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A model-based imaging framework is applied to correct the target distortion seen in microwave imaging through a periodic wall
structure. In addition to propagation delays caused by the wall, it is shown that the structural periodicity induces high-order space
harmonics leading to other ghost artifacts in the through-wall image. To overcome these distortions, the periodic layer Green’s
function is incorporated into the forward model. A linear back-projection solution and a nonlinear minimization solution are
applied to solve the inverse problem. The model-based back-projection image corrects the distortion and has higher resolution
compared with free space due to the inclusion of multipath propagation through the periodic wall, but considerable sidelobe
clutter is present. The nonlinear solution not only corrects target distortion without clutter but also reduces the solution to a
sparse form.

1. Introduction

Electromagnetic sensing has been routinely used for imag-
ing selected objects in obstructive complex environments.
Among them, ground-penetrating radars (GPR), operating
in UHF/VHF frequencies, have been used to detect land-
mines and locate buried targets [1, 2]. Synthetic aperture
radars (SARs) have also been extensively used for land
surface and subsurface mapping. As is well known, all such
RF sensing systems suffer from multiscattering effects that
distort the image. This issue is even more pronounced
in through-wall radar imaging [3–5] where the wall can
cause image dislocation, deformation, and ghosting due to
propagation delay, ray bending, and higher order modal
scattering from structural periodicity [6].

Several efforts have been published on improving
through-wall imaging [7–11]. However, these works have
primarily focused on imaging through homogeneous layered
walls. In this paper, we instead focus on an imaging frame-
work aimed at mitigating multi-scattering from periodic
walls. Specifically, we introduce a corrective approach that
overcomes issues with RF propagation through a periodic
wall. When compared to our previous work in [12–14],

this paper provides a more generalized framework that can
be used to correct propagation distortions and enhance
target resolution. Rather than using numerical techniques to
characterize propagation through periodic structures [15–
18], a much faster near zone Floquet modal solution [19,
20] is incorporated into a linear forward model. A back-
projection (BP-) based image is then obtained from the
forward model using a diagonal approximation to the least-
squares matrix solution. Due to the multipath introduced
by the Floquet modes, the BP solution actually gives a
higher resolution image than in free space. However, it also
introduces high side-lobes and clutter into the image.

To overcome the limitations of the BP solution, Cetin
and Karl’s nonlinear minimization algorithm [21] is applied
to attain a sparse solution of the forward model that
superresolves the image while also avoiding the side-lobes
and clutter of the linear solution. An efficient translation-
invariant point spread function (PSF) approximation is
introduced to greatly reduce the computational cost of the
non-linear minimization algorithm.

Below, we begin (Section 2) by formulating the forward
model that characterizes the scattering from an ideal point
scatterer behind a periodic wall. Next, Section 3 describes
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Figure 1: Line source illumination of a periodic wall. Radiated fields from the line source are represented with a plane wave spectral
expansion. Each plane wave gives rise to another set of transmitted Floquet plane waves.

the proposed imaging methods that incorporate the for-
ward model to restore the image of targets behind the
wall. Simulated imaging results are presented in Section 4.
The formulation is presented for a two-dimensional (2D)
problem and may be extended to 3D in a straightforward
manner. An e jωt harmonic time convention is assumed and
suppressed.

2. Forward Model for the Near-Zone Scattering
from Targets Seen through a Periodic Wall

Let us consider the near field illumination of a periodic wall
as depicted in Figure 1. The spectral form of the incident field
radiated by a unit amplitude line source is given in [19] as:

Ez
(
ρ
) = − k0Z0

4
H(2)

0

(
k0
∣
∣ρ− ρ′∣∣)

= − k0Z0

4π

∫ π/2

−π/2
e− jk0·(y−y′) cosβ− jk0(x−x′) sinβ cosβ dβ,

(1)

where ρ′ = (x′, y′) and ρ = (x, y) refer to the line source
and receiver locations. k = x̂ kx + ŷ ky with β denoting
the incident angle measured from the y axis. Z0 and k0 are
the free space impedance and wave number, respectively, and

H(2)
0 is the zero-order Hankel function of the second kind. As

the integral in (1) can be interpreted as a summation of plane
waves, each plane wave then gives rise to a discrete set of

transmitted Floquet modes (see Figure 1). The transmission
through the periodic wall takes the form:
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·
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β
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]

cosβ dβ.
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Here, Tm and βm are the transmission coefficients and
associated propagation angles, respectively, of the Floquet
modes generated by the plane wave e jk0(x cosβ+y sinβ). The
outgoing direction of the Floquet modes is defined by:

k0 sinβm = k0 sinβ +
2πm
d

m = 0,±1,±2,±3 · · · (3)

with d being the unit cell length along the x direction.
As usual, m = 0 refers to the directly transmitted mode
satisfying Snell’s law. For m /= 0, the outgoing plane waves
only propagate when | sinβm| ≤ 1 (that is, they are
evanescent otherwise). All propagating modes are used in
the results that follow, and no evanescent modes are used.
Inclusion of evanescent modes is not needed since the
imaging points are far away from the wall. The associated
transmission coefficients in (2) are computed via the mode
matching solution of [19, 20].

A scattering problem can typically be formulated as the
linear superposition of the first-order scattering from a set of
ideal point scatterers, assuming no interactions between the
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Figure 2: Illustration of the near zone through-wall sensing: (a) in the absence of a wall, (b) in the presence of a periodic cinderblock wall.

points. This leads to the definition of a discrete forward model
given by:

s = Af + n, (4)

where s is a column vector of length Q and contains the
amplitude and phase of the scattered fields, and f is a column
vector of length N representing the reflectivity of the imaged
points (pixels). Consequently, A is the Q × N forward
model matrix describing the two-way propagation between
the sensors and reflecting pixels. Finally, n is a residual
vector that contains noise, extraneous scattering (clutter),
and model mismatch errors. The elements of A are found
from (2). For example, for monostatic sensing, the elements
are given by,

Aqn =
[
Ez
(
ρn

)]2
∣
∣
∣∣
ρ′=ρ′q ,

, (5)

where ρn is the location of the nth pixel and ρ′q is the source
location of the qth measurement. It is noted that the index
q also encompasses multiple frequencies (k0 values) in the
phase history domain. The square of Ez in (5) follows from
the reciprocity relationship between the paths from the line
source to the scattering point and back. The linear forward
model of (4) may now be solved as an inverse problem as
described in the next section.

3. Inverse Imaging Solutions

In generating an image of the scatterers behind the wall, we
must solve for f using the received scattering vector s and a
good approximation of the matrix A. Since Q is in general
not equal to N, the least squares solution of (4) may be
formulated as:

f =
[

AHA
]−1

AHs, (6)

where the superscript “H” denotes the complex conjugate
transpose (or Hermitian) of matrix A. Typically, the image

space is more densely sampled than the intrinsic resolution
of the imaging system, which results in the pixels having
linear dependencies and the matrix AHA becoming rank-
deficient. In that case, (6) cannot be solved directly without
the use of regularization or a pseudoinverse. However, it
is expected that AHA is diagonally dominant even if the
pixels are somewhat linearly dependent. A fast solution may,
therefore, be found by approximating AHA with its diagonal
elements yielding:

f ≈
(

diag
[

AHA
])−1

AHs. (7)

We observe that (7) is evocative of the well-known “SAR
back-projection” or “conjugate-phase matched filter” imag-
ing methods. Indeed, (7) is a diagonally weighted general-
ization of these concepts. Herewith, we will refer to (7) as
the back-projection (BP) method. The BP image may be
generated for the cost of a single matrix-vector product.

As stated above, when the image space is oversam-
pled, the pixels become linearly dependent. Hence there
are an infinite number of solutions that satisfy (4). We
may, therefore, apply some criterion to choose the most
optimal solution based on the assumed scattering model. For
higher resolution, we choose the solution that enhances the
“sparseness.” This may be posed mathematically as finding a

solution f̃ , which satisfies

f̃ = min‖f‖p subject to ‖s− Af‖2 ≤ ε. (8)

Here ‖f‖p denotes the p-norm of the vector f defined in [21]
as

‖f‖p ≈
N∑

i=1

(
|fi|2 + δ

)p/2
, (9)

where δ is a small positive constant, N is the length of
complex vector f , and fi is the ith element of f . The norm is
defined for any real number p ≥ 0, and when 0 ≤ p ≤
1, (8) obtains the sparse solution and enhances the target
resolution by minimizing the number of nonzero pixels in
the image [21].
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Figure 3: Back-projection images of the two point targets for the configuration in Figure 2 with data collected over the band 0.7–1.0 GHz:
(a) image in free space, (b) Image in presence of the cinderblock wall using the free space Green’s function, (c) image in presence of the
cinderblock wall using the periodic layer Green’s function.

It is possible to define an optimization function based
directly on (8), but for reasons that will become clear we
again use the least-squares form of (4), or the image domain
forward model,

AHs = AHAf + AHn (10)

or equivalently,

g = Bf + nid, (11)

where g = AHs, B = AHA, and nid is the noise/clutter
vector in the image domain. B is an N × N matrix whose
columns may be interpreted as the point spread functions
(PSFs) of the pixels and transforms the ideal image f to
a degraded image g, which is simply the unweighted BP
solution. In practice, it is advantageous to formulate the
forward model this way so that the size of the B matrix
does not depend on the measured data and provides more
flexibility in focusing in on a particular region of the image
domain. A computational advantage of this formulation is
that the PSFs (columns of B) are approximately translation-
invariant, so only one PSF needs to be generated and stored.
Otherwise, B could be an intractably large matrix to deal
with.

As suggested by [21], the sparse solution of (8) may be
obtained by minimizing the functional for 0 ≤ p ≤ 1,

ψ(f) = ∥∥g− Bf
∥∥

2 + λ‖f‖p, (12)

where λ is a positive real parameter chosen a priori to adjust
the relative weight of the sparseness versus the error in the
forward model. Physically, this penalization term serves to
enhance the point-based features in the reconstruction, and
is self-consistent with the point-target assumption of the
forward model. We shall refer to (12) as the “sparse imaging”
approach. Interested readers may also see [22] with regards
to the choice of regularization parameters. Here, (12) is
minimized using the quasi-Newton iterative algorithm with
modified Hessian update as described in [21]. It is noted that
there are more efficient algorithms available for obtaining
a sparse point-target representation of the image (e.g.,
matching and basis pursuits, iterative thresholding, etc.).

However, these methods generally start with the null solution
and add points until the forward model is satisfied. These
points may not necessarily correspond to true scattering
centers and may not, therefore, super-resolve the image. This
is in contrast to the gradient-type optimization used here,
which starts with the BP solution and iteratively sharpens the
image.

4. Simulated Imaging Results

To demonstrate the imaging approaches described in the
previous section, let us consider the through-wall sensing
example in Figure 2. Specifically, two point targets are placed
at (x, y) = (−1 m, 2 m) and (x, y) = (−0.5 m, 2 m). The
monostatic radar is located at y = −6 m and was moved
from x = −3 to 3 m (in 0.05 m step) to obtain the vector s
in the frequency ranges 0.7–1.0 GHz and 1.7–2.0 GHz. Only
the m = 0 Floquet mode is present in the lower frequency
band, whereas the m = −1, 0, 1 modes are present in the
upper frequency band. The measurements were corrupted by
random white noise with 15 dB signal-to-noise ratio (SNR).
The A matrix is constructed for two cases: (a) in the absence
of a wall (free space) and (b) in the presence of a periodic
cinderblock wall. The wall is assumed infinite in the x and z
directions. In the following, all of the images are normalized
to 0 dB peak magnitude.

The back-projection images computed from (7) for
the two different frequency bands are depicted in Figures
3 and 4, respectively. The (a) images are in free space,
and the (b) images are in the presence of the cinderblock
wall using the free space Green’s function. It is evident
that the lower frequency images exhibit lower cross-range
resolution, as expected. However, they are less susceptible
to wall distortions. It is also seen that the walls introduce
propagation delays leading to shifted and distorted targets. In
the higher frequency band, the higher-order Floquet modes
cause drastic distortion and ghosting as seen in Figure 4(b).

To compensate the wall effects, the back-projection
method was reapplied with A incorporating the appropriate
wall Green’s function. The corresponding images are shown
in Figures 3(c) and 4(c). These images display the true
locations of the targets, although the shape is not completely
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Figure 4: Back-projection images of the two point targets for the configuration in Figure 2 with data collected over the band 1.7–2.0 GHz:
(a) Image in free space, (b) image in presence of the cinderblock wall using the free space Green’s function, (c) image in presence of the
cinderblock wall using the periodic layer Green’s function.
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Figure 5: Sparse images (P = 0.8, λ = 9, 20 iterations) of the two point targets for the configuration in Figure 2 with data collected over the
band 1.7–2.0 GHz: (a) image in free space, (b) image in presence of the cinderblock wall using the free space Green’s function, (c) image in
presence of the cinderblock wall using the periodic layer Green’s function.

restored with respect to the free space image. This is
due to the fact that some frequencies will inevitably be
filtered out by the wall. A very interesting phenomenon is
seen in Figure 4(c), where the image appears to be more
finely resolved than the free space image of Figure 4(a).
Such “super-focusing” is due to exploiting the multipath
associated with the Floquet modes. (It is noted that no
evanescent modes are used in this analysis, so the superfo-
cusing cannot be attributed to evanescent effects as often
claimed in other near-field imaging works.) In the same way
as multipath propagation expands the information capacity
of a communication channel, multiple reflections can lead to
improved image resolution [23, 24].

The latter serves to increase the effective aperture, but at
the expense of introducing more imaging sidelobes.

Next, the sparse images computed by minimizing (12)
are presented in Figure 5 for the 1.7–2.0 GHz frequency
band. As seen in Figure 5(a), in free space the two point
targets are resolved to the size of individual pixels and the
sidelobes are very low on an 80 dB color scale. Figure 5(b)
shows the sparse through-wall image generated using the free
space Green’s function. The sidelobes have been suppressed,
and the point targets are more clearly seen, but they appear
shifted from their true locations and there are several false
targets. The cinderblock wall image is restored in Figure 5(c)

using the appropriate periodic layer Green’s function, and the
sidelobes are reduced to −30 dB relative to the peaks.

Back-projection and sparse imaging methods are also
applied to image a metallic plate with the same scanning
setup as in Figure 2 for frequency range 1.7–2.0 GHz. The
plate extends horizontally from x = −1 to −0.5 m at the
vertical distance of y = 2 m. The output images are displayed
in Figures 6 and 7, respectively. Once again Floquet multi-
path propagations severely degrade the back-projection
image (see Figure 6(b)), but if they are compensated for
during the imaging process, we may instead use them to our
advantage for resolution enhancement (at the cost of more
imaging sidelobes) as shown in Figure 6(c). Sparse imaging,
on the other hand, provides much sharper image outputs. If
the wall has been accounted for via appropriate periodic layer
Green’s function, most of the false alarms due to Floquet
multi-paths can be removed.

We remark that a translation-invariant PSF approxima-
tion is used to generate the sparse images of Figures 5 and 7
as discussed in Section 3. Specifically in this example, a single
PSF for a point located at the center pixel of the grid is first
computed. The PSFs for all other pixels are then computed
approximately via 2D convolution. The more exact spatially
varying PSFs may be adapted to further improve image
quality but at a greatly increased computational cost.
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Figure 6: Back-projection images of a metallic plate extending from x = −1 to −0.5 at y = −2 for the configuration in Figure 2 with data
collected over the band 1.7–2.0 GHz: (a) image in free space, (b) image in presence of the cinderblock wall using the free space Green’s
function, (c) image in presence of the cinderblock wall using the periodic layer Green’s function.
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Figure 7: Sparse images (P = 0.8, λ = 9, 20 iterations) of a metallic plate extending from x = −1 to −0.5 at y = −2 for the configuration in
Figure 2 with data collected over the band 1.7–2.0 GHz: (a) image in free space, (b) image in presence of the cinderblock wall using the free
space Green’s function, (c) image in presence of the cinderblock wall using the periodic layer Green’s function.

Computationally, construct of the central PSF and the
initial back-projection image from the forward model and
its Hermitian adjoint are the most time-consuming steps.
For the considered numerical example (with 101 frequency
points, 121 sensor locations, and 81 × 81 imaging pixels),
it took approximately 12 minutes for the back-projection
to generate a model-corrected image on a standard laptop
CPU (Intel(R) Core(TM) 2 Duo T7300 at 2.00 GHz) and
15 minutes for the sparse imaging algorithm. That is, even
though the sparse imaging takes many iterations, it is very
fast because most of the time is spent generating the central
PSF and initial back-projection image.

5. Conclusion

Imaging techniques based on a forward model framework
have been carried out to restore interior targets for near-
zone through-wall surveillance. Specifically, they can be
used to compensate the propagation delays and Floquet
multiscattering of a periodic wall while enhancing the
target resolution. The Floquet multipaths were shown to
superresolve targets in the back-projection image (without
inclusion of evanescent modes), but significant sidelobe
clutter was introduced. The sparse imaging method is able
to superresolve targets directly while correcting for target

distortion. However, if the correct periodic wall model
is not incorporated, the targets are displaced and several
false alarms appear as well. These techniques can also be
applicable to more general surveillance problems involving
different medium Green’s functions.

In this paper we used a known periodic wall model with
a known orientation relative to the source. In the future, it
is of interest to allow uncertainty in the parameters of the
wall model. For example, the periodicity, thickness, dielectric
constant, and relative orientation may be left as variables in
the optimization process. The model-based approach may
then be applied to measured or numerically generated data.
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