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Analysis and design of multielement antenna systems in mobile fading channels require a model for the space-time
cross-correlation among the links of the underlying multipleinput multiple-output (MIMO) Mobile-to-Mobile (M-to-M)
communication channels. In this paper, we propose the modified geometrical two-ring model, a MIMO channel reference model
for M-to-M communication systems. This model is based on the extension of single-bounce two-ring scattering model for flat
fading channel under the assumption that the transmitter and the receiver are moving. Assuming single-bounce scattering model
in both isotropic and nonisotropic environment, a closed-form expression for the space-time cross-correlation function (CCF)
between any two subchannels is derived. The proposed model provides an important framework in M-to-M system design, where
includes many existing correlation models as special cases. Also, two realizable statistical simulation models are proposed for
simulating both isotropic and nonisotropic reference model. The realizable simulation models are based on Sum-of-Sinusoids
(SoS) simulation model. Finally, the correctness of the proposed simulation models is shown via different simulation scenarios.

1. Introduction

Mobile-to-Mobile communication channels are expected
to play an important role in mobile ad-hoc networks
(MANETs), intelligent transportation systems, and relay-
based cellular networks, where both the transmitter (Tx)
and the receiver (Rx) are in motion. M-to-M channels differ
from conventional Base-to-Mobile (B-to-M) cellular radio
channels, where the base station (BS) is stationary and
relatively free of local scattering.

In a typical macrocell, the BS is elevated and it receives
the signal within a narrow beam width, whereas the mobile
station (MS) is surrounded by local scatterers. MIMO
channel modeling of this typical macrocell environment was
investigated in [1, 2]. However, in outdoor microcells, indoor
picocells, and M-to-M communication channels, both Tx
(BS/MST) and Rx (MS/MSR) are normally surrounded by
local scatterers. Clearly, the MIMO macrocell models of [1, 2]
cannot be used for such environments. For these situations,
we need a double-directional channel model (see, e.g., [3–
5], in which the double-directional concept is introduced

and some measurements results are provided). Akki and
Haber [6, 7] showed that the received envelope on M-to-M
channels is Rayleigh faded under non line-of-sight (NLoS)
condition, but the statistical properties differ from B-to-M
channels. They proposed a reference model for single-input
single-output (SISO) M-to-M Rayleigh fading channels.
Methods for simulating SISO M-to-M channels have been
proposed in [8, 9]. Recently, Pätzold et al. have proposed a
theoretical reference model for narrow-band MIMO M-to-
M communication channels in [10–12]. This model is based
on geometrical “double-bounce two-ring model” (DBTR)
and belongs to the class of double-directional channel
models. DBTR model assumes that both Tx and Rx are
surrounded by scatterers and each ray is reflected twice. In
the other words, in DBTR model, it is assumed that every Tx
side scatterer captures the radio signal from Tx and reradiates
it in the form of a plane wave to the Rx side scatterers. Then,
Rx receives the transmitted radio signal from itself scatterers.
A distance-independent DBTR model was proposed in [13]
and was simulated in [14]. The main difficulty of DBTR
model, discussed in [15, 16], is that the signals reflected by
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the scatterers at the Rx side are possibly not independent and
the channel coefficient may still not be zero mean complex
Gaussian. Therefore, the channel covariance matrix cannot
completely describe the MIMO channel [16].

This paper proposes a theoretical reference model for
MIMO M-to-M Rayleigh fading channels, avoiding difficulty
of DBTR model. This model is based on the extension of geo-
metrical “single-bounce two-ring” (SBTR) model proposed
in [17] for MIMO B-to-M channel. The SBTR model belongs
to the class of double-directional B-to-M channel models. In
[17], the authors have avoided many difficulties of the DBTR
model. Furthermore the correctness of their model has been
shown via real experimental data. Our model, named here
modified geometrical two-ring (MGTR), in comparison with
SBTR, includes the mobility of both the transmitter and
the receiver. Furthermore, we derive a closed-form space-
time correlation function for 2D nonisotropic scattering
environment. Also, we propose two realizable SoS-based
simulation models for simulating the reference model in
both isotropic and nonisotropic conditions.

The remainder of the paper is organized as follows.
In Section 2, we describe the MGTR, a theoretical refer-
ence model for MIMO M-to-M channels. In Section 3, a
closed-form expression for the space-time cross-correlation
function (STCCF) is derived from our theoretical reference
model. Section 4 details the SoS-based simulation models.
In Section 5, we describe the calculating methods of simu-
lation model’s parameters. The comparison of the statistical
simulation model with the theoretical reference model is
presented in Section 6. Finally, concluding remarks are
provided in Section 7.

2. Theoretical Reference Model for
MIMO M-to-M Channels

In this section, we describe the MGTR model for narrow-
band MIMO M-to-M channels. As mentioned before,
MGTR is based on the extension of SBTR model in [17],
in which both transmitter and receiver are in motion.
Consider a narrow-band single-user MIMO communication
system with nT transmitter and nR receiver antenna elements.
Assume both Tx and Rx are in motion and equipped with
low elevation antennas. The radio propagation environment
is characterized by 2D scattering with NLoS conditions
between the transmitter and the receiver. The MIMO channel
can be described by an nR × nT matrix H(t) = [hi j(t)]nR×nT
of complex faded envelopes.

2.1. Geometrical Modified Two-Ring Model. The geometry of
modified two-ring model is shown in Figure 1 for a MIMO
M-to-M channel with nT = nR = 2 antenna elements,
where local scatterers of MST and MSR are distributed on two
separate rings. The key difference between our model and
M-to-M DBTR model is that here only single-bounce rays are
considered while in M-to-M DBTR model double-bounce
rays have been considered. Therefore, our assumption avoids
the problems of DBTR model. Here, we can model the
multiple-bounce rays as secondary effects. As can be seen

from Figure 1, the local scatterers around the transmitter,
denoted by SkT (k = 1, 2, . . . ,NT), are located on a ring of
radius R′, while the local scatterers SiR (i = 1, 2, . . . ,NR)
around the receiver lie on a separate ring of radius R. The
symbols ϕT and φR denote the main angle of departure
(AOD) and the main angle of arrival (AOA), respectively and
the symbols ϕR and φT denote the auxiliary AOD and the
auxiliary AOA, respectively. It is assumed that the radii R′

and R are small in comparison with D, which is the distance
between the transmitter and the receiver (i.e., max{R,R′} �
D). The antenna spacings at the transmitter and the receiver
are denoted by δT and δR, respectively. Since the antenna
spacing are generally small in comparison with the radii R′

and R, we might assume that the inequality “min{R,R′} �
max{δT , δR}” is held. The tilt angles between the x-axis and
the orientation of the antenna array at the transmitter and
the receiver are denoted by βT and βR, respectively. Moreover,
it is assumed that the transmitter and the receiver move
with speeds vT and vR and in direction determined by the
angle of motions αT and αR, respectively. Furthermore, 2Δ
is the maximum angle spread at MST , determined by the
scattering around MSR. Similarly, 2Δ′ is the maximum angle
spread at MSR, determined by the scattering around MST .
From Figure 1, it is clear that Δ = arcsin (R/D), and Δ′ =
arcsin (R′/D). Note that geometry of our proposed model
includes many existing geometrical models.

However, it must be noted that it is impossible to derive
our reference model by fixing one station (Tx or Rx) and
inserting the relative velocity of Tx and Rx into other station
(Rx or Tx) in the previous B-to-M models. Here, we have two
independent clusters of the received paths and, it follows two
independent clusters of doppler components due to relative
velocity of the Tx and Rx.

2.2. Derivation of the Reference Model. In this subsection, we
derive the reference model for the MIMO M-to-M channel.
In Figure 1 by considering the forward channel (from MST
to MSR), the MSR receives single-bounce rays from both the
scatterer SiR around the MSR and the scatterer SkT around
the MST . For the frequency flat, subchannel between the
antenna elements A

p
T and Al

R, hlp(t) denotes the time-varying
complex baseband equivalent channel gain. Mathematical
representation of the superposition of rays at the Al

R results
in the following expression for the normalized channel gain:

hlp(t) =
√

ηT
NT

NT∑
k=1

exp
{
− j

2π
λ

(
dAp

TS
k
T

+ dSkTAl
R

)

+ jΨk
T + j2π f k1 t

}

+

√
ηR
NR

NR∑
i=1

exp
{
− j

2π
λ

(
dAp

TS
i
R

+ dSiRAl
R

)

+ jΨi
R + j2π f i2 t

}
,

(1)

where the first and the second summations correspond to the
MST and MSR rings, respectively. This expression shows the
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Figure 1: The modified geometrical two-ring model for a 2 × 2 MIMO channel with scatterers around mobile transmitter MST (left) and
mobile receiver MSR (right).

role of AOA and AOD in interrelation between the single-
bounce two-ring model in Figure 1 and the nR × nT channel
transfer matrix H(t), in which hlp(t) is the element of row l
and column p. The dXY denotes the distance between X and
Y , ηT and ηR show the respective contributions of scatterers
around the MST and MSR such that ηT + ηR = 1. NT

and NR are the number of scatterers around the MST and
MSR, respectively. Ψk

T and Ψi
R are the associated phase shifts.

Furthermore, as shown in Figure 1, ϕk
T and ϕi

R are AoD’s of
the waves that impinge on SkT and SiR. Similarly φk

T and φi
R

are AoA’s of the waves scattered from SkT and SiR. Note that
dAp

TS
k
T

and dAq
TS

k
T

are functions of ϕk
T , whereas dSkTAl

R
and dSkTAm

R

are functions of φk
T . Other dXY can be easily identified from

Figure 1. λ is the wavelength and frequencies f k1 and f i2 are
given by

f k1 = fTmax cos
(
αT − ϕk

T

)
+ fRmax cos

(
αR − φk

T

)
, (2)

f i2 = fTmax cos
(
αT − ϕi

R

)
+ fRmax cos

(
αR − φi

R

)
, (3)

where fTmax = vT/λ and fRmax = vR/λ are the maxi-
mum Doppler frequencies caused by the movement of the
transmitter and the receiver, respectively. We also assume

{Ψk
T}

NT

k=1 and {Ψi
R}NR

i=1 are mutually independent and iden-
tically distributed (i.i.d) random variables with uniform
distributions over [0, 2π). According to Figure 1, while ϕi

R

and φk
T are dependent to φi

R and ϕk
T , respectively, φi

R and ϕk
T

are independent variables. In what follows, we call ϕk
T the

AOD, and φi
R the AOA.

3. The Space-Time Cross-Correlation
Function of the Reference Model

The STCCF plays an important role in MIMO communi-
cation channels. In this section, we derive a closed-form
expression for STCCF. The normalized STCC between two
subchannel gains hlp(t) and hmq(t) is defined by ρlp, mq(τ) =
E[hlp(t)h∗mq(t + τ)], where E(·) is the statistical expectation
operator and (·)∗ denotes complex conjugate operation.

Based on independent properties of Ψk
T and Ψi

R, it can be
asymptotically written by

ρlp,mq(τ) = lim
NT →∞

ηT
NT

NT∑
k=1

E

×
[

exp
{
− j

2π
λ

(
dAp

TS
k
T
− dAq

TS
k
T

+ dSkTAl
R
− dSkTAm

R

)

− j2π f k1 τ
}]

+ lim
NR→∞

ηR
NR

NR∑
i=1

E

×
[
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{
− j

2π
λ

(
dAp

TS
i
R
− dAq

TS
i
R

+ dSiRAl
R
− dSiRAm

R

)

− j2π f i2τ
}]

.

(4)

For large NT and NR, the discrete AoDs, ϕk
T , and the discrete

AoAs, φi
R, can be replaced with their continuous random

variables ϕT and φR with probability density functions (pdf)
fMST (ϕT) and fMSR(φR), respectively. Therefore, (4) can be
reduced to the following integral form:

ρlp,mq(τ) =ηT
∫ π

−π
exp

{
− j

2π
λ

(
dAp

TST
−dAq

TST
+dSTAl

R
−dSTAm

R

)

− j2π f1τ
}
fMST

(
ϕT
)
dϕT

+ ηR

∫ π

−π
exp

{
− j

2π
λ

(
dAp

TSR
−dAq

TSR
+dSRAl

R
−dSRAm

R

)

− j2π f2τ
}
fMSR

(
φR
)
dφR,

(5)

where f1 and f2 are the continuous form of f k1 and f i2 in (2)
and (3), respectively. All of the dXY ’s in first integral of (5)
depend on ϕT and in the second integral depend on φR.
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Based on the application of the law of cosines in appro-
priate triangles in Figure 1, and assumption min{R,R′} �
max{δR, δT}, we obtain the following approximation:

dAp
TST
− dAq

TST
≈ −δpq

T cos
(
βT − ϕT

)
,

dSTAl
R
− dSTAm

R
≈ −δlmR cos

(
βR − φT

)
,

dAp
TSR
− dAq

TSR
≈ −δpq

T cos
(
βT − ϕR

)
,

dSRAl
R
− dSRAm

R
≈ −δlmR cos

(
βR − φR

)
.

(6)

Now we apply the law of sines and obtain the following
identities:

D

sin
(
φT − ϕT

) = R′

sin
(
π − φT

) ,

D

sin
(
φR − ϕR

) = R

sin
(
ϕR
) .

(7)

Based on the assumption max{R,R′} � D, we conclude that
Δ ≈ R/D, and Δ′ ≈ R′/D. This observation, together with
sin ε ≈ ε when ε is small, considering φT is almost π and ϕR

is almost 0, allows us to derive the following approximations
from (7):

φT ≈ π − Δ′ sinϕT ,

ϕR ≈ Δ sinφR.
(8)

Furthermore, using sin ε ≈ ε and cos ε ≈ 1 when ε is small,
together with (8), the following approximations are derived:

cos
(
βR − φT

) ≈ − cosβR + Δ′ sinβR sinϕT , (9)

cos
(
αR − φT

) ≈ − cosαR + Δ′ sinαR sinϕT , (10)

cos
(
βT − ϕR

) ≈ cosβT + Δ sinβT sinφR, (11)

cos
(
αT − ϕR

) ≈ cosαT + Δ sinαT sinφR. (12)

Now, by substituting (10) and (12) to continuous form
of (2) and (3), respectively, the following approximations are
derived:

f1 ≈ fTmax cos
(
αT− ϕT

)− fRmax cosαR+ fRmaxΔ
′ sinϕT sinαR,

f2 ≈ fTmax cosαT + fTmaxΔ sinφR sinαT + fRmax cos
(
αR − φR

)
.

(13)

For any given fMST (·) and fMSR(·), the right-hand side
(RHS) of (5) can be calculated numerically, using the
trigonometric function relationships given in (6). Note that
the RHS of (5) includes two parts. The first part corresponds

to STCC contributed by the scattering ring around the MST ,
and the second part comes from the scattering ring around
the MSR. Given the assumptions max{R,R′} � D and
min{R,R′} � max{δR, δT}, by plugging (6), (9) and (11)
into (5), equation (5) is approximated by

ρlp,mq(τ) ≈ηT
∫ π

−π
exp

{
j
2π
λ

(
δ
pq
T cos

(
βT − ϕT

)
+ δlmR

×(− cos βR+Δ′ sin βR sin ϕT
))

− j2π f1τ
}
fMST

(
ϕT
)
dϕT

+ ηR

∫ π

−π
exp

{
j
2π
λ

(
δ
pq
T

(
cos βT +Δ sin βT sin φR

)

+δlmR cos
(
βR − φR

))

− j2π f2τ
}
fMSR

(
φR
)
dφR.

(14)

Now, we consider the nonisotropic scattering. Prior
works use several different scatterer distributions, included
uniform, Gaussian, Laplacian, and von Mises. In this section,
we use the von Mises distribution because the measurement
experiences show that it approximates many of the previously
mentioned distributions. The von Mises pdf is defined by
[18]:

p(θ) = 1
2πI0(k)

exp
[
k cos

(
θ − μ

)]
, (15)

where I0(·) is the zeroth-order modified Bessel function of
the first kind, μ ∈ [−π,π) is the mean angle of scatterers’
distribution on the ring, and k controls the spread of
scatterers around the mean. When k = 0, p(θ) = 1/(2π) is
a uniform distribution yielding 2D isotropic scattering. As k
increases, the scatterers become more clustered around angle
μ and the scattering becomes increasingly nonisotropic.
Therefor, the von Mises pdf of AOD and AOA is given by
fMST (ϕT) = exp[kT cos(ϕT−μT)]/(2πI0(kT)) and fMSR(φR) =
exp [kR cos(φR − μR)]/(2πI0(kR)), respectively.

From [[19], eq. 3.338], we have

∫ π

−π
exp

(
x sin θ + y cos θ

)
dθ = 2πI0

(√
x2 + y2

)
. (16)

Under nonisotropic conditions, and by substituting (13) into
(14) and calculating the two integrals of (14) by (16), the
STCCF of our reference model is derived after some algebraic
manipulations (see (17)).

ρlp,mq(τ) ≈ ηT
I0(kT)

exp
[
− j

2π
λ
δlmR cosβR + j2π fRmaxτ cosαR

]

× I0

({
k2
T −

(
2π
λ

)2

δlmR Δ′ sinβR
(
δlmR Δ′ sinβR + 2δ

pq
T sinβT

)
− (2π)2

λ
δ
pq
T

(
δ
pq
T

λ
− 2 fTmaxτ cos

(
αT − βT

))
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− (2π fTmaxτ
)2 + 2

(2π)2

λ
δlmR Δ′τ sinβR

(
fTmax sinαT + Δ′ fRmax sinαR

)− (2π)2

× fRmaxτΔ
′ sinαR

(
fRmaxτΔ

′ sinαR − 2
λ
δ
pq
T sinβT + 2 fTmaxτ sinαT

)

+j2kT

[
2π
λ
δ
pq
T cos

(
βT−μT

)−2π fTmaxτ cos
(
αT−μT

)
+

2π
λ
δlmR Δ′ sinβR sinμT−2π fRmaxτΔ

′ sinαR sinμT

]}1/2
)

+
ηR

I0(kR)
exp

[
j
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δ
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T cosβT − j2π fTmaxτ cosαT

]

× I0
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k2
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(
2π
λ

)2

δ
pq
T Δ sinβT

(
δ
pq
T Δ sinβT + 2δlmR sinβR

)

− (2π)2

λ
δlmR

(
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λ
−2 fRmaxτ cos

(
αR−βR

))−(2π fRmaxτ
)2 +2

(2π)2

λ
δ
pq
T Δτ×sinβT

(
fRmax sinαR+Δ fTmax sinαT

)

− (2π)2 fTmaxτΔ sinαT

(
fTmaxτΔ sinαT − 2

λ
δlmR sinβR + 2 fRmaxτ sinαR

)

+j2kR

[
2π
λ
δlmR cos

(
βR − μR

)−2π fRmaxτ cos
(
αR − μR

)
+

2π
λ
δ
pq
T Δ sinβT sinμR−2π fTmaxτΔ sinαT sinμR

]}1/2
⎞
⎠.
(17)

Note that many existing correlation functions are special
cases of our MIMO M-to-M space-time correlation function
in (17). For example:

(i) For 2-D isotropic scattering around both MST and
MSR (kT = kR = 0), the STCCF of our refer-
ence model reduces to STCCF of MGTR model in
isotropic environment [20] as

ρlp,mq(τ) ≈ηT exp
[
− j

2π
λ
δlmR cosβR + j2π fRmaxτ cosαR

]

× I0

({
−
(

2π
λ

)2

δlmR Δ′ sinβR
(
δlmR Δ′ sinβR + 2δ
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T sinβT

)

− (2π)2
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δ
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T

(
δ
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λ
−2 fTmaxτ cos

(
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))−(2π fTmaxτ
)2+2

(2π)2

λ
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(
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)

−(2π)2 fRmaxτΔ
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(
fRmaxτΔ

′ sinαR− 2
λ
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T sinβT +2 fTmaxτ sinαT

)}1/2
⎞
⎠

+ ηR exp
[
j
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δ
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]

× I0
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−
(
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(
δ
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)
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λ
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(
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−2 fRmaxτ cos

(
αR −βR

))− (2π fRmaxτ
)2 +2

(2π)2

λ
δ
pq
T Δτ sinβT

(
fRmax sinαR+Δ fTmax sinαT

)
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δlmR sinβR+2 fRmaxτ sinαR

)}1/2
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⎠.

(18)
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(ii) For stationary MST ( fTmax = 0), the STCCF of our
reference model reduces to MIMO B-to-M commu-
nication channel model based on single-bounce two-
ring model proposed in [17, equation (7)].

(iii) If there is no scattering around the MST such in a
macrocell (ηT = 0) and stationary MST ( fTmax = 0),
(17) is simplified to STCCF of the conventional “one-
ring” model for MIMO B-to-M communication
channel proposed in [2]. In these conditions, the first
half of (17) disappears, and the remaining part is the
same as (12) in [2].

(iv) If there is no scattering around the MST such in a
macrocell (ηT = 0), stationary MST ( fTmax = 0) and,
with l = m and p = q, our reference model’s STCCF
is simplified to conventional “one-ring” model for
SISO B-to-M communication channel. This reduces
(17) to the well-known Clarke’s temporal correlation
function, that is, J0(2π fRmaxτ) [21], where J0(·) is the
Bessel function of the first kind of zero order.

4. The Simulation Model

In this section, we derive a statistical simulation model. The
theoretical model proposed in Section 2 assumes an infinite
number of scatterers, which prevents practical implementa-
tion. Actually, in a practical communication channels, the
number of scatterers is finite. In the following, we propose
a SoS-based statistical simulation model that matches the
statistical properties of the theoretical reference model.

Generally, SoS models [22] approximate the underlying
random processes by the superposition of a finite number
of properly selected functions and can be classified as either
statistical or deterministic. In other words, the SoS models
are based on a superposition of an infinite number of
weighted harmonic functions with equidistant frequencies
and random phases. Actually, the SoS models are applied
by using only a finite number of harmonic functions for
simulating the communication channels [22]. Deterministic
SoS models have sinusoids with fixed phases, amplitudes, and
Doppler frequencies for all simulation trials. Statistical SoS
models leave at least one of the parameter sets (amplitudes,
phases, or Doppler frequencies) as random variables that
vary with each simulation trial.

The following function is considered as the complex-
faded envelope in a real environment that contains finite
number of scatterers (finite number of harmonic functions):

ĥlp(t) =
√

ηT
NT

NT∑
k=1

exp
{
− j

2π
λ

(
dAp

TS
k
T

+ dSkTAl
R

)

+ jΨk
T + j2π f k1 t

}

+

√
ηR
NR

NR∑
i=1

exp
{
− j

2π
λ

(
dAp

TS
i
R

+ dSiRAl
R

)

+ jΨi
R + j2π f i2 t

}
,

(19)

where the parameters of above equation are defined in
Section 2.2. In contrast to the reference model, the discrete
AODs ϕk

T and AOAs φi
R are now constant, which will be

determined in Section 5. The phases Ψk
T and Ψi

R are still
i.i.d. random variables, each with uniform distribution on
the interval [0, 2π). Hence, ĥlp(t) represents a stochastic

process. The STCCF between ĥlp(t) and ĥmq(t) is defined

as ρ̂lp,mq(τ) = E[ĥlp(t)ĥ∗mq(t + τ)], where (·)∗ denotes
the complex conjugate operation, and E(·) is the statistical
expectation operator, which applies to the random phases
Ψk

T and Ψi
R. It can be shown that STCCF can be expressed

in closed form, considering finite scatterers around the MST
and MSR (finite number of harmonic functions), as

ρ̂lp,mq(τ) ≈ ηT
NT

NT∑
k=1

exp

×
{
j
2π
λ

(
δ
pq
T cos

(
βT − ϕk

T

)
+ δlmR

×
(
−cosβR+Δ′ sinβR sinϕk

T

))
− j2π f k1 τ

}

+
ηR
NR

NR∑
i=1

exp
{
j
2π
λ

(
δ
pq
T

(
cosβT +Δ sinβT sinφi

R

)

+δlmR cos
(
βR − φi

R

))
− j2π f i2τ

}
,

(20)

where

f k1 ≈ fTmax cos
(
αT − ϕk

T

)
− fRmax cosαR

+ fRmaxΔ
′ sinϕk

T sinαR

f i2 ≈ fTmax cosαT + fTmaxΔ sinφi
R sinαT

+ fRmax cos
(
αR − φi

R

)
.

(21)

In the following section we introduce two methods for
determining the constant discrete AODs ϕk

T and AOAs φi
R.

5. Parameters Calculation of Simulation Model

In this section, we present two methods for the computation
of the parameters determining the statistics of the MIMO
channel simulation model. The first method is the method
of exact Doppler spread (MEDS), which is recommended
in case of isotropic scattering. The second method is
the Lp-Norm method. This method can be applied for
any given distribution of the local scatterers, such as the
Gaussian distribution, the Laplacian distribution, and the
von Mises distribution. In other words, the Lp-Norm method
is a general method for calculation of the parameters of
deterministic simulation models.

5.1. Method of Exact Doppler Spread (MEDS). The MEDS
method was first time proposed in [23], which is rec-
ommended in case of isotropic scattering, and was also
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Figure 2: The normalized temporal ACF of the isotropic reference model and the MEDS simulation model for NT = NR = 20, 30, 40, 50.

described in [22] in details. This method is extended in [11,
12, 14] for simulating the MIMO M-to-M DBTR reference
model. According to MEDS method the discrete AODs ϕk

T

and AOAs φi
R are determined by [22]:

ϕk
T =

2π
NT

(
k − 1

2

)
, k = 1, 2, . . . ,NT ,

φi
R =

2π
NR

(
i− 1

2

)
, i = 1, 2, . . . ,NR.

(22)

Therefore, in the statistical simulation model only phases
Ψk

T and Ψi
R are random parameters. They are i.i.d. random

variables uniformly distributed over [0, 2π).

5.2. Lp-Norm Method. When the AODs ϕk
T and AOAs φi

R are
nonuniformly distributed on rings around the transmitter
and the receiver, respectively, the recommend method for
determining the AODs and AOAs is Lp-Norm which is
described in detail in [22]. This method is extended in [11,
12, 14] for simulating the MIMO M-to-M DBTR reference
model in nonisotropic environment. According to Lp-Norm
method, the discrete AODs ϕk

T and AOAs φi
R are determined

by minimizing the following error norm [22]:

E
(p)
ρlp,mq =

{
1

τmax

∫ τmax

0

∣∣∣ρlp,mq(τ)− ρ̂lp,mq(τ)
∣∣∣pdτ}1/p

,

(23)
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Figure 3: The STCCF of the isotropic reference model and the MEDS simulation model for δ
pq
T = δlmR = 1λ and NT = NR = 20, 30, 40, 50.

where p = 1, 2, . . ., ρlp,mq(τ) and ρ̂lp,mq(τ) are the STCCF
of the theoretical reference model in nonisotropic condition
(17) and the Lp-Norm simulation model, respectively. There-
fore, in the statistical simulation model only phases Ψk

T and
Ψi

R are random parameters. They are i.i.d random variables
uniformly distributed over [0, 2π).

6. Performance Evaluation of
the Simulation Models

This section evaluates the performance of the simulation
models by comparing its statistical properties with those
of the theoretical model. In all simulations, The following

parameters were chosen for both models. The antenna tilt
angles βT and βR were defined as βT = βR = π/2. At the
transmitter side, the angle of motion αT was set to π/4, while
the receiver was moving at an angle of αR = 0. Identical
maximum Doppler frequencies fTmax = fRmax = 91 Hz were
assumed, and the wavelength λ was set to λ = 0.15 m
(according to [10, 11]). Furthermore, the other parameters
have their quantity as Δ = π/3, Δ′ = π/6, μT = 5π/8, μR = 0,
and ηR = 0.2, according to Table I of [17].

6.1. The MEDS Simulation Model. Such as mentioned be-
fore, the model parameters ϕk

T and φi
R have been determined

by the MEDS method, since we assume isotropic scattering
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Figure 4: The normalized temporal ACF of the nonisotropic reference model and the Lp-Norm simulation model for NT = NR = 20, 30, 40,
50 (real part).

around both the transmitter and the receiver (kT = kR = 0).
Note that the mismatch criteria in the following simulation is
Relative Error and is set to 10−3. The relative error is defined
by

ερlp,mq =

{
(1/τmax)

∫ τmax

0

∣∣∣ρlp,mq(τ)− ρ̂lp,mq(τ)
∣∣∣2
dτ
}1/2

{
(1/τmax)

∫ τmax

0

∣∣∣ρlp,mq(τ)
∣∣∣2
dτ
}1/2 ,

(24)

where ρlp,mq(τ) and ρ̂lp,mq(τ) are the STCCF of the theoretical
reference model and the simulation model, respectively. Now
we consider two simulation scenario as follows.

(i) First Scenario. In this scenario, we compare the
temporal autocorrelation function (ACF) of the
MEDS simulation model with the temporal ACF
of theoretical isotropic reference model, derived in
Section 3 (18). Figure 2 shows this comparison for
{NT = NR = 20, 30, 40, 50}. This figure shows
that the temporal ACF of the MEDS simulation
model is matched to the temporal ACF of theoretical
isotropic reference model until a limited normalized
time delay, that is shown in the subfigures and we
call it the Matched Time. In other words, the matched
time is the maximum normalized time delay that
until it relative error between the reference and the
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Figure 5: The normalized temporal ACF of the nonisotropic reference model and the Lp-Norm simulation model for NT = NR = 20, 30, 40,
50 (imaginary part).

MEDS simulation model is negligible. The matched
time is dependent on the number of scatterers and
the relative error. It is denoted by [ fmaxτ]max, where
fmax = fTmax = fRmax . As evident from the simulations,
the maximum time delay τmax is a key parameter for
the proposed MEDS simulation model and requires
to be set properly to use it for simulating the
isotropic MGTR reference model. Also, by increasing
the number of scatterers (the number of harmonic
functions), NT and NR, the matched time increases.

(ii) Second Scenario. In this scenario, we compare the
STCCF of the simulation model (ρ̂lp,mq(τ)) with the

STCCF of the theoretical isotropic reference model
(ρlp,mq(τ)) for δ

pq
T = δlmR = 1λ. Figure 3 denotes

this comparison for {NT = NR = 20, 30, 40, 50}.
It is evident, like the first scenario, by increasing
the number of scatterers (the number of harmonic
functions), NT and NR, the matched time increases.

6.2. The Lp-Norm Simulation Model. For performance eval-
uation of Lp-Norm simulation model, first we determine the
optimum parameters ϕk

T and φi
R by minimizing the error

norm defined in (23). Note that in the following simulation
scenarios, we assume kT = 0.5 and kR = 0, according to
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Figure 6: The STCCF of the nonisotropic reference model and the Lp-Norm simulation model for δ
pq
T = δlmR = 1λ and NT = NR = 20, 30,

40, 50 (real part).

Table I of [17]. Also, we assume p = 2, actually, we minimize
the L2-Norm. Now, we consider two scenarios like the MEDS
simulation model scenarios. First, we compare the temporal
ACF of the Lp-Norm simulation model with the temporal
ACF of theoretical nonisotropic reference model, derived in
Section 3 (17) for {NT = NR = 20, 30, 40, 50}. Figures 4
and 5 show this comparison for real part and imaginary
part of temporal ACF, respectively. Second, we compare the
STCCF of the Lp-Norm simulation model with the STCCF of
theoretical nonisotropic reference model, for δ

pq
T = δlmR = 1λ

and {NT = NR = 20, 30, 40, 50}. This comparison result is
shown in Figures 6 and 7 for real part and imaginary part of
STCCF, respectively.

Note that the number displayed on the Figures 4–7 is the
minimized relative error of Lp-Norm method and defined as

relative error = E(2)
ρlp,mq{

(1/τmax)
∫ τmax

0

∣∣∣ρlp,mq(τ)
∣∣∣2
dτ
}1/2 .

(25)

It must be mentioned, unlike the MEDS method, the
Lp-Norm method has an advantage that can be applied
to any given distribution of the local scatterers (it is
useful for determining the nonuniform distributed discrete
parameters AODs and AOAs). But, it has more complexity
in comparison with the MEDS method. In MEDS method,
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Figure 7: The STCCF of the nonisotropic reference model and the Lp-Norm simulation model for δ
pq
T = δlmR = 1λ and NT = NR = 20, 30,

40, 50 (imaginary part).

the Matched Time is depended on the relative error and
the number of weighted harmonic functions (the number
of scatterers around the transmitter and the receiver, NT

and NR). In the Lp-Norm method, the minimization is
performed over interval [0, τmax] and the maximum Matched
Time is equal to τmax for predefined constants NT and NR that
by increasing them the minimization error is decreased.

7. Conclusion

This paper proposed a theoretical reference model for
Rayleigh fading MIMO M-to-M channels. This reference

model was based on the extension of single-bounce two-
ring model that avoids the technical difficulties of the
double-bounce two-ring model. The closed-form cross-
correlation function for 2D nonisotropic scattering was
derived for this proposed reference model. The presented
model is an extension of M-to-M channel model proposed
by Akki and Haber with respect to multiple antenna at
the transmitter and the receiver. Moreover, it includes the
single-bounce two-ring MIMO channel model introduced
by Wang et al. as a special case when the transmitter is
fixed and only the receiver is moving. Also, we propose
two efficient and realizable statistical simulation models for
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simulating the theoretical reference model in both isotropic
and nonisotropic conditions. The correctness of proposed
simulation models was shown via different simulation trials.
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