidence with respect to the illuminated face (φ′ = 0 cor-
responds to the grazing incidence). The observation direc-
tion is specified by the angles β and φ. The e jωt time
dependence is assumed and suppressed in the following.

The field scattered at the observation point P can be
evaluated by using a PO approximation of the electric (JPO

s )

and magnetic (JPO
ms

) surface currents involved in the well-
known integral:

Es = − jk0

∫∫
S

[(
I − R̂R̂

)
ζ0J

PO
s + JPO

ms × R̂
]
G(r, r′)dS,

(1)

where ζ0 is the free-space impedance, k0 is the free-space
propagation constant, r = xx̂ + y ŷ + zẑ = ρ + zẑ, and
r′ = x′x̂ + z′ẑ = ρ′ + z′ẑ are the position vectors of P and
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Figure 1: Diffraction by a thin dielectric slab.

the source point, respectively, R̂ is the unit vector from the
source point to P, I is the 3× 3 identity matrix, and

G(r, r′) = e− jk0|r−r′|

4π
∣∣r − r′∣∣ =

e− jk0

√
(x−x′)2+y2+(z−z′)2

4π
√

(x − x′)2 + y2 + (z − z′)2

= e− jk0

√
|ρ−ρ′|2+(z−z′)2

4π

√∣∣∣ρ − ρ′
∣∣∣2

+ (z − z′)2

(2)

is the three-dimensional Green’s function. To evaluate the
edge diffraction confined to the Keller’s cone (β = β′), it
is possible to approximate R̂ by the unit vector ŝ in the dif-
fraction direction, that is, R̂ ∼= ŝ = sinβ′ cosφx̂ +
sinβ′ sinφŷ + cosβ′ẑ. Accordingly, it results that

Es = − jk0

4π

[(
I − ŝŝ

)
ζ0J

∗
s + J∗ms × ŝ

]
∫∞

0

∫∞
−∞

e jk0(x′ sinβ′ cosφ′−z′ cosβ′)

e− jk0

√
|ρ−ρ′|2+(z−z′)2

√∣∣∣ρ− ρ′
∣∣∣2

+ (z − z′)2
dz′dx′

=
[(
I − ŝŝ

)
ζ0J

∗
s + J∗ms × ŝ

]
Is.

(3)

The expressions of the PO surface currents are obtained
in terms of the incident electric field Ei by assuming such cur-
rents as equivalent sources originated by the discontinuities
of the tangential GO field components across the slab, and
then

ζ0J
∗
s = (1−R⊥−T⊥)Ei⊥ cos θiê⊥+

(
1+R‖−T‖

)
Ei‖
(
ŷ×ê⊥

)
,

J∗ms =
(
1−R‖−T‖

)
Ei‖ cos θiê⊥−(1 + R⊥−T⊥)Ei⊥

(
ŷ×ê⊥

)
,

(4)

where θi is the standard incidence angle and ê⊥ is the unit
vector perpendicular to the plane of incidence. The reflection
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(R) and transmission (T) coefficients for the parallel (‖) and
perpendicular (⊥) polarisations are given by [9]:

R‖,⊥ =
R‖,⊥

[
1− e− j2βeqd/ cos θte−2αeqde j2k0d sin θi tan θt

]

1−
(
R‖,⊥

)2
e− j2βeqd/ cos θte−2αeqde j2k0d sin θi tan θt

, (5)

T‖,⊥ =

[
1−

(
R‖,⊥

)2
]

e− jβeqd/ cos θte−αeqde jk0d cos(θi−θt)/ cos θt

1−
(
R‖,⊥

)2
e− j2βeqd/ cos θte−2αeqde j2k0d sin θi tan θt

,

(6)

in which

R‖ = εr cos θi − √εr − sin2θi

εr cos θi +
√
εr − sin2θi

,

R⊥ = cos θi − √εr − sin2θi

cos θi +
√
εr − sin2θi

.

(7)

Formulas (5) and (6) account for the propagation of a
nonuniform wave in the layer as considered in [10]. The
terms βeq and αeq are the equivalent phase and attenuation
factors and θt is the angle (labelled ψ2 in [10]) between
the direction of propagation in the layer and the direction
normal to the surface (direction of attenuation).

According to (4), (3) can be so rewritten in matrix form:

Es =
⎛
⎜⎝
Esβ

Esφ

⎞
⎟⎠ =M

1

(
Ei‖
Ei⊥

)
Is=M

1
M

0

(
Eiβ′
Eiφ′

)
Is=M

(
Eiβ′
Eiφ′

)
Is. (8)

The matrices M
0

and M
1

involved in the above expression
are reported in the appendix and account for the GO
response (i.e., reflection and transmission) of the structure
and for changes of local coordinate systems. After analytical

integrations and representations, the integral Is can be recast
as:

Is = e− jk0z cosβ′

2 sinβ′
1

2π j

∫
C

e− jk0ρ sinβ′ cos(α∓φ)

cosα + cosφ′
dα, (9)

where C is the integration path in the complex α-plane
shown in Figure 2. Then, the Steepest Descent Method is
applied to Is, and a uniform asymptotic evaluation of the
integral along the steepest descent path furnishes the diffrac-
tion term Id. As a consequence, the diffracted field Ed can be
so expressed:

Ed =
⎛
⎜⎝
Edβ

Edφ

⎞
⎟⎠ =M

(
Eiβ′
Eiφ′

)
Id = D

(
Eiβ′
Eiφ′

)
e− jk0s

√
s

, (10)

where s is the distance along the diffraction direction and the
2× 2 diffraction matrix D is

D = 1

2
√

2πk0

e− jπ/4

sin2β′
(
cosφ + cosφ′

)

Ft

(
2k0s sin2β′cos2

(
φ ± φ′

2

))
M,

(11)

in which Ft is the UTD transition function [2] and + (−) sign
applies when 0 < φ < π (π < φ < 2π).

A set of representative results is reported. They concern
a slab characterised by εr = 4 − j0.23 and d = 0.15λ0 (λ0 is
the free-space wavelength) when a plane wave impinges on
it and the observation point moves on a circular path with
ρ = 7λ0. Figure 3 shows the β-component magnitudes of
the GO field and the UAPO diffracted field when Eiβ′ = 1,

Eiφ′ = 0 and β′ = 45◦, φ′ = 60◦. As expected, the GO pat-
tern presents two discontinuities in correspondence of the
incidence and reflection shadow boundaries at φ = 240◦

and φ = 120◦, respectively. The UAPO field contribution is
not negligible near such boundaries and guarantees the con-
tinuity of the total field across them as shown in Figure 4.
The case of normal incidence is considered in the following
tests as a useful scenario for comparing the UAPO-based
results with those provided by the RF module of COMSOL
MULTIPHYSICS [11]. As can be seen in Figures 5 and
6, an excellent agreement is attained, thus confirming the
effectiveness of the UAPO solution.

Accounting for the linearity of the PO radiation integral,
the UAPO-based approach for the diffraction problem
involving one truncated dielectric slab can be extended to
junctions by considering the diffraction contributions of the
layers separately. Accordingly, in the case of junctions formed
by two slabs, it results:

Es = − jk0

∫∫
S1+S2

[(
I − R̂R̂

)
ζ0J

PO
s + JPO

ms × R̂
]
G(r, r′)dS

= − jk0

∫∫
S1

[(
I − R̂R̂

)
ζ0J

PO
s1

+ JPO
ms1
× R̂

]
G(r, r′)dS1

− jk0

∫
S2

[(
I − R̂R̂

)
ζ0J

PO
s2

+ JPO
ms2
× R̂

]
G(r, r′)dS2

= Es1 + Es2
(12)



4 International Journal of Antennas and Propagation
Fi

el
d 

am
pl

it
u

de

GO field
UAPO diffracted field

1.2

1

0.8

0.6

0.4

0.2

0
0 60 120 180 240 300 360

φ (degrees)

Figure 3: Dielectric slab. The β-component magnitudes of the GO
field and the UAPO diffracted field at ρ = 7λ0 when εr = 4− j0.23,
d = 0.15λ0, β′ = 45◦, φ′ = 60◦ and Eiβ′ = 1, Eiφ′ = 0.
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Figure 4: Dielectric slab. The β-component magnitude of the total
field at ρ = 7λ0 when εr = 4− j0.23, d = 0.15λ0, β′ = 45◦, φ′ = 60◦

and Eiβ′ = 1, Eiφ′ = 0.

and thenD = D
1

+D
2
, withD

1
given by (11). The diffraction

matrix D
2

related to the wave phenomenon originated by
the second layer forming the junction can be determined by
taking into account that if the external angle of the junction
is nπ, a (n−1)π rotation of the edge-fixed coordinate system
must be considered.

3. Dielectric Wedges

A two-dimensional scattering scenario involving a lossless
nonmagnetic dielectric wedge with obtuse apex angle α =
(2− n)π is sketched in Figure 7. Since β′ = 90◦, the incident
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Figure 5: Dielectric slab. The relative magnitude of the total field
β-component at ρ = 7λ0 when εr = 4− j0.23, d = 0.15λ0, β′ = 90◦,
φ′ = 30◦ and Eiβ′ = 1, Eiφ′ = 0.
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Figure 6: Dielectric slab. The relative magnitude of the total field
β-component at ρ = 7λ0 when εr = 4− j0.23, d = 0.15λ0, β′ = 90◦,
φ′ = 140◦ and Eiβ′ = 1, Eiφ′ = 0.

electric field is resolved in two orthogonal components
directed along ẑ and φ̂′.

Note that the two-dimensional diffraction problem
involving a right-angled dielectric wedge has been tackled
and solved by the authors in [12]. In addition, a UAPO solu-
tion for the three-dimensional diffraction problem originat-
ed by a nonpenetrable arbitrary-angled wedge with finite
conductivity can be found in [13].



International Journal of Antennas and Propagation 5

α

x

y

S0

φ

P(ρ,φ)

Sn

ρ

φ

Figure 7: Diffraction by an obtuse-angled dielectric wedge.

The methodology adopted for penetrable wedges identi-
fies the inner region (dielectric material) and the surround-
ing space as separate observation domains and the scattered
electric field in each region as originated by electric and
magnetic equivalent PO surface currents located on the
inner/outer faces of S0 and Sn. According to [12, 14], the
UAPO diffracted field can be so expressed:

⎛
⎜⎝
Edz

Edφ

⎞
⎟⎠ =

(
Dzz 0
0 Dφφ′

)⎛⎜⎝
Eiz

Eiφ′

⎞
⎟⎠e− jkρ√

ρ

=
(
Dzz0 +Dzzn 0

0 Dφφ′0 +Dφφ′n

)⎛⎜⎝
Eiz

Eiφ′

⎞
⎟⎠e− jkρ√

ρ
.

(13)

The analytical expressions of the diffraction matrix elements
in (13) depend on the incidence direction and the geometric
and electric characteristics of the wedge. In the following,
the terms R0,n and T0,n denote the standard reflection and
transmission coefficients [10] related to S0 and Sn. The inci-
dence direction defines two cases: (1) both the faces of the
wedge are illuminated; (2) only one face is illuminated.

Case 1 ((n − 1)π < φ′ < π). Both the faces of the wedge
are illuminated by the impinging wave, and the GO field
presents two reflection boundaries in the space surrounding
the wedge and two transmission boundaries in the dielectric
material.

(i) Outer region:

Dout
zz0
= [(1− R0⊥) sinφ′ − (1 + R0⊥) sinφ

]
hout

0 ,

Dout
φφ′0

= [−(1− R0‖
)

sinφ′ +
(
1 + R0‖

)
sinφ

]
hout

0 ,

hout
0 = e− jπ/4

2
√

2πk0

Ft
(
2k0ρcos2

((
φ ± φ′)/2))

cosφ + cosφ′
,

(14)

where +(−) sign applies when 0 < φ < π (π < φ <
nπ), and

Dout
zzn =

[
(1−Rn⊥) sin

(
nπ−φ′)−(1+Rn⊥) sin

(
nπ−φ)]hout

n ,

Dout
φφ′n

=
[
−
(

1−Rn‖
)

sin
(
nπ−φ′)+

(
1+Rn‖

)
sin
(
nπ−φ)]

× hout
n ,

hout
n = e− jπ/4

2
√

2πk0

Ft
(
2k0ρ cos2

(((
nπ − φ)± (nπ − φ′))/2))

cos
(
nπ − φ) + cos

(
nπ − φ′) ,

(15)

in which the sign +(−) holds for (n − 1)π < φ <
nπ(0 < φ < (n− 1)π).

(ii) Inner region:

Din
zz0
=
[√

εr sinφ −
√
εr − cos2φ′

]
T0⊥hin

0 ,

Dout
φφ′0

= −
[√

εr sinφ −
√
εr − cos2φ′

]
T0‖hin

0 ,

hin
0 =

e− jπ/4

2
√

2πk

Ft
(
2kρcos2

((
φ − cos−1

(
cosφ′/

√
εr
))
/2
))

√
εr cosφ + cosφ′

,

Din
zzn =

[√
εr sin

(
nπ−φ)−

√
εr−cos2

(
nπ−φ′)

]
Tn⊥hin

n ,

Din
φφ′n

=−
[√

εr sin
(
nπ−φ)−

√
εr−cos2

(
nπ−φ′)

]
Tn‖hin

n ,

(16)

hin
n =

e− jπ/4

2
√

2πk

Ft
(
2kρcos2

((
nπ−φ−cos−1

(
cos
(
nπ−φ′)/√εr))/2))√

εr cos
(
nπ − φ) + cos

(
nπ − φ′) .

(17)

Case 2 (0 < φ′ < (n − 1)π). Only the external face of S0

is illuminated by the incident wave, and two different cases
must be separately accounted for.

Subcase 1 (0 < φ′ < (n − 1)π and cosφ′ <
√
εr| cos(nπ)|).

The field transmitted through S0 does not illuminate the
internal face of Sn and therefore Dzzn = Dφφ′n = 0. Shadow
boundaries related to the incident and reflected fields appear
in the external region, and only a transmission shadow
boundary is present in the wedge. The expressions of Dzz0

and Dφφ′0 are equal to those reported for the Case 1.

Subcase 2 (0 < φ′ < (n − 1)π and cosφ′ >
√
εr| cos(nπ)|).

The field transmitted through S0 penetrates in the dielectric
region and illuminates the internal face of Sn. It is sub-
sequently transmitted through Sn with coefficient T0n and
reflected with coefficient R0n. Accordingly, shadow bound-
aries related so the incident, reflected, and transmitted-trans-
mitted fields are in the space surrounding the wedge, whereas
only the shadow boundary associated to the transmitted-
reflected field exists in the dielectric material.
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Figure 8: Dielectric wedge. The relative magnitude of the total field
z-component at ρ = 5λ0 when α = 110◦, εr = 1.25, and φ′ = 160◦.

(i) Outer region:

Dout
zzn = −

[
cos θtn + sin

(
nπ − φ)]T0⊥T0n⊥hout

n , (18)

Dout
φφ′n

= [cos θtn + sin
(
nπ − φ)]T0‖T0n‖hout

n , (19)

hout
n = e− jπ/4

2
√

2πk0

Ft
(
2k0ρ cos2

((
cos−1

(−η)±(φ + (1− n)π
))
/2
))

cos
(
nπ − φ) + η

,

(20)

where

θtn = sin−1
(√

εr sin
(

(2− n)π − sin−1(cosφ′/
√
εr
)))

, (21)

η = cos(nπ) cosφ′ + sin(nπ)
√
εr − cos2φ′, (22)

and the +(−) sign holds when (n − 1)π < φ < nπ(0 < φ <
(n−1)π). The expressions ofDout

zz0
andDout

φφ′0
are equal to those

presented for the Case 1. Note that the total reflection occurs
on Sn when cosφ′ ≤ | cos(nπ) + sin(nπ)

√
εr − 1|. In such

a case it is appropriate to set Dout
zzn = Dout

φφ′n
= 0, since the

surface waves are not taken into account in the UAPO-based
approach.

(ii) Inner region:

Din
zzn =

[
(1−R0n⊥) cos

(
nπ + θt0

)
+ (1+R0n⊥) sin

(
nπ−φ)]

×√εrT0⊥hin
n ,

Din
φφ′n

= −
[(

1− R0n‖
)

cos
(
nπ + θt0

)
+
(

1 + R0n‖
)

sin
(
nπ − φ)]√εrT0‖hin

n ,

(23)

UAPO-based approach
FDTD
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Figure 9: Dielectric wedge. The relative magnitude of the total field
z-component at ρ = 5λ0 when α = 110◦, εr = 1.25, and φ′ = 30◦.

hin
n =

e− jπ/4

2
√

2πk

Ft
(
2kρ cos2

((
cos−1

(−η/√εr)−(φ + (1−n)π
))
/2
))

√
εr cos

(
nπ − φ) + η

,

(24)

in which θt0 = sin−1(cosφ′/
√
εr). The expressions of Din

zz0
and

Din
φφ′0

are equal to those presented for the Case 1.
Figures 8 and 9 show comparisons with data provided

by an “ad hoc” developed code implementing the Finite-
Difference Time-Domain (FDTD) method [15]. They refer
to a wedge characterised by α = 110◦ and εr = 1.25 when the
observation point moves along a circular path with ρ = 5λ0.
The good agreements assess the effectiveness of the presented
UAPO solution also when considering dielectric wedges.

Note that the case corresponding to π < φ′ < nπ is not
reported here because it can be tackled and solved in a similar
way.

4. Conclusions

UAPO solutions have been presented in the UTD context for
evaluating the field diffracted by penetrable dielectric slabs
and wedges. They are in closed form, simple and easy to
handle and yield total field levels in good agreement with
data obtained via numerical tools. In addition, the UTD-like
formulation of UAPO diffraction coefficients facilitates the
analytical evaluation of the time domain counterparts. These
characteristics encourage the use of UAPO solutions for
diffraction problems of interest in many application areas.
Future research activities will be directed towards three-
dimensional scenarios involving penetrable wedges with
finite conductivity.
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Appendix

M
0
= 1√

1− sin2β′sin2φ′

(
cosβ′ sinφ′ cosφ′

− cosφ′ cosβ′ sinφ′

)
,

M
1
=M

7

[
M

2
M

4
M

5
+M

3
M

4
M

6

]
,

M
7
=
(

cosβ′ cosφ cosβ′ sinφ − sinβ′

− sinφ cosφ 0

)
,

M
2
=
⎛
⎜⎝

1− sin2β′cos2φ − sinβ′ cosβ′ cosφ
−sin2β′ sinφ cosφ − sinβ′ cosβ′ sinφ
− sinβ′ cosβ′ cosφ sin2β′

⎞
⎟⎠,

M
3
=
⎛
⎜⎝

0 − sinβ′ sinφ
− cosβ′ sinβ′ cosφ

sinβ′ sinφ 0

⎞
⎟⎠,

M
4
= 1√

1− sin2β′sin2φ′

(
− cosβ′ − sinβ′ cosφ′

− sinβ′ cosφ′ cosβ′

)
,

M
5
=
(

0 (1− R⊥ − T⊥) cos θi

1 + R‖ − T‖ 0

)
,

M
6
=
((

1− R‖ − T‖
)

cos θi 0
0 −(1 + R⊥ − T⊥)

)
.

(A.1)

References

[1] J. B. Keller, “Geometrical theory of diffraction,” Journal of the
Optical Society of America, vol. 52, pp. 116–130, 1962.

[2] R. G. Kouyoumjian and P. H. Pathak, “A uniform geometrical
theory of diffraction for an edge in a perfectly conducting
surface,” Proceedings of the IEEE, vol. 62, no. 11, pp. 1448–
1461, 1974.

[3] P. C. Chang, R. J. Burkholder, J. L. Volakis, R. J. Marhefka, and
Y. Bayram, “High-frequency em characterization of through-
wall building imaging,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 47, no. 5, Article ID 4810144, pp. 1375–
1387, 2009.

[4] A. I. Kozlov, L. Lighart, and A. I. Logvin, “Radar reflection
from surfaces with ruptures,” in Proceedings of 13th Interna-
tional Conference on Microwaves, Radar and Wireless Commu-
nications (MIKON ’00), vol. 1, pp. 347–350, 2000.

[5] W. D. Burnside and K. W. Burgener, “High frequency
scattering by a thin lossless dielectric slab,” IEEE Transactions
on Antennas and Propagation, vol. 31, no. 1, pp. 104–110, 1983.

[6] R. J. Leubbers, “Finite conductivity uniform GTD versus knife
edge diffraction in prediction of propagation path loss,” IEEE
Transactions on Antennas and Propagation, vol. 32, no. 1, pp.
70–76, 1984.

[7] P. Bernardi, R. Cicchetti, and O. Testa, “A three-dimensional
UTD heuristic diffraction coefficient for complex penetrable
wedges,” IEEE Transactions on Antennas and Propagation, vol.
50, no. 2, pp. 217–224, 2002.

[8] T. W. Veruttipong, “Time domain version of the uniform
GTD,” IEEE Transactions on Antennas and Propagation, vol. 38,
no. 11, pp. 1757–1764, 1990.

[9] F. Ferrara, C. Gennarelli, G. Gennarelli, M. Migliozzi, and G.
Riccio, “Scattering by truncated lossy layers: A UAPO-based
approach,” Electromagnetics, vol. 27, no. 7, pp. 443–456, 2007.

[10] C. A. Balanis, Advanced Engineering Electromagnetics, Wiley,
New York, NY, USA, 1989.

[11] COMSOL Multiphysics, v. 3.5a, Users’ guide, RF Module,
2008.

[12] G. Gennarelli and G. Riccio, “A uniform asymptotic solution
for the diffraction by a right-angled dielectric wedge,” IEEE
Transactions on Antennas and Propagation, vol. 59, no. 3,
Article ID 5677594, pp. 898–903, 2011.

[13] G. Gennarelli and G. Riccio, “A UAPO-based model for prop-
agation prediction in microcellular environments,” Progress In
Electromagnetics Research B, no. 17, pp. 101–116, 2009.

[14] G. Gennarelli and G. Riccio, “Plane-wave diffraction by an
obtuse-angled dielectric wedge,” Journal of the Optical Society
of America A, vol. 28, no. 4, pp. 627–632, 2011.

[15] A. Taflove and S. Hagness, Computational Electrodynamics:
The Finite Difference Time Domain Method, Artech House,
London, UK, 2000.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


