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A reverberation chamber is a convenient tool for over-the-air testing of MIMO devices in isotropic environments. Isotropy is
typically achieved in the chamber through the use of a mode stirrer and a turntable on which the device under test (DUT) rides.
The quality of the isotropic environment depends on the number of plane waves produced by the chamber and on their spatial
distribution. This paper investigates how the required sampling rate for the DUT pattern is related to the plane-wave density
threshold in the isotropic environment required to accurately compute antenna correlations. Once the plane-wave density is above
the threshold, the antenna correlation obtained through isotropic experiments agrees with the antenna correlation obtained from
the classical definition, as has been proven theoretically. This fact is verified for the good, nominal, and bad reference antennas
produced by CTIA. MIMO channel capacity simulations are performed with a standard base station model and the DUT placed
in a single-tap plane-wave reverberation chamber model. The capacity curves obtained with the good, nominal, and bad reference
antennas are clearly distinguishable.

1. Introduction

The reverberation chamber [1] is a cost-efficient and con-
venient tool for creating an isotropic environment in which
wireless devices can be tested. The field in a rectangular
reverberation chamber can be described in terms of chamber
modes that each can be expressed as a sum of eight plane
waves [2, 3]. The chamber typically contains a mode stirrer
and a turn table on which the device under test (DUT) rides.
At any fixed turntable and stirrer position, the DUT sees
a certain collection of plane waves. By rotating the stirrer
and turntable, a new collection of plane waves illuminates
the DUT (the turntable causes the DUT to see each plane
wave from different angles). The isotropic test environment
is thus achieved by rotating both the stirrer and turntable to
illuminate the DUT with many different collections of plane
waves. One can determine if a given reverberation chamber
at a given frequency is isotropic by evaluating anisotropy
coefficients obtained from three-axis dipole experiments [23,
Annex J] and [4].

In the present paper we investigate the use of reverber-
ation chambers for over-the-air testing of MIMO devices.

Both antenna correlation (a quantity that is critically impor-
tant for MIMO system performance) and MIMO capacity
will be simulated in a plane-wave reverberation chamber
model [5–9]. The simulations will be performed with a
pair of Hertzian dipoles and with good, nominal, and bad
reference antennas [10]. The classical antenna correlation
is compared to the isotropic antenna correlation, and it is
verified numerically that the two are equivalent, as proven by
De Doncker and Meys [11].

To ensure accurate and reliable over-the-air test results,
the test system must produce an accurate test environment
in the entire physical region that contains the DUT. For
example, in conventional 2D anechoic tests, the number
of antennas in the ring surrounding the DUT must be
large enough to accurately reproduce the desired channel
conditions in the region occupied by the DUT. Similarly,
the reverberation chamber must be large enough to supply
enough plane waves to achieve an isotropic environment in
the region occupied by the DUT.

By expressing the DUT pattern in terms of a spherical
expansion (with a recently derived formula for truncation
limit), we determine how closely the DUT pattern must
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be sampled to properly capture its variation. Using this
sampling rate, we obtain rules that determine both the
required number of antennas in the anechoic test and the
required plane-wave density in the reverberation chamber
test. As a byproduct of this investigation, we present accurate
Fourier expansions of the DUT pattern that have been used
in spherical near-field scanning for many years but appear to
be relatively unknown in wireless communications.

The paper is organized as follows. Section 2 introduces
the truncated spherical-wave expansion and derives the
sampling theorems and Fourier expansions for the pattern of
an arbitrary DUT. Section 3 deals with antenna correlations
in both the reverberation chamber test and in a 2D anechoic
chamber test. This section also relates the accuracy of
simulated correlations to the sampling rate required for
the pattern. In Section 4 we investigate the plane-wave
distribution for realistic reverberation chambers by using
the dyadic Green’s function for the rectangular box. We fur-
ther simulate antenna correlations and compute anisotropy
coefficients. Section 5 presents MIMO channel capacity
simulations using a standard base station model and the
plane-wave reverberation chamber model. Section 6 presents
conclusions. Throughout, we assume time-harmonic fields
that have e−iωt time dependence with ω > 0.

2. Plane-Wave Receiving Characteristic and
Far-Field Pattern

In this section we introduce the plane-wave receiving
characteristic and far-field pattern of an arbitrary DUT-
mounted antenna. (The term “pattern” will be used to refer
to both the plane-wave receiving characteristic and to the far-
field antenna pattern). A spherical expansion determines the
spatial sampling rate required to “capture” the pattern of the
antenna and provides a Fourier series expansion useful for
computing any quantity involving the pattern. The standard
spherical coordinates (r, θ,φ) with unit vectors given by

r̂
(

θ,φ
) = x̂ cosφ sin θ + ŷ sinφ sin θ + ẑ cos θ,

̂θ
(

θ,φ
) = x̂ cos θ cosφ + ŷ cos θ sinφ − ẑ sin θ,

̂φ
(

θ,φ
) = −x̂ sinφ + ŷ cosφ

(1)

will be used throughout. Here, the unit vectors for the
rectangular coordinates (x, y, z) are x̂, ŷ, and ẑ. Note that
r̂(θ,φ) with 0 ≤ θ ≤ π and 0 ≤ φ < 2π covers the unit
sphere once. Figure 1 shows the spherical coordinates.

The DUT with a mounted antenna is shown in Figure 2
inside the minimum sphere with radius Rmin, defined such
that the maximum value of the coordinate r for all points
on the DUT equals Rmin. Note that Rmin depends not only on
the size of the DUT but also on its location with respect to the
coordinate system. For example, a Hertzian dipole located at
r0 has Rmin = |r0| despite the fact that its physical extent is
vanishing. Also, even if the physical dimension of a DUT-
mounted antenna is much smaller than the dimensions of
the DUT (as in Figure 2), the antenna interacts with the DUT
and therefore it is the entire DUT size that must be used when
computing Rmin.
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Figure 1: Spherical coordinates.
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Figure 2: The DUT with mounted antenna contained in the mini-
mum sphere of radius Rmin.

The plane-wave receiving characteristic is defined as

follows. Assume that the incident plane wave E(r) = E0eik
̂k0·r

with propagation direction ̂k0 illuminates the DUT. The di-

rection of propagation is ̂k0 = −r̂(θ0,φ0), and the constant

vector E0 satisfies E0 · ̂k0 = 0. With this notation, the
incident plane wave “comes” from the direction (θ0,φ0). For
example, if θ0 = 0, the plane wave is E(r) = E0e−ikz and
propagates in the direction of the negative z-axis. When the
DUT is illuminated by this plane-wave field, its output is by
definition V = R(θ0,φ0) · E0, where R(θ0,φ0) is the plane-

wave receiving characteristic satisfying ̂k0 ·R(θ0,φ0) = 0.
If the DUT-mounted antenna satisfies reciprocity, its

plane-wave receiving characteristic can be expressed in terms
of its normalized far-field pattern F0(θ,φ) as [12, equation
(6.60)] (The spherical angles determining the plane-wave
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directions of propagation in [12] are different from those
used in the present paper):

R
(

θ0,φ0
) =

√

ε
μ

i

kYp
F0

(

θ0,φ0
)

, (2)

where μ and ε are the free-space permeability and permit-
tivity, respectively. Moreover, k = ω

√
με is the wavenumber

and Yp is the characteristic admittance of the propagating
mode of a wave-guide feed assumed attached to the DUT
antenna; see [12, Chapter 6]. In general, if the antenna is not
reciprocal, the receiving characteristic can be related to the
pattern of an adjoint antenna [13].

The electric far field of the DUT, when it is fed by an
input voltage-amplitude V0, is [12, equation (6.35)] (The
nonnormalized far-field pattern F (θ,φ) is defined in [12,
equation (3.31)] in terms of the electric field through the
limit F (θ,φ) = limr→∞ re−ikrE(r, θ,φ). The normalized far-
field pattern F0(θ,φ) is in turn defined by V0F0(θ,φ) =
F (θ,φ), whereV0 is the input voltage amplitude of the signal
that feeds the antenna. Note that the symbol “∼” in (3)
means “asymptotically equal to” in the limit r → ∞.)

E
(

r, θ,φ
) ∼ V0F0

(

θ,φ
)eikr

r
. (3)

The far-field pattern F (θ0,φ0) determines the far field in the
direction (θ0,φ0) whereas R(θ0,φ0) determines the output
due to a plane wave “coming in” from the direction (θ0,φ0).
Hence, this incident plane wave propagates in the direction
(π−θ0,π+φ0). Also, the normalized far-field pattern F0(θ,φ)
is dimensionless and the plane-wave receiving characteristic
R(θ,φ) is a length.

These statements fully define the plane-wave receiving
characteristic for any propagating plane wave that may
illuminate the DUT. If the source of the incident field is close
to the DUT, one must also specify the plane-wave receiving
characteristic for evanescent plane waves [12, Chapters 3 and
6]. However, in this paper we consider only sources that
are at least a few wavelengths away from the DUT so that
evanescent waves are negligible.

Using (2) in conjunction with standard spherical-wave
theory [14, 15] shows that the receiving characteristic can be
expressed in terms of the transverse vector-wave functions
Mnm and Nnm as

R
(

θ,φ
) =

N
∑

n=1

n
∑

m=−n

[

AnmMnm
(

θ,φ
)

+ BnmNnm
(

θ,φ
)]

,

(4)

where Anm and Bnm are spherical expansion coefficients sat-
isfying Anm = 0 and Bnm = 0 when |m| > n. The truncation
number N is determined from the radius of the minimum
sphere as

N = int
(

kRmin + γ(kRmin)1/3
)

, (5)

where the constant γ determines the number of digits of
accuracy achieved [16, Section 3.4.2] and “int” denotes the

integral part. The formula (5) is especially useful for small
sources where the second term is on the same order of
magnitude as the first term. (In older literature the following
truncation formula is often used with the second term left
unspecified: “N = int(kRmin + n1) where n1 is a small
integer.”)

The transverse vector-wave functions can be expressed in
terms of the spherical harmonic Ynm(θ,φ) [15, page 99] as
[15, pages 742–746]

Mnm
(

θ,φ
) = ̂θ

imYnm
(

θ,φ
)

√

n(n + 1) sin θ
− ̂φ

(∂/∂θ)Ynm
(

θ,φ
)

√

n(n + 1)
, (6)

and Nnm(θ,φ) = r̂ ×Mnm(θ,φ). The orthogonality relations
[15] for the transverse vector-wave functions give the fol-
lowing well-known expressions for the spherical expansion
coefficients Anm and Bnm:

Anm =
∫ 2π

0

∫ π

0
R
(

θ,φ
) ·M∗

nm

(

θ,φ
)

sin θ dθ dφ,

Bnm =
∫ 2π

0

∫ π

0
R
(

θ,φ
) ·N∗

nm

(

θ,φ
)

sin θ dθ dφ,

(7)

where ∗ indicates complex conjugation. The formula (4)
makes it possible to compute the plane-wave receiving
characteristic in any direction from the spherical expansion
coefficients Anm and Bnm. However, in this paper we shall
use (4) to derive Fourier expansions and sampling theorems
that are useful for computing quantities like correlations that
involve the plane-wave receiving characteristic.

The expressions for the transverse vector-wave functions
Mnm(θ,φ) and Nnm(θ,φ) show that the θ and φ components

of R(θ,φ) =Rθ(θ,φ)̂θ + Rφ(θ,φ)̂φ in (4) have the Fourier
series (The expressions [15, page 98] for the associated Leg-
endre function show that both the derivative (∂/∂θ)Ynm(θ,φ)
and the fraction mYnm(θ,φ)/ sin θ can be expanded in terms
of eimφeiqθ with q = −n, . . . ,n.):

Rθ
(

θ,φ
) =

N
∑

q=−N

N
∑

m=−N
Dθ

qme
imφeiqθ ,

Rφ
(

θ,φ
) =

N
∑

q=−N

N
∑

m=−N
D

φ
qmeimφeiqθ ,

(8)

where Dθ
qm and D

φ
qm are Fourier coefficients. The Fourier

expansions (8) define functions that are 2π-periodic in
both θ and φ. Hence, the Fourier coefficients cannot be
determined from the sampling theorem for periodic spatially
bandlimited functions when R(θ,φ) is known only over
the standard sphere 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π. We shall
overcome this problem by continuing R(θ,φ) to the interval
0 ≤ θ ≤ 2π (see [17, 18], and [19, pages 111–113, 140–144]).

Since r̂(θ,φ) = r̂(2π − θ,φ + π), the two points (θ,φ)
and (2π − θ,φ + π) correspond to the same point in space.
Moreover, since the tangential spherical unit vectors satisfy
̂θ(θ,φ) = − ̂θ(2π−θ,φ+π) and ̂φ(θ,φ) = − ̂φ(2π−θ,φ+π),
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we can analytically continue R(θ,φ) into a 2π-periodic in
both θ and φ by use of

Rθ
(

θ,φ
) = −Rθ

(

2π − θ,φ + π
)

,

Rφ
(

θ,φ
) = −Rφ

(

2π − θ,φ + π
)

.
(9)

One can show that the conditions (9) imply that the Fourier

coefficients satisfy Dθ
qm = (−1)m+1Dθ−q,m and D

φ
qm =

(−1)m+1D
φ
−q,m.

Assume that Rθ(θ,φ) and Rφ(θ,φ) are known over the
standard sphere 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π at θ = (t − 1)Δθ,
t = 1, . . . ,Nθ and φ = (p − 1)Δφ, p = 1, . . . ,Nφ, where the
sample rates areΔθ = π/(Nθ−1) andΔφ = 2π/Nφ, withNθ ≥
N + 2 and Nφ ≥ 2N + 1. Then the Fourier coefficients can be
computed from the sampling theorem for periodic spatially
bandlimited functions in conjunction with (9) as [19] and
[20, Section IV]:

Dθ
qm=

1
Nφ(2Nθ − 2)

Nφ
∑

p=1

e−im(p−1)Δφ

×
⎡

⎣

Nθ
∑

t=1

Rθ
(

[t − 1]Δθ,
[

p − 1
]

Δφ
)

e−iq(t−1)Δθ

+(−1)m+1
Nθ−1
∑

t=2

Rθ
(

[t−1]Δθ,
[

p−1
]

Δφ
)

eiq(t−1)Δθ

⎤

⎦,

D
φ
qm = 1

Nφ(2Nθ − 2)

Nφ
∑

p=1

e−im(p−1)Δφ

×
⎡

⎣

Nθ
∑

t=1

Rφ
(

[t − 1]Δθ,
[

p − 1
]

Δφ
)

e−iq(t−1)Δθ

+(−1)m+1
Nθ−1
∑

t=2

Rφ
(

[t−1]Δθ,
[

p−1
]

Δφ
)

eiq(t−1)Δθ

⎤

⎦.

(10)

Of course, (10) hold only for functions that satisfy (9). We
summarize the results (which also hold for the antenna pat-
tern F0(θ,φ)) as follows.

(i) The plane-wave receiving characteristic R(θ,φ)
should be sampled over the sphere 0 ≤ θ ≤ π and
0 ≤ φ < 2π at a rate of at least Δθ = Δφ = π/(N +
1), where N , given by (5), depends on frequency,
physical DUT size, and DUT location.

(ii) The plane-wave receiving characteristic R(θ,φ) can
be expressed in terms of the Fourier series (8) with
Fourier coefficients computed through (10) from
sampled values of R(θ,φ).

(iii) Integrals of the form

I =
∫ 2π

0

∫ π

0
U
(

θ,φ
) ·R

(

θ,φ
)

sin θ dθ dφ, (11)

where U(θ,φ) is a known function, occur in many
places. For example, the expressions (7) for the
spherical expansion coefficients have this form. Such

integrals can be computed accurately by inserting the
Fourier expansions (8) for R(θ,φ). One can often
compute the contribution from each Fourier term
explicitly. Alternatively, by use of the Fourier series
one can resample R(θ,φ) to a finer grid and then
compute I through numerical integration.

(iv) In contrast, brute-force approximations of the form
(with the original sampling rate retained)

I 	
Nθ
∑

t=1

Nφ
∑

p=1

U
(

[t − 1]Δθ,
[

p − 1
]

Δφ
)

×R
(

[t − 1]Δθ,
[

p − 1
]

Δφ
)

× sin([t − 1]Δθ)ΔθΔφ

(12)

are often inaccurate, especially when the sampling is
sparse (the antenna is electrically small). The lack
accuracy is caused by the fact that the integral over θ
does not involve a periodic spatially bandlimited
function, so the trapezoidal rule is not guaranteed to
work well [19, pages 111–113, 140–144, 372].

3. Antenna Correlation in
Isotropic Environment

In this section we describe the concept of antenna correlation
in an isotropic environment like the one observed in a
reverberation chamber. However, first we state the classical
definition of antenna correlation in terms of the plane-wave
receiving characteristics introduced in Section 2.

Consider two receiving antennas, possibly mounted on
the same DUT, with plane-wave receiving characteristics
R1(θ,φ) and R2(θ,φ). The classical definition of the
correlation ρ between the two receiving antennas is

ρ=
∫ 2π

0

∫ π
0 R1

(

θ,φ
) ·R∗

2

(

θ,φ
)

sin θ dθ dφ
√

∫ 2π
0

∫ π
0

∣

∣R1
(

θ,φ
)∣

∣
2sin θ dθ dφ

∫ 2π
0

∫ π
0

∣

∣R2
(

θ,φ
)∣

∣
2sin θ dθ dφ

.

(13)

In accordance with Section 2, the correlation (13) can
be computed by inserting Fourier series expansions for
R1(θ,φ) and R2(θ,φ) with Fourier coefficients obtained
from sampled values.

A general specification of the isotropic environment can
be found in Hill’s book [1, Section 7.1] and in the paper
by De Doncker and Meys [11]. Here we consider a specific
embodiment [5–9] involving plane waves propagating in a
set of fixed directions. The points (θs,φs), s = 1, 2, . . . , S, are
roughly evenly distributed on the unit sphere as shown in
Figure 3. More specifically, the points are on constant-θ rings
with the number of points on each ring dependent on θ. In
particular, the top and bottom rings θ = 0 and θ = π consist
of just one point each.

Assume that two plane waves are incoming in each of the
directions (θs,φs). One of them is θ-polarized with amplitude
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α
( j)
s ; the other is φ-polarized with amplitude β

( j)
s , where j =

1, 2, . . . , J . For a particular j, the incident field is thus given
by

E( j)(r) =
S
∑

s=1

[

α
( j)
s ̂θse

−ikr̂s·r + β
( j)
s ̂φse

−ikr̂s·r
]

, (14)

where r̂s, ̂θs, and ̂φs are the spherical unit vectors evaluated

at (θ,φ) = (θs,φs). The plane-wave amplitudes α
( j)
s and

β
( j)
s are uniformly distributed independent complex random

variables with zero mean, and the corresponding outputs of
the two receiving antennas are

V
( j)
1 =

S
∑

s=1

[

α
( j)
s ̂θs ·R1

(

θs,φs
)

+ β
( j)
s ̂φs ·R1

(

θs,φs
)

]

,

V
( j)
2 =

S
∑

s=1

[

α
( j)
s ̂θs ·R2

(

θs,φs
)

+ β
( j)
s ̂φs ·R2

(

θs,φs
)

]

.

(15)

The isotropic environment is obtained as the collection of
incident fields E( j)(r) for j = 1, 2, . . . , J , with a new set of

amplitudes α
( j)
s and β

( j)
s selected for each j. Thus, we can

compute the outputs V
( j)
1 and V

( j)
2 for each of the two

receiving antennas for j = 1, 2, . . . , J . Section 5 presents
MIMO capacity simulations with a receiving DUT placed in
this isotropic environment.

It was shown by De Doncker and Meys [11] that the
correlation between the outputs V1 and V2 in the isotropic
environment is equal to the classical correlation (13):

ρ = corr(V1,V2). (16)

We shall now demonstrate through numerical simulations
that this result is indeed correct and investigate the sampling
rate (density of incident plane waves) required in the
isotropic environment to make (16) accurate.

3.1. Two Hertzian Dipoles. Consider two z-directed Hertzian
dipoles on the x-axis at r1 = (−d/2, 0, 0) and r2 = (d/2, 0, 0)
so that the radius of the minimum sphere is Rmin = d/2;
see Figure 4. The output of a Hertzian dipole is proportional
to the incident electric field in the direction of the dipole.
Hence,

R1
(

θ,φ
) = L̂θ sin θeik(d/2) cosφ sin θ ,

R2
(

θ,φ
) = L̂θ sin θe−ik(d/2) cosφ sin θ ,

(17)

where L is a constant length. The correlation between the
dipoles is found from (13) to be

ρ(d) = 3
2

[

sin(kd)
kd

− 1

(kd)2

(

sin(kd)
kd

− cos(kd)
)

]

. (18)

Hill [1, equation (7.63)] confirms the general result (16) that
the classical correlation (18) is the correlation obtained in an
isotropic environment.

Plane-wave propagation direction

Figure 3: A selection of points (θs,φs), s = 1, 2, . . . , S, evenly
distributed on the unit sphere. Each point defines a direction of
propagation for two plane waves. One plane wave is θ-polarized,
the other is φ-polarized.

x

y

z

Figure 4: Two z-directed Hertzian dipoles on the x-axis at r1 =
(−d/2, 0, 0) and r2 = (d/2, 0, 0).

We compute the correlation from (16) for d = λ/2 and
d = 2λ with varying S. Throughout, J = 10000. As a measure
of the density of incident plane waves, we use the “isotropic”
spacing Δi between constant-θ rings on the unit sphere.
Specifically, if there are N constant-θ rings (including the
two at θ = 0 and θ = π), we have Δi = π/(N − 1).

Unlike the points (θt,φp) with Δθ and Δφ spacing used
in computing the Fourier coefficients in Section 2, the points
(θs,φs) do not lie on a rectangular grid. Hence, the number
of plane-wave directions of incidence in the isotropic
environment (denoted by S) is smaller than the number
of grid points used to compute the Fourier coefficients in
Section 2, even if Δi = Δθ.
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Table 1: Correlations computed from the classical formula (13) and from the isotropic simulation formula (16) with 180 plane-wave
directions of propagation. The data is collected at 751 MHz.

Good antenna Nominal antenna Bad antenna

Classical formula (13) −0.0381 + 0.0009i −0.5749− 0.0054i −0.9042 + 0.0172i

Isotropic simulation formula (16) −0.0367− 0.0020i −0.5740− 0.0040i −0.9066 + 0.0130i

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

d = 0.5λ

Δθ/Δi

ρ = −0.15198

E

(a)

0 0.5 1 1.5 2
0

0.5

1

ρ = 0.0094989

Δθ/Δi

d = 2λ

E

(b)

Figure 5: The error E in (19) as a function of Δθ/Δi where Δθ = π/(N + 1). N is computed from (5) with γ = 2. Large values of Δθ/Δi

correspond to dense plane-wave distributions in the isotropic environment.

Figure 5 shows the error:

E = ∣

∣ρ(d)− corr(V1,V2)
∣

∣, (19)

where ρ(d) is the exact correlation (18) and corr(V1,V2) is
the correlation obtained from the isotropic environment, as
a function of Δθ/Δi. We set γ = 2 in the computation of N in
(5) and use Δθ = π/(N + 1).

For both d = λ/2 and d = 2λ, the error becomes
negligible when the ratio Δθ/Δi is about 0.7. In other
words, accurate correlations are obtained when the isotropic
sampling distance Δi is about 1.4 times the sampling distance
Δθ required to compute the Fourier coefficients in Section 2
with (γ = 2). It is not surprising that accurate correlations
are obtained in the isotropic environment when Δi > Δθ
since the correlation (13) is an “average-over-an-entire-
sphere” quantity whereas the expression for Δθ is derived to
achieve the more demanding “point-by-point” accuracy.

To accurately reproduce the isotropic field conditions in a
reverberation chamber, one must choose a chamber size large
enough to ensure enough plane-wave directions of incidence
for a given DUT size. We also note that these numerical
simulations validate the general theorem by De Doncker and
Meys [11].

Before leaving this section we investigate the sampling
required for a 2D configuration where the correlation is
based on incident fields from a small region of the unit
sphere. This type of model will be used in Section 5 to sim-
ulate a transmitting base station that broadcasts according to
a Laplacian distribution.

The two z-directed Hertzian dipoles are still on the x-axis
at r1 = (−d/2, 0, 0) and r2 = (d/2, 0, 0) as shown in Figure 6.
The dipoles are now illuminated by a collection of plane
waves that all propagate in the x-y plane. 180 directions
of incidence are selected according to the approximate
Laplacian distribution [21, equation (18)] with σθ = 35◦

centered on φ = 90◦, as indicated in Figure 6. At any instant,
each of the 180 plane waves is multiplied by a random
phase to create a particular incident field. We achieve 10000
different incident fields by applying 10000 independent sets

of random phases. The outputs V
( j)
1 and V

( j)
2 are thus

obtained for j = 1, 2, . . . , 10000, and the exact correlation
in this experiment is corr(V1,V2).

We also compute an approximate correlation based on a
fixed set of equally spaced directions of incidence illustrated
by the ring in Figure 6. The angular spacing between two
directions of incidence on this ring is Δr . We simply replace
the directions of incidence from the Laplacian distribution by
the closest direction of incidence on this ring. The sampling
theorem derived in Section 2 states that the angular spacing
between these directions of incidence should be Δφ = π/(N+
1) with N computed from (5).

Figure 7 shows the error of the approximate correlation
as a function of the ratio Δφ/Δr . We see that the error in
this case with a limited range of directions of incidence only
vanishes when Δr is roughly equal to the spacing Δφ required
by the sampling theorem. Hence, to accurately reproduce
the model-specified field conditions in an anechoic-chamber
tests system consisting of a ring of antennas, one must supply
enough antennas to satisfy the sampling theorem.

3.2. CTIA Reference Antennas. To expedite the baseline
between laboratories participants of CTIA LTE round robin,
a set of MIMO 2 × 2 reference antennas has been developed
[10]. A subset of these antennas has dimension 240 × 80 ×
1 mm and operate at 751 MHz corresponding to Rmin =
0.12 m and kRmin = 1.89. Hence, (5) gives N = 4 when γ =
2, and the required sampling is therefore Δθ = Δφ = 36◦.

We compute the isotropic correlation with 180 plane-
wave directions of propagation corresponding to an isotropic
sampling of Δi = 16.3◦. Table 1 shows the resulting
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Figure 6: Two z-directed Hertzian dipoles on the x-axis at r1 = (−d/2, 0, 0) and r2 = (d/2, 0, 0) with surrounding plane-wave directions of
propagation and Laplacian distribution. All directions of incidence are in the x-y plane.
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Figure 7: The error E as a function of Δφ/Δr where Δφ = π/(N + 1). N is computed from (5) with γ = 2. Large values of Δφ/Δr correspond
to dense plane-wave distributions along in the ring in Figure 6.

correlations for three antennas: (i) good antenna with low
correlation, (ii) nominal antenna with average correlation,
and (iii) bad antenna with high correlation. The table
validates the general theorem by De Doncker and Meys [11]
in (16).

These results have also been verified experientially in a
reverberation chamber at NIST [5–9].

4. Isotropic Environment of
a Rectangular Reverberation Chamber

A reverberation chamber provides a rich scattering environ-
ment that is ideal for over-the-air testing of wireless devices.
The chamber typically contains a number of wall-mounted
transmitting antennas, a mechanical mode stirrer, and a
turntable on which the DUT is placed; see Figure 8. The
turntable provides so-called platform stirring [22]. As we
shall see, at any given position of stirrer and turntable, the
DUT is illuminated by a large number of plane waves whose
directions of propagation are determined by the modes of the
chamber [1, 2]. We assume that the chamber is excited by a
Hertzian dipole with frequency f (as usual ω = 2π f ).

x

y

z

Turntable

Chamber

Stirrer

Wall-mounted antennas

Dy

Dx

Dz

^φ

ẑ

ρ̂

Figure 8: Rectangular reverberation chamber with dimensions Dx ,
Dy , and Dz. The chamber contains four wall-mounted transmitting
antennas, a mechanical stirrer, and a turntable. The DUT position
is near the edge of the turntable.

4.1. Modes in Terms of Plane Waves. Let the rectangular
chamber have the dimensions Dx, Dy , and Dz as shown in
Figure 8. The dyadic Green’s function (field due to a Hertzian
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dipole source) can be expressed as a superposition of modes
determined such that the tangential electric field vanishes
on the chamber walls [3, pages 383-384]. Specifically, each
rectangular field component can be expressed as a sum of
terms of the form (we use the z component for illustration
purposes; the x and y components have similar expressions):

Ez
(

x, y, z, x′, y′, z′,nx,ny ,nz
)

= E0

(

x′, y′, z′,nx,ny ,nz
)

× sin
(

nxπx

Dx

)

sin

(

nyπy

Dy

)

cos
(

nzπz

Dz

)

,

(20)

where E0(x′, y′, z′,nx,ny ,nz) is independent of the obser-
vation point (x, y, z) but dependent on the source location
(x′, y′, z′), the source strength, and the mode indices nx, ny ,
and nz, which can take on any nonnegative value.

There is one additional term (called an irrotational
mode) that goes with the mode in (20) to ensure that the field
satisfies the wave equation with wave number that corre-
sponds to the medium in the chamber. The irrotational mode
has an identical plane-wave representation, so analyzing (20)
is sufficient. Also, the sum over nz can be performed in closed
form to obtain a formula that involves just a double sum [3,
page 384] and [1, page 34]. As usual, all losses (including
wall losses) are accounted for by an effective lossy medium
[3, page 389] and [1, page 35].

We associate a frequency fnx ,ny ,nz and a propagation
constant knx ,ny ,nz with each mode:

fnx ,ny ,nz =
c

2

√

√

√

√

(

nx
Dx

)2

+

(

ny

Dy

)2

+
(

nz
Dz

)2

, (21)

knx ,ny ,nz =
√

√

√

√

(

nxπ

Dx

)2

+

(

nyπ

Dy

)2

+
(

nzπ

Dz

)2

=
√

k2
x + k2

y + k2
z ,

(22)

where kx = nxπ/Dx, ky = nyπ/Dy , and kz = nzπ/Dz . Note
that sin(x) = (eix − e−ix)/(2i) and cos(x) = (eix + e−ix)/2 to
convert (20) to

Ez
(

x, y, z, x′, y′, z′,nx,ny ,nz
)

= −
E0

(

x′, y′, z′,nx,ny ,nz
)

8

×
[

ei(kxx+ky y+kzz) + 7 more terms
]

,

(23)

where “7 more terms” indicate that the square bracket
contains seven additional terms of the form ei(±kxx±ky y±kzz).
Hence, each mode can be expressed as the sum of eight
plane waves with propagation vectors ±kxx̂± ky ŷ ± kz ẑ. The
excitation factor can be written as

E0

(

x′, y′, z′,nx,ny ,nz
)

=
F0

(

x′, y′, z′,nx,ny ,nz
)

(1− 2i/Q) f 2
nx ,ny ,nz − f 2

, (24)
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Figure 9: Normalized magnitude of the excitation factor as
function of mode frequency for a 750 MHz driving signal and a
30 ns RMS delay. Only modes in a “3 dB” region near the peak get
effectively excited.

where F0(x′, y′, z′,nx,ny ,nz) is independent of frequency f
and Q is the quality factor that accounts for wall and other
losses in the chamber. Q is related to the RMS power delay
time τ through τ = Q/ω. The 8 directions of incidence for a
single mode are

̂ki =
±x̂(nx/Dx)± ŷ

(

ny/Dy

)

± ẑ(nz/Dz)
√

(nx/Dx)2 +
(

ny/Dy

)2
+ (nz/Dz)

2
, (25)

with the corresponding mode frequency given by (21).
The magnitude of the excitation factor 1/[(1 −

2i/Q) f 2
nx ,ny ,nz − f 2] (normalized) as a function of mode

frequency fnx ,ny ,nz for a 750 MHz driving signal and a 30 ns
RMS delay is shown in Figure 9. We see that this factor has
a peak at the diving frequency and that it falls off fairly
slowly away from this frequency. For a chamber to work
well, it must support a significant number of plane waves,
which translates into the requirement that there must be
a significant number of modes in the region where the
excitation factor is significantly nonzero. One typically
sets the threshold point where modes are considered “un-
excitable” at the point where the excitation factor has fallen
3 dB. Notice that the width of the excitation factor depends
on the quality factor. One of the benefits of using multiple
wall-mounted transmitting antennas is that all excitable
modes do actually get excited.

Let us now show the actual plane-wave directions of
incidence for two reverberation chambers with 30 ns RMS
delay that are driven by a 750 MHz source. One is electrically
large (Dx = 3 m, Dy = 2 m, and Dz = 1.5 m) at 750 MHz;
the other is electrically small (Dx = 1 m, Dy = 0.9 m, and
Dz = 0.8 m) at 750 MHz. We include modes that lie in
a 50 MHz band around 750 MHz. Figure 10(a) shows the
plane-wave directions of incidence for the large chamber.
The directions of incidence are nonuniformly distributed
over the unit sphere with a maximum distance between
points of 22◦ and an average distance of 6◦. The largest gaps
occur near the north and south poles.

As the stirrer in the reverberation chamber rotates, the
amplitudes and phases of the plane waves change to produce
an isotropic environment as discussed in the previous
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Figure 10: Plane-wave directions of incidence for modes in a 50 MHz band around 750 MHz in a large chamber with dimensions Dx = 3 m,
Dy = 2 m, and Dz = 1.5 m. (a) Without turntable. (b) With turntable rotating around a z-directed axis. Without the turntable, the maximum
distance between directions of incidence is 22◦ and the average distance is 6◦.

section. In addition to the stirrer, the chamber contains
a turntable on which the DUT rides. As the turntable
rotates, the DUT sees the plane waves from different
angles, effectively creating additional directions of incidence.
Figure 10(b) shows all the directions of incidence (see from
the point of view of the DUT) for a turntable that rotates
around a z-directed axis, as illustrated in Figure 8. The
turntable thus multiplies the effective number of plane waves
available. Of course, only plane waves corresponding to a
single rotated version of Figure 10(a) are available at any
instant.

Figure 11(a) shows the plane-wave directions of inci-
dence for the small chamber. The directions of incidence
are sparsely distributed with a maximum distance between
points of 48◦ and an average distance of 27◦. There are large
gaps throughout the unit sphere. Figure 11(b) shows all the
directions of incidence (see from the point of view of the
DUT) for the turntable in Figure 8. Again, only plane waves
corresponding to a single rotated version of Figure 11(a) are
available at any instant.

4.2. Correlation Simulations. Let us now investigate how
these reverberation chambers perform when evaluating the
correlation between the two z-directed Hertzian dipoles in
Figure 4. The exact correlation is given by (18), and the error
E in (19) for the large chamber is shown in Figure 12 as a
function of dipole separation. The “turntable off” simulation
is performed by randomly changing the phase and amplitude
of incident plane waves with directions of incidence in
Figure 10(a) (the plane waves are given by E0 exp(−ik̂ki · r)

with ̂ki given by (25) and ̂ki · E0 = 0). The “turntable

on” simulation is performed by repeating the “turntable
off” simulation with the plane-wave directions of incidence
rotated by a fixed amount. In other words, the “turntable
on” simulation accurately replicates the actual situation
encountered by the DUT in a real reverberation chamber
where only one set of plane waves (corresponding to a rotated
version of the plane waves for a fixed DUT orientation) is
available at any given instant. Figure 12 demonstrates that
the turntable dramatically improves the accuracy of the
computed correlation between the dipoles. This improved
accuracy is achieved by illuminating the two dipoles from
additional directions.

The error E in (19) for the small chamber is shown
in Figure 13 as a function of dipole separation. With
the sparse coverage of plane-wave directions of incidence
(Figure 11(a)), the correlation obtained with the turntable
off is very inaccurate. The error is above 0.3 for certain values
of the dipole separation. Remarkably, with the turntable on,
the error falls dramatically to an almost tolerable level.

4.3. Anisotropy Coefficients. One of the most important
statistical properties of the field in the chamber is the degree
to which it is isotropic, that is, how evenly distributed
are the directions of propagation and polarizations of the
incoming plane waves at the location of the DUT. With
the isotropy test developed by the international standards
committee (ICE) [23], field anisotropy coefficients measure
the bias of the average direction of polarization of the
electric field in the chamber. The bias is computed by
comparing three components of the electric field obtained
from dipole-antenna measurements. The degree of isotropy
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Figure 11: Plane-wave directions of incidence for modes in a 50 MHz band around 750 MHz in a small chamber with dimensions Dx = 1 m,
Dy = 0.9 m, and Dz = 0.8 m. (a) Without turntable. (b) With turntable rotating around a z-directed axis. Without the turntable, the
maximum distance between directions of incidence is 48◦ and the average distance is 27◦.
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Figure 12: The error E as a function of dipole separation d for the
large chamber with dimensions Dx = 3 m, Dy = 2 m, and Dz =
1.5 m operating around 750 MHz.

of an actual chamber is determined by comparing the
observed and ideal (known from theory) distributions of the
anisotropy coefficients. We shall next compute the anisotropy
coefficients for the large and small reverberation chambers
introduced above.

Three orthogonal components of the electric field
recorded at the location of the DUT are required to compute
the field anisotropy coefficients [23]:

Aαβ(n) =
|Eα(n)|2/Pi(n)−

∣

∣

∣Eβ(n)
∣

∣

∣

2
/Pi(n)

|Eα(n)|2/Pi(n) +
∣

∣

∣Eβ(n)
∣

∣

∣

2
/Pi(n)

, (26)

where α and β denote the three orthogonal directions.
The quantity Pi(n) is the net input power (forward minus
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Figure 13: The error E as a function of dipole separation d for the
small chamber with dimensions Dx = 1 m, Dy = 0.9 m, and Dz =
0.8 m operating around 750 MHz.

reflected) injected into the chamber, and n is an index that
determines the position of the turntable, the position of
the mechanical stirrer, and the active transmit antenna. In
addition to the three anisotropy coefficients defined by (26),
the test in [23] also employs a total anisotropy coefficient
that we shall not investigate here. For a perfectly isotropic
chamber, Aαβ(n) is uniformly distributed between −1 and
1. Pages 195 and 196 of [23] show plots of anisotropy
coefficients for well-stirred and poorly stirred reverberation
chambers.

When the DUT is placed near the edge of the turntable
in Figure 8, the three relevant orthogonal directions for the
isotropy test are (i) the direction ẑ normal to the turn table,
(ii) the direction ̂φ tangential to the edge of the turntable,
and (iii) the direction ρ̂ radial to the turntable. Hence, in a
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Figure 14: Histograms of anisotropy coefficients for large chamber
with dimensions Dx = 3 m, Dy = 2 m, and Dz = 1.5 m operating
around 750 MHz.
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Figure 15: Histograms of anisotropy coefficients for small chamber
with dimensions Dx = 1 m, Dy = 0.9 m, and Dz = 0.8 m operating
around 750 MHz.

standard cylindrical coordinate system (ρ,φ, z) centered on
the turntable, α and β can take the values ρ, φ, and z.

Figures 14 and 15 show the histograms for the anisotropy
coefficients of the large (Dx = 3 m, Dy = 2 m, and Dz =
1.5 m) and small (Dx = 1 m, Dy = 0.9 m, and Dz = 0.8 m)
reverberation chambers (both with the turntable active). We
see that the anisotropy coefficients for the large chamber
closely follow a uniform distribution, whereas the anisotropy
coefficients for the small chamber show a significant devia-
tion from a uniform distribution. We conclude that the small
chamber does not produce enough plane waves, even though
the turntable is active.

4.4. Remarks. We have now described the plane-wave envi-
ronment in a reverberation chamber using the mode expan-
sion of the dyadic Green’s function for the rectangular box.
We have seen how the plane-wave directions of incidence
as seen from the DUT depend on the dimensions of the

chamber and on whether or not a turntable is active.
Through numerical simulations, we evaluated the accuracy
of correlation experiments in the chamber. It would be nice
to have a theory that explicitly determined the accuracy
of the chamber as a function of chamber dimension and
chamber loading (quality factor Q). Such a theory does not
exist, and at the present moment the accuracy can only be
determined by numerical simulations like the ones presented
here. Moreover, if a precise theory existed, it would have
to be fairly complicated because accuracy depends not only
on mode density (which is largely determined by chamber
volume [1, page 30]) but also on the actual plane-wave
directions of incidence, which depend on all 3 rectangular
chamber dimensions. For example, a large chamber may have
a large “plane-wave gap” near the poles, which in turn can
make it less accurate than a smaller chamber.

5. MIMO Capacity Simulations

In this section we perform MIMO capacity simulations with
a two-antenna DUT receiver in an isotropic environment.
The transmitter is a standard two-antenna base station.
We employ the good, nominal, and bad reference antennas
described in Section 3.2 and show that they produce clearly
distinguishable throughput curves. The approach taken in
this section was inspired by [5–9].

A schematic of the channel model is shown in Figure 16.
The base station employs two antennas separated by D = 4λ
and radiating through a standard 3-sector pattern A(Θ) [24,
page 9]. The voltage input amplitudes for the two base station
antennas are denoted VT

1 and VT
2 . Each base station antenna

broadcasts in the directions Θs, s = 1, 2, . . . , S, according to
the Laplacian distribution approximation [21, equation (18)]
with σθ = 5◦. We have now S complex numbers for base
station antenna 1,

U (1)
s = VT

1 A(Θs)eik(D/2) sinΘs , (27)

and S complex numbers for base station antenna 2,

U (2)
s = VT

2 A(Θs)e−ik(D/2) sinΘs . (28)

In practice, the two-antenna 2D Laplacian base station
output would be fed to the reverberation chamber through
two or more wall antennas. The directions of propagation
from the base station are thus distributed randomly into
plane waves in the chamber, and the Laplacian distribution
is not preserved. In other words, the chamber does not
reproduce the Laplacian distribution. However, the correla-
tion imposed on the two information streams by the base
station is preserved. Further, one often feeds a reverberation
chamber from a channel emulator that is programmed to
produce advanced spatial channel models, which can include
both Doppler spectra, long time delays (much longer than
the one produced by the chamber alone), and specified
directions of incidence. When such channel models are fed
to the reverberation chamber, the channel model is said to
be evaluated isotropically. In such situations, the specified
directions of propagation dictated by the channel model are
not preserved. However, if the emulator and reverberation
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chamber are adjusted properly, the time delays and Doppler
spectra of the channel model are preserved in the chamber.
The use of advanced channel models adds a lot of flexibility
to the reverberation chamber as an over-the-air test tool.

Next we select a set of evenly distributed points (θs,φs),
s = 1, 2, . . . , S, on the unit sphere as described in Section 3
to obtain S incoming plane-wave propagation directions for
illuminating the DUT. For j = 1, 2, . . . , J we compute a set
of random permutations of the numbers 1, 2, . . . , S given by
s′ = p( j, s). In addition, for j = 1, 2, . . . , J , we compute
two sets of uniformly distributed random variables vθ( j, s)
and vφ( j, s) in the range from 0 to 2π. The permutations
s′ = p( j, s) facilitate the random pairing between point
on the base station pattern and plane-wave directions of
incidence. The variables vθ( j, s) and vφ( j, s) provide random
phase adjustments for each pair.

We now have J different propagation channels that result
in the following DUT antenna outputs:

V
( j)
1 =

S
∑

s=1

[

U (1)
p( j,s) + U (2)

p( j,s)

]

×
[

eivθ( j,s)
̂θs·R1

(

θs,φs
)

+ eivφ( j,s)
̂φs·R1

(

θs,φs
)

]

,

V
( j)
2 =

S
∑

s=1

[

U (1)
p( j,s) + U (2)

p( j,s)

]

×
[

eivθ( j,s)
̂θs ·R2

(

θs,φs
)

+ eivφ( j,s)
̂φs·R2

(

θs,φs
)

]

,

(29)

which can be written in matrix form as
⎡

⎣

V
( j)
1

V
( j)
2

⎤

⎦ = H
( j)
[

VT
1

VT
2

]

, (30)

where H
( j)

is the 2 × 2 channel matrix. The corresponding
channel capacities are

C( j) = log2

[

det
(

I +
Pt

2N0
H

( j)
(

H
( j)
)H

)]

, (31)

where the superscript H indicates the transpose complex
conjugate, N0 is the receiver noise, and Pt the transmitter
power.

Figure 17 shows the capacity curves as functions of the
signal to noise ratio (SNR) for the good, nominal, and bad
reference antennas computed with S = 180 and J = 10000.
These curves are obtained by computing the mean capacity
for varying SNR. The mean is taken over all J = 10000
propagation channels. To achieve a capacity of 7 bps/Hz, the
three reference antennas require very different SNR values:
the bad reference antenna requires an SNR of 19 dB, whereas
the good reference antenna requires only an SNR of 13 dB.
The difference in SNR between good and bad reference
antennas is in this case 6 dB. Similarly, to achieve a capacity
of 12.5 bps/Hz, the difference in SNR between good and bad
reference antennas is 7 dB. Hence, the capacity curves are
clearly distinguishable, thereby confirming the capability of
the isotropic environment for over-the-air MIMO testing.
However, given the large variation in correlation of the three

Base station with 4λ separation

3-sector
pattern

DUT with two outputs

and illuminated by the
plane waves

T1 T2

Random phaseRandom phase

Directions approximate
5 degree Laplacian

(V1,V2) is “inside” sphere

Figure 16: Channel model employing an isotropic environment.
Each point on the base station pattern is randomly paired with
a plane-wave propagation direction illuminating the DUT. In
addition, each “pairing” is supplied by a random phase. The
multiple states of the model are obtained by changing the pairing
and the random phases.
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Figure 17: Capacity curves as functions of SNR for the “good,”
“nominal,” and “bad” reference antennas in an isotropic envi-
ronment. To achieve a capacity of 7 bps/Hz, the three reference
antennas require very different SNR values: the bad reference
antenna requires an SNR of 19 dB, whereas the good reference
antenna requires only an SNR of 13 dB. The difference in SNR
between good and bad reference antennas is in this case 6 dB.
Similarly, to achieve a capacity of 12.5 bps/Hz, the difference in SNR
between good and bad reference antennas is 7 dB.
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antennas (see Table 1), it is no surprise that the capacity
curves are very different. Most practical antennas would
likely fall in the nominal category.

6. Conclusions

We investigated the use of reverberation chambers for over-
the-air testing of MIMO devices by examining antenna
correlation and throughput in isotropic environments. A
truncated spherical-wave expansion was used to derive
sampling theorems and the Fourier expansions for the
pattern of an arbitrary DUT. The required sampling rate of
the pattern depends on the frequency, the physical size of the
entire DUT (not just its antenna), and the relative location of
the DUT to the spherical coordinate system.

Through numerical investigations involving Hertzian
dipoles, it was shown how the sampling rate for the pattern
determines the plane-wave density required in the isotropic
environment to obtain accurate values for the correlation
between antennas. It was also demonstrated that antenna
correlation in the isotropic environment is equivalent to the
classical definition of antenna correlation, as was proven
theoretically by De Doncker and Meys [11]. In particular, the
correlations computed for the CTIA reference antennas [10]
in isotropic simulations agree with the correlations obtained
from the classical definition.

Using the dyadic Green’s function for the rectangular
box, we computed the plane-wave distribution for realistic
reverberation chambers, which were in turn used in simu-
lations of antenna correlations and anisotropy coefficients.
No general theory that explicitly determined the accuracy
of the chamber as a function of chamber dimension and
chamber loading was found. Instead we explained how one
can determine accuracy estimates through simulations.

We performed MIMO channel capacity simulations
using a standard base station model and the DUT (employ-
ing the CTIA reference antennas) placed in a single-tap
plane-wave reverberation chamber model. The capacity
curves obtained with the good, nominal, and bad reference
antennas were clearly distinguishable, as would be expected
given the vast difference between the correlations of these
antennas; see Table 1.

Hence, we conclude that isotropic tests performed in a
reverberation chamber can distinguish between DUTs that
employ the different CTIA reference antennas. It would be
interesting to perform link-level simulations with multitap
isotropic channel models to further investigate this over-the-
air test method.
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