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Compressive sensing (CS) has been shown to be a useful tool for subsurface or through-the-wall imaging (TWI) using ground
penetrating radar (GPR). It has been used to decrease both time/frequency or spatial measurements and generate high-resolution
images. Although current works apply CS directly to TWI, questions on the required number of measurements for a sparsity level,
measurement strategy to subsample in frequency and space, or imaging performance in varying noise levels and limits on CS
range resolution performance still needs to be answered. In addition current CS-based imaging methods are based on two basic
assumptions; targets are point like and positioned at only discrete grid locations and wall thickness and its dielectric constant
are perfectly known. However, these assumptions are not usually valid in most TWT applications. This work extends the theory
of CS-based radar imaging developed for subsurface imaging to TWI and outlines the performance of the proposed imaging for
the above-mentioned questions using numerical simulations. The effect of unknown parameters on the imaging performance is

analyzed, and it is observed that off-the-grid point targets and big modeling errors decreases the performance of CS imaging.

1. Introduction

Through-the-wall imaging (TWI) radar [1] has become
an emerging technology in recent years due to its broad
applications in both civilian and military sectors. In these
applications, an electromagnetic wave, which could pene-
trate the wall, is transmitted and received at several points
within a synthetic aperture to generate a vision of the scene.
TWTI applications generally require high-resolution images.
High-range resolution requires use of an ultra-wideband
(UWB) pulse, while high cross range resolution requires
a very long aperture. A new technique for GPR and TWI
resulting in high-resolution imaging using less number of
measurements based on sparse recovery is the compressive-
sensing-based radar imaging [2-8].

Compressive sensing (CS) [9, 10] techniques enable
reconstruction of unknown signals, which have a sparse
representation in a certain transformation domain, from a
set of measurements that can be significantly less than the
number of unknowns. Since radar target scenes with strong

reflectors and moving targets may admit a sparse represen-
tation, reconstruction of target scenes can be formulated
as a sparse signal reconstruction problem. For a signal x
of dimension N, which has a K-sparse representation as
x = W¥s, CS takes M = O(KlogN) nontraditional random
linear measurements as y = ®x and solves a convex ¢,
minimization problem:

min [|sll;, subject to y = OYs,

(1)

to reconstruct the sparse signal s. In this way, instead of
taking N measurements, M < N measurements is sufficient
to reconstruct the signal. Since such a formulation enables
imaging with fewer number of measurements that can be
provided with A/D converters operating at a fraction of the
Nyquist sampling rate or with many less measurements in a
stepped frequency systems, it is promising to use compressive
sensing especially in high-resolution radar imaging.
Compressive sensing was introduced in the general
context of radar imaging in [11], where basic ideas about
the possible benefits of CS to radar systems such as lower



A/D rates, removal of matched filtering in the front end, was
outlined. One of the earliest successful examples of using CS
in an experimental radar system is demonstrated in [6]. In
that work, the subsurface area is modeled to consist of small
number of discrete point-like targets. Since the potential
targets would cover a small portion of the total subsurface
volume to be imaged, the target localization problem was
argued to be a sparse recovery problem. Later, a dictionary
is generated using a data model for each possible discrete
target point, and the sparse subsurface image is generated by
solving an optimization problem with CS. Later, these results
were expanded for stepped frequency [5] and impulse GPR
[7].In [2], Yoon and Amin. used CS for TWI using wideband
beamforming. A technique different than that proposed in
[5] was used, where the unmeasured frequency points are
reconstructed and conventional wideband beamforming is
applied using the reconstructed measurements. In [4], the
direct application of what is detailed in [5] is shown for the
TWTI application; however, a 2-layer world model as in [5]
is used which does not quite reflect TWI application since
the interaction between backwarding waves and antenna is
different when the latter is located over an interface. In [4]
simulated images for different measurement matrices are
generated, and experimental data results are discussed. In [8]
sparse signal reconstruction ideas are applied to GPR rebar
detection.

In all previous CS-TWI or CS-GPR literature, the
imaging theory depends on several assumptions. First, the
targets are point-like reflectors located only at discrete
grid positions. Second, the wave velocities or medium
parameters, such as permittivity or wall thickness, are
assumed to be perfectly known. These assumptions were
used to build a forward model between the target space
and measurements, but actual targets might not fall on grid
points and wave velocities or wall thickness might only be
known approximately. Hence the created forward model will
definitely include modeling errors. It is very important to
understand the effect of such parameters on the robustness
of CS-based TWI. Additionally, most CS-TWI papers show
simulation results for imaging of randomly placed several
point targets with using less space/frequency measurements
as compared to observing all space/frequency domain.
However, no specific result for subsurface or TWI has been
shown detailing the required number of measurements, a
function of the sparsity level of the imaged region. The
general result of CS, which briefly says M = O(KlogN)
is not quite an answer or problem since it only states the
order of the measurement number and it is developed for
an orthogonal basis case where the dictionary developed for
TWT is definitely not orthogonal.

Another important question is what should be the
random sampling strategy for CS. This question turns out to
be a design of random measurement matrix, which controls
how the space and frequency domain is sampled. In [5],
randomly selected rows of an identity matrix are used at
each antenna position which amounts to measuring random
frequency steps. In [4, 7] in addition to measuring random
frequency steps, a random subsampling in space decreasing
the spatial measurement locations was successfully tested.
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Also results in [4, 6] show that observing less number of
uniformly distributed frequencies and spatial measurements
generates similar images. However, the tradeoff between
decreasing measurements in frequency or space and a good
strategy of doing that with how many measurements on each
axis needs further investigation. It is also important to know
the performance limits of CS-TWI imaging on varying levels
of noise.

Range resolution performance of CS-TWI is another
important issue. CS has shown to resolve targets spaced
closer than the Rayleigh range resolution limit in radar
applications [12]. The range resolution performance of CS
imaging for TWI application compared to the standard back-
projection imaging algorithm is another important point. In
this paper a preliminary analysis and results on using CS
in TWI for the above-defined challenges are given through
numerical simulations. These initial results outline a basis for
a more deeper research for given challenges in CS imaging.

The organization of the paper is as follows. Section 2
details the CS-based TWI algorithm, as an extended version
of [5] for through-the-wall geometry. Section 3 gives detailed
simulation results and analysis about the parameters of the
CS-based GPR systems. Conclusions and possible future
work are discussed in Section 4.

2. CS-Based Through-the-Wall Imaging

Through-the-wall imaging (TWI) algorithms like delay and
sum beamforming generate images by mainly applying a
coherent matched filter of the measured data with the
impulse response of the data acquisition process [13, 14].
Different from the conventional TWI methods, CS-based
imaging first discretizes the target space and tries to generate
a linear relation between the measured data and the target
space to be imaged; hence a data dictionary should be
generated. In this dictionary generation each column of the
dictionary corresponds to the modeled measurement for a
single target at the corresponding grid point in the target
space. By this way the measured data can be represented as
a linear combination of the dictionary columns. Hence any
possible prior information like sparsity could be used.

In this development a stepped frequency (SF) radar
system is considered. A detailed explanation on CS-based
imaging theory for subsurface imaging for a 2-layer geometry
is given in [5] about general stepped frequency systems. Here
this development is briefly extended to the TWI application
where a 3-layer modeling is considered mostly leaving the
details to the original paper.

Our goal is to linearly relate the sensor measurements
to the target space. To do so, a target model for which the
expected target return can be calculated should be used.
Under the Born approximation, neglecting the mutual inter-
actions between targets, the scattering field for a continuous
target space 7 can be written as [15]

Es(x,, w) = H Einc(Xo, W, X, 2) G(x0, W, X, 2)71(x, 2)dxdz,
(2)



International Journal of Antennas and Propagation

where Eg(x,, w) is the scattered field at observation point x,,
Ejnc is the incident field, and G(-) is the relevant Green’s
function. For this development a discritized version of (2)
is basically used. In this development a simple point target
modelis selected since the response from a point target can
easily be modeled. Other types of target models can also be
used if the reflections from it can be modeled. The total target
space in this case is assumed to be combination of small
number of point targets making the sparsity assumption
feasible. This can be viewed as a realistic assumption in many
GPR applications like mine detection or TWI where the
targets actually cover a small part of the whole target space
to be imaged. Assume an SF-GPR acquiring measurements
over P targets. The received frequency measurements at the
ith scan point can be written as

P
di = Zrkefjw(tfn(pk))’ (3)
k=1

where 7;(px) is the time delay for the target at the position
pr and when the antenna is at the ith scan or observation
position. Note that for correct calculation of the time
delay from each GPR position to each target position that
requires the knowledge of the wave propagation velocity
in the medium and sensing geometry. Target reflectivity or
other effects are combined in the weights r,. The target
space mr is actually continuous, but to generate a data
dictionary it is discretized into a finite set of grid points
Ts = mi,7m,...,ny where N determines the total number
of possible discrete target space points and each 7; is a
3D vector [xj, yj,z;j] representing one possible target space
point. A data dictionary can be generated by synthesizing the
time/frequency data for each possible target space point 7;.
Note that actual targets might not be at one of these grid
points 7;, but this discretization guides us to build a data
dictionary which approximates a linear relation between the
target space and measurements. The effect of off-the-grid
targets on the imaging performance is analyzed in Section 3.

Finally when the radar is at the ith scan point, the jth
column of the dictionary \¥;, corresponding to a target at 7;,
can be written as

(Wi =exp[—jw(t—ri<nj))]. (4)

Repeating (4) for each discrete possible target position
creates the dictionary W;. This is the dictionary for only
the ith scan position. Note that the dimension of ¥; will
be L x N if L frequency steps are used. Depending on the
discritization level, N, the possible target points 7z; will be
close to the actual target points pi. Hence the measured
data d; can be represented as a linear combination of the
dictionary columns [¥;]; as

di=Yb+e, (5)

where b is a weighted indicator vector defining the target
space and e representing any unmodelled factor and noise.
From the linear relation defined in (5), the goal is to find b
which is actually an image of the medium.

In generating the data dictionary, the crucial point is
to calculate the time delay value 7;(;) of the propagated
wave through the wall and reflected from the point target at
position 7; and received at the receiver when the antennas
are at the ith scan point. Exact calculation of this time delay
requires the knowledge of wall thickness and wave velocities
in all propagated mediums and solution of the diffraction
points from the Snell law. Here it is important to note that the
wall is assumed to be homogeneous in generating the data
dictionary. In general exact knowledge of these parameters is
also not available, and effect of the error on these parameters
is analyzed on the imaging performance in Section 3. For
building the forward model when wave velocities and wall
thickness are given, the diffraction points can be solved
exactly by the Snell law or linear approximations like [16]
or from ray tracing.

Standard stepped frequency systems measure a regularly
spaced set of L frequencies in the frequency band they are
using. What CS offers is that if the reconstructed signal is
sparse then it can be reconstructed with less number of
measurements compared to the standard case, thus instead
of measuring L frequencies, only a small subset, M, of them
is measured at each scan point. Here M < L. The observed
measurements will be i = ®;d; where @; is designed to
be an M X L measurement matrix constructed by randomly
selecting M rows of an L X L identity matrix which actually
defines which M frequencies out of L are acquired. This
effectively reduces the data acquisition time of the SF radar by
L/M if all scan points are used. Using measurements f3; from
S different scan positions, the target space b is constructed
[17, 18] by solving

E=arg min ||b]l; s.t HAT(ﬁ—Ab)HOo <E€, (6)

where B = [BL,....p51T, v = [¥I,... ¥, @ =
diag{®;,...,Ds}, and A = @Y. Here the selected S
scan positions can also be a random subset of the scan
positions within the whole aperture. In (6) selection of the
regularization parameter € is important since it determines
the tradeoff between sparsity of the solution and the level of
data fit. Selection of the proper relaxation parameter € can be
done either by estimating the noise variance or using cross-
validation [19, 20] techniques which require to separate
measurements into two sets and recurrent solutions of the
optimization problem. In the presented numerical results, an
empirical selection of this parameter as € = 0.2 x ATf is
done. An optimization package CVX [21] is used for solution
of (6) for the numerical simulation results presented in the
next section.

3. Numerical Simulations and Results

In this section the effects of the parameters in CS imag-
ing system are tested through numerical simulations. A
preliminary understanding on the required number of
measurements for correct reconstruction of the target space
at varying sparsity levels, the effect of acquiring these
measurements from frequency or space, the level of noise
where CS imaging still works, the effect of system bandwidth



and resolution limits, the effect of discritization of target
space and off-the-grid targets, and the estimation errors
in parameters like wave velocity or wall thickness in TWI
are aimed in the simulations presented in this section. For
these tests a TWI geometry with a monostatic antenna
with a 20 cm offset from a 30cm thick wall of dielectric
constant 4 is considered. The SF system collects frequency
domain measurements from 500MHz to 5.5GHz with
40 MHz frequency steps. Thus, at each scan position, GPR
acquires 126 frequency measurements if all frequency steps
are measured. A target space of size 60cm by 60cm is
considered with a 3 cm discretization on both axes generating
an N = 400 total grid point. Unless stated targets are
assumed to be point like and exactly positioned on grid
locations.

3.1. Effect of Measurement Number. In CS-based subsurface
imaging or TWI literature, it is shown that the total
number of measurements acquired can be decreased if the
target space is sparse, but it is important to know the
relation between the required number of measurements for
correct imaging and varying levels of sparsity specifically
for GPR applications. To understand this relation, target
spaces with sparsity levels changing from 2 to 12 are tested.
For each case the target space is imaged with 10 to 500
compressed measurements using proposed CS technique.
This procedure is repeated 50 times for each sparsity level and
measurement number. For each case a random target space
and random measurement selections are done and correct
reconstructions are counted. The correct reconstruction
ratio is obtained as the ratio of total number of correct
reconstructed cases to the total number of tests which is
50 in this case. Two measurement strategies as random and
uniform are compared. In the random measurement strategy
acquiring M measurement simply means M of the total L X S
space-frequency measurement are randomly selected. The
uniform measurement strategy takes this M measurements
as uniformly spaced out of LS X 1 measurement vector. Note
that standard back-projection techniques mainly use all L x S
space-frequency measurements.

Figures 1(a) and 1(b) show the correct reconstruction
ratio at the acquired measurement numbers for varying
levels of sparsity for random and uniform measurement
strategies, respectively. It can be observed that both strategies
perform similarly. This result also confirms the observation
done in [4, 6]. The results in Figures 1(a) and 1(b) also
show that for correct reconstruction required number of
measurements should increase as the sparsity level increases.
Figure 1(c) shows the required number of measurements to
achieve a 95% correct reconstruction ratio for each tested
sparsity level for this numerical simulation. It is observed
that the the required number of measurements linearly
increases with the sparsity level of the solution which is in
accordance with the fundamental result of CS which states
that the required number of measurements should be M =
O(K log N) which states a relation as M = cKlogN with an
unknown constant c. A first-order fit applied to the result
in Figure 1(c) gives a relation as M = 16K, and when
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the dimension of the target space N = 400 is considered,
the required number of measurements for this case can be
written as M ~ 2.7K log N where the unknown constant ¢ is
found to be 2.7 for the tested CS-TWI scenario. This relation
states the minimum number of compressive measurements
to correctly reconstruct a K sparse scene using our model,
and note that it is developed for a specific case of N = 400.
We have tested this relation with a similar scenario, but using
a discritization of N = 800 for various sparsity levels and in
the average a correct reconstruction ratio of 0.96 is obtained.
It is important to note that this result is dependent on the
dictionary developed in Section 2. We do not conclude that
this is a general result for any CS-TWI case specifying the
minimum required number of measurements, but we believe
this relation would at least give an idea on that.

3.2. Effect of Acquiring Measurements from Frequency or
Space. Another important point in a measurement strategy
is to decide on a good division in observing measurement
from frequency or space. It is important to understand the
tradeoff between subsampling from space or frequency. As an
example, if a total of 50 measurement would be taken from
the whole space-frequency domain how would you distribute
the measurements to space and frequency; that is, would
you take random 10 scan points and measure 5 frequencies
at each scan point or measure 5 scan points and take 10
frequency measurements at each point. Which one would
be more effective in reconstructing the target space image?
For this test the target sparsity level is fixed to 5 targets,
and varying numbers of randomly selected frequency mea-
surements from 5 to 125 at varying spatial scan points from
2 to 20 are observed. At each case the independent target
space generations and random measurement selections are
repeated 50 times and the number of correct reconstructions
are counted. Figure 2 shows the correct reconstruction ratio
by the measurement number at each scan point. Note that
the x-axis in Figure 2 indicates the measurement number
per each scan point out of a maximum of 126 frequency
measurements with the simulation parameters used.

It can be initially observed that imaging performance is
very low if only one scan point is used regardless of the
measurement number, but even increasing it to two scan
points increases the performance. For the same total space-
frequency measurement numbers, distributing measure-
ments across scan points increases correct reconstruction
performance. For example, observing 90 measurements at
a single scan point generates a 0.1 reconstruction ratio
where observing 40 measurements at two scan points or
30 measurements at 3 scan points increases reconstruction
performance dramatically. It can also be observed that the
total number of measurements becomes the important factor
if at least 4 out of 20 scan points are used. As a conclusion,
random subsampling in both frequency and space can be
done but for successful reconstructions spatial scan points
should not be too few. Further and more general tests are
needed to be done to obtain more general results including
whether this tradeoff between space and frequency division
is effected by the sparsity level of the scene.
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Figurg 1: Correct reconstruction ratio versus measurement number for varying levels of target sparsity for (a) random measurement
strategy, (b) uniform measurement strategy. The required number of measurements to achieve a 95% correct reconstruction for random

measurement strategy.

3.3. Effect of Noise Level. To analyze the impact of noise
level on the imaging performance, a simulation is performed.
First, with frequency domain data for a single point target
SNRs from —5 to 25dB are tested with 50 different trials
using additive complex white gaussian noise (CWGN) at
each SNR level using varying number of total of space-
frequency measurements from 50 to 300 observed randomly
at 20 scan points and the target space is reconstructed
with (6). Figure 3 shows the correct reconstruction ratio
versus SNR for the tested measurement numbers. The
regularization parameter is empirically used as € = 0.2 AT
for all cases.

It can be seen in simulation result that with increasing
measurement numbers, the same reconstruction perfor-
mance could be obtained at lower SNR values. At lower SNR

values than 0 dB, correct reconstructions were not obtained
for the tested measurement numbers. Above 15dB SNR,
even very low measurement numbers generate highly correct
reconstruction ratios.

3.4. Effect of Bandwidth and Enhanced Range Resolution on
CS. One of the important properties of the CS method is its
ability to resolve targets spaced closer than the conventional
range resolution of an SFCW GPR [5, 22], defined as AR =
¢/(2LAf), where Af is the frequency step, L is the number
of frequency steps, and ¢ is the speed of the wave in the
medium. To study this increased resolution property for GPR
applications, a simulation is done with two point targets. In
the simulation a bandwidth of 2.5 GHz is used with starting
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and ending frequencies of 0.5 GHz and 3 GHz, respectively.
Hence, in theory, range resolution is going to be 6 cm. The
target space is discritized to 1 cm for this simulation. Figures
4(a) and 4(b) show the delay and sum beamforming results
when the separation between two targets is 10 cm and 6 cm,
respectively. As expected the two targets could be located
correctly when their separation is more than the resolution
limit. While delay and sum beamforming cannot resolve the
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FIGURE 4: Imaging performance of backprojection when the range
separation between two targets is (a) 10cm, (b) 6 cm, and (c)
performance of CS-based imaging when two targets are separated
by 3 cm.

two targets because they merge into a single peak for closer
targets, the CS method resolves both targets at their correct
positions even if the separation between them is 3cm in
range which is smaller than the range resolution limit. This is
because the CS method does not perform a matched filtering
operation, which would impose the range resolution limit.
Instead CS tries to explain the measurements using the least
number of columns from its dictionary of measurements.
The resolution limit in CS is mainly about the mutual
coherence of the dictionary columns and the regularization
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parameter used. The increased resolution property of CS
has also been reported in other sparse signal reconstruction
applications [23, 24].

3.5. Effect of Off-the-Grid Target. In the GPR imaging
applications, the assumed signal sparsity is in the continuous
target space and the sparsity basis ¥ is constructed through
discritization or gridding of this target space. In a general
setting, the observed signal will not be sparse in such
a dictionary created through discritization since a target
might not be exactly on any of the grid locations. The
reconstruction performance with CS will decrease due to this
basis mismatch. This is not a specific problem for GPR, but it
is general for any reconstruction problem where a parametric
continuous space is sensed and similar basis mismatch or
off-grid problems are heavily pronounced in radar imaging
[25] for delay-Doppler space, target localization [5, 26] for
continuous target space, beamforming [27, 28] for angle
space, or shape detection [29] for shape parameter space.
Such examples emphasize the importance of off-the-grid
problem in CS.

In the literature the simplistic and the general approach
to the problem is to increase the grid size and use a
reconstruction algorithm that can handle additive noise
in measurements. Although this could provide close to
satisfactory results for some applications, it is not the
solution to the actual problem. No matter how fine the
discritization is, the actual signal parameters might not be
on the grid. In addition increasing grid size increases the
coherence between dictionary columns making restricted
isometry property (RIP) [30] invalid. Grid size increase also
increases the computational complexity of reconstruction.
It is also important to note that the modeling error due
to basis mismatch is also not an additive noise; it is rather
multiplicative [31].

In this part, off-the-grid targets are simulated, and effect
of the discritization or grid size on the TWI performance is
observed. To observe only the effect of grid size, parameters
like wall thickness or wave velocity in all mediums are
assumed to be known perfectly. A target space of size 60 X
60 cm? area is simulated. Two point reflectors at off-the-grid
positions as (—0.192, 0, —0.143) and (0.218,0, —0.382) are
placed, and the target space are discritized with 1cm, 2 cm,
and 5 cm grid sizes. An SNR of 10dB is used. The obtained
compressive sensing and back-projection reconstructions
using only the 20% of the total frequency-space data
randomly are shown in Figure 5 for each discritization level.

It can be observed from Figure 5 that CS-based imaging
method is effected from off-the-grid targets and the imaging
performance gets worse if the grid sizes get high. For
grid size of 1cm, both targets are observed with some
additional targets, but, for higher grid sizes of 2 and
5cm the created images are not close to correct target
space image. Back-projection images in general can be
argued to be more robust to discritization of target space
compared to compressive-sensing-based imaging technique.
But performance of backprojection also gets worse as the grid
sizes increase. These results show that off-the-grid targets

are really an important problem for CS-based techniques.
Although the simulation indicates that off-grid-targets create
challenges for CS; in real-world scenarios possible extended
targets would cover several grid locations and the observed
data could be represented sparsely with those grid locations,
which is mainly observed with the experimental CS based
imaging results in the literature. Nevertheless depending on
the grid size, off-the grid targets creates challenges. This
discussion brings a new data model. The signal is actually
sparse in an unknown basis ® where there is mismatch
between the actual sparsity basis ® and the modeled one .
In the literature there are several works [31, 32] analyzing
the effects of stated basis mismatch problem. However, these
works only study the sensitivity of CS to the mismatch
between the assumed and actual sparsity bases and calculate
resultant performance degradation. Analytical £, norm error
bounds due to the basis mismatch are also obtained in
[31, 32]. They do not offer any systematic solution to the
problem.

To solve the off-grid target problem, we are working on
new techniques that utilize gradients with respect to the
parameters at each grid location and apply greedy or joint
perturbations to basis columns. This solution for the off-
grid problem is combined with the orthogonal matching
pursuit (OMP) algorithm for a new iterative off-the-grid
OMP method. Our initial results are given in [33] but
extended techniques will be applied to the GPR applications
and its performance will also be analyzed in the future.

3.6. Effect of Unknown Parameters. Another fundamental
problem in CS-based TWI is that the parameters like wall
thickness and the velocity of the wave in the wall that are
used in creating the data dictionary might be different than
the actual parameters. These problems are also studied in
classical TWI in [34, 35]. Although it is possible to estimate
these parameters, still it is very hard to exactly find them.
Here the effect of the errors in these estimated parameters
on the CS imaging is shown. For the presented results the
targets are placed at exactly on-the-grid points, and only
effects of the errors in wall thickness and wave velocity are
analyzed. The data dictionary is generated using a wall of
thickness of 30 cm and permittivity 4. Figures 6(a) and 6(b)
show the images created when the actual wall permittivity is
taken as 4.1 and 4.5, respectively. When the error is small,
two targets are imaged at their correct positions, but when
the error gets large the created image deviates highly from
the correct image. When the measurements are simulated
with a wall thickness of 30.2 cm, even this small error in
wall thickness creates an important degradation in the CS
image. When the wall thickness is taken as 31 cm, the created
image is not related with the correct target space. Hence
CS-based imaging seems to be highly dependent on close
estimation of the unknown parameters. On the other hand,
similar tests are done on backprojection, and it is observed
that with even higher errors in parameters, backprojected
images are not effected as much as CS-based images. It can
be stated that backprojection is also more robust to errors in
modeling parameters. This could be because backprojection
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only calculates the correlation of the measurements with
the data model for the grid location and focused and
highly correlated but not sparse images are obtained. On
the other hand, CS tries to match the measurements with
linear combinations of the dictionary columns. In the
presence of modeling errors and also depending on the
regularization parameter, CS brings new data points to satisfy
the data constraint. Hence it is very important to generate
either successful parameter estimation techniques that use
only compressive measurements or more robust sparsity-
enhanced imaging techniques. Extending data dictionaries
using several different parameters [36] might be an initial
solution although it increases the imaging complexity or
possible gradient-based search parameter search techniques
could be used.

4. Conclusion

In this paper, a compressive-sensing-based through-the-
wall imaging algorithm is presented. Initial results through
numerical simulations are obtained for questions on the
required number of measurements for a sparsity level,
measurement strategy to subsample in frequency and space,
imaging performance in varying noise levels, and enhanced
CS range resolution performance. Simulations with off-the-
grid targets and unknown parameters are performed, and it
is observed that if the grid size or the error in the unknown
parameters is not too big, the imaging performance is not
severely affected; however, big grid sizes or errors degrade
the reconstructed image. Although obtained results are not
too general, we believe that they are preliminary to a much
deeper study.
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