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A microwave imaging method previously developed for tomographic inspection of dielectric targets is extended to three-
dimensional objects. The approach is based on the full vector equations of the electromagnetic inverse scattering problem. The
ill-posedness of the problem is faced by the application of an inexact-Newton method. Preliminary reconstruction results are
reported.

1. Introduction

Microwave imaging is a technique aimed at inspecting
unknown targets by using interrogating electromagnetic
waves at microwave frequencies. As it is well known, the
image formation is based on the solution of an electromag-
netic inverse scattering problem. One of the main features of
microwave imaging is the ability of providing the distribu-
tions of the dielectric parameters (e.g., dielectric permittivity
and electric conductivity), which cannot be directly retrieved
by using other diagnostic techniques [1–18]. From a theoreti-
cal point of view, this achievement can be obtained even in the
case of three-dimensional (3D) configurations. As amatter of
fact, some initial works in this area were just oriented to 3D
imaging [19–26]. Unfortunately, the computational resources
needed to face a full vector 3D inverse scattering problem has
been prohibitive for a long time. Consequently, the research
community mainly focused his efforts on two-dimensional
(2D) settings. In particular, the presence of cylindrical targets
(uniform and homogeneous along an infinite direction) has
been usually assumed, leading to the well known microwave
tomography [27–49].

More recently, the enormous improvements in computer
powers have allowed reconsidering the 3D formulation. In
addition, new efficient solving methods have been developed
in the past years. Most of them allow a more or less

straightforward extension for the inspection of 3D targets.
Some examples of these approaches are reported in [50–69]
and in the references therein.

In this context, the present paper introduces for the
first time an extension to 3D scatterers of a diagnostic
tomographic approach recently developed by the authors
[70–74]. It is based on a two-step inexact-Newtonmethod for
the solution of two electric field integral equations (EFIEs),
namely the data equation and the state equation, which
represent the physical model of the whole scattering process.
By a theoretical point of view, the approach is quite a classic
one. Anyway, the particular inexact-Newton iterative solving
procedure has been found to be quite robust against the ill-
posedness of the considered inverse scattering problem both
by assuming synthetic or experimental data.

In the 3D case under investigation, the full vector
equations, written in terms of the Green’s dyadic function
for free space, are discretized and combined in order to
obtain a single functional equation, which is iteratively solved
by Gauss-Newton linearization (outer step) and successive
regularization by truncated Landweber method (inner step).

The paper is organized as follows. The mathematical for-
mulation of the developed approach is discussed in Section 2.
Section 3 reports some initial numerical results aimed at
validating the inversion procedure. Finally, conclusions are
drawn in Section 4.
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Figure 1: Imaging configuration.

2. Mathematical Formulation

Let us consider the configuration of Figure 1. An unknown
dielectric target is located inside a predefined volume (in the
following denoted as investigation domain, 𝑉inv). The object
is illuminated by one or more incident electric fields Einc(r)
(generated by proper antennas located outside the investi-
gation area). The total electric field Etot(r) produced by the
interaction between the target and the illuminating radiation
is collected by means of RX antennas located in a measure-
ment domain 𝑉obs. As we will better analyze in Section 3, we
mention that in our numerical simulation the investigation
domain is a cube, while the TX and RX antennas are uni-
formly distributed on an outside sphere of predefined radius.

For sake of simplicity, a single-view case is described in
the following.The extension of themathematical formulation
to the multiview case is however straightforward. Moreover,
a 𝑒𝑗𝜔𝑡 time dependence is assumed and the corresponding
terms are omitted in the following.

2.1. Electromagnetic Model. The scattered electric field
Escatt(r) = Etot(r) − Einc(r) is related to the dielectric
properties of the investigated area 𝑉inv by means of the
following two integral equations [1], usually referred to as
data and state equations,

Escatt (r) = Gdata (𝑐Etot) (r) , r ∈ 𝑉obs,

Einc (r) = Etot (r) − Gstate (𝑐Etot) (r) , r ∈ 𝑉inv,
(1)

where 𝑐(r) = 𝜖𝑟(r) − 1 is the contrast function (with 𝜖𝑟 being
the space dependent relative complex dielectric permittivity
of the investigation domain) and the linear operators Gdata
and Gstate are defined as

Gdataf (r) = −𝑘
2
0 ∫
𝑉inv

f (r) ⋅ G0 (r, r
󸀠
) 𝑑r󸀠, r ∈ 𝑉obs,

Gstatef (r) = −𝑘
2
0 ∫
𝑉inv

f (r) ⋅ G0 (r, r
󸀠
) 𝑑r󸀠, r ∈ 𝑉inv

(2)

with 𝑘0 = 𝜔√𝜖0𝜇0 being the free-space wavenumber and

G0 (r, r
󸀠
) = −

1

4𝜋
(I + ∇∇

𝑘
2
0

)
𝑒
−𝑗𝑘|r−r󸀠|

󵄨󵄨󵄨󵄨r − r󸀠
󵄨󵄨󵄨󵄨

(3)

the free-space dyadic Green’s function.

The data and state equations can be merged in order
to obtain a single nonlinear operator equation relating the
contrast function and the scattered electric field as follows

Escatt (r) = Gdata (C ((I − GstateC)
−1Einc)) (r) , (4)

where r ∈ 𝑉obs and C is the operator such that C(f)(r) =
𝑐(r)f(r), r ∈ 𝑉inv. By defining the nonlinear operator F(𝑐) =
Gdata(C((I − GstateC)

−1Einc)) that maps the contrast function
𝑐 with the scattered electric field Escatt, (4) can be written in
compact form as follows:

F (𝑐) (r) = Escatt (r) , r ∈ 𝑉obs. (5)

Thenonlinear equation (5)models the full inverse scatter-
ing problem: given the scattered electric field Escatt (i.e., the
data), measured in the measurement domain 𝑉obs, find the
contrast function 𝑐 (i.e., the unknown) in the investigation
domain 𝑉inv such that F(𝑐) = Escatt.

2.2. Regularized Inversion Algorithm. The integral equation
(5) for the computation of the contrast function 𝑐 turns out
to be ill posed, and its solution requires a regularization
algorithm. To this end, the inner/outer regularizing scheme
developed in [70–72] for the 2D case is here generalized
to a 3D configuration. The inner/outer scheme can be
summarized as follows. Any outer step is a basic Gauss-
Newton linearization of the nonlinear equation (5). Such a
linearized equation is then solved by means of the truncated
Landweber iterative method, which represents the inner step.

In particular, the algorithm works as follows.

(1) Initialize the outer loop by setting 𝑘 = 0 (𝑘 denotes
the outer iteration index) and by choosing a starting
guess 𝑐0 (if no a priori information is available, just
void domain can be used, i.e., 𝑐0 = 0).

(2) Linearize (5) in order to obtain the following linear
equation (“outer loop”)

F󸀠𝑐
𝑘

ℎ𝑘 (r) = E𝑘 (r) , r ∈ 𝑉obs, (6)

where F󸀠𝑐
𝑘

is the Frechét derivative of F at 𝑐𝑘 and
E𝑘(r) = Escatt(r) − F(𝑐𝑘)(r), r ∈ 𝑉obs.

(3) Compute a regularized solution of the linear equation
(6) with respect to the unknown ℎ𝑘(r), r ∈ 𝑉inv, by
using the following truncated Landweber algorithm
(“inner loop”, where 𝑙 denotes the corresponding
inner iteration index)

ℎ𝑘,0 (r) = 0,

ℎ𝑘,𝑙+1 (r) = ℎ𝑘,𝑙 (r) − 𝛽F
󸀠∗

𝑐
𝑘

(F󸀠𝑐
𝑘

ℎ𝑘,𝑙 (r) − E𝑘 (r)) ,
(7)

where 𝛽 = ‖F󸀠
∗

𝑐
𝑘

F󸀠𝑐
𝑘

‖
−1

is a constant values. Here F󸀠
∗

𝑐
𝑘

denotes the adjoint operator of F󸀠𝑐
𝑘

. The inner iter-
ations are stopped when a maximum number of
iterations 𝐿 is reached.
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(4) Update the current solution as
𝑐𝑘+1 (r) = 𝑐𝑘 (r) + ℎ𝑘,𝐿 (r) . (8)

(5) Set 𝑘 = 𝑘 + 1 and iterate from step (2) until a pre-
defined stopping rule (such as discrepancy principle
or GCV) is satisfied or a maximum number of outer
iterations𝐾 is reached.

We briefly recall that the number of inner step 𝐿 acts
as the regularization parameter of the truncated Landweber
algorithm for the solution of any Newton equation (6).
Basically, during the first iterations the Landweber method is
able to filter out the components usually corrupted by noise
(i.e., the highest frequencies Fourier components of the data
E𝑘), so that an early stop of the inner iterations gives rise to a
regularization effect [71].

Similarly to the two-dimensional case, the Frechét deriva-
tive of the operator F is given by

F󸀠𝑐ℎ (r) = G𝑐data (ℎE
𝑐
tot) (r) , r ∈ 𝑉obs, (9)

where E𝑐tot(r) = ((I − GstateC)
−1Einc)(r), r ∈ 𝑉inv, and the

operator G𝑐data is given by

G𝑐dataf (r) = −𝑘
2
0 ∫
𝑉inv

f (r) ⋅ G𝑐 (r, r
󸀠
) 𝑑r󸀠, r ∈ 𝑉obs (10)

with G𝑐 being the dyadic Green’s function for an inhomoge-
neous background characterized by a contrast function 𝑐.

2.3. Discretization of the Scattering Equations. The data and
state scattering equations (1) are discretized by using pulse
basis functions and Dirac’s delta weighting functions [75]. In
particular, the investigation domain𝑉inv is discretized into𝑁
cubic voxels of side 𝑙 and centers rinv𝑛 , 𝑛 = 1, . . . , 𝑁, and the
observation domain is composed by𝑀measurement points
located at positions rmeas

𝑚 , 𝑚 = 1, . . . ,𝑀.
Consequently, the discrete version of (4) is

escatt = Gdata𝐷3 (c) (I − Gstate𝐷3 (c))
−1einc, (11)

where c = [𝑐(rinv1 ) ⋅ ⋅ ⋅ 𝑐(r
inv
𝑁 )]
𝑡 is an array containing the values

of the contrast function inside the voxels,

etot/scatt/inc = [
[

e𝑥tot/scatt/inc
e𝑦tot/scatt/inc
e𝑧tot/scatt/inc

]

]

(12)

with e𝑥/𝑦/𝑧tot/inc=[𝐸
𝑥/𝑦/𝑧

tot/inc(r
inv
1 ) ⋅ ⋅ ⋅ 𝐸

𝑥/𝑦/𝑧

tot/inc(r
inv
𝑁 )]
𝑡

and e𝑥/𝑦/𝑧scatt =

[𝐸
𝑥/𝑦/𝑧
scatt (r

meas
1 ) ⋅ ⋅ ⋅ 𝐸

𝑥/𝑦/𝑧
scatt (r

meas
𝑀 )]
𝑡
(the superscript denotes the

components of the field vector), and 𝐷3(⋅) is the discrete
diagonal operator defined as

𝐷3 (c) =

[
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[
[
[

[

𝑐1
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𝑐𝑁
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d
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]
]
]
]
]
]
]
]
]
]
]

]

. (13)

In (11) the matrices Gdata and Gstate are the discrete
counterparts of the linear operators defined in (2) and they
contain the integrals of the components of the corresponding
dyadic Green’s function over any voxels’ volume [76]. The
discrete version of the Frechét derivative used in (6) is
obtained in a similar way.

It is worth noting that, in the numerical implementation
of the approach, a BiCGStab-FFT approach [77, 78] has been
used to speed up the computation of the total internal field
and of the inhomogeneous dyadic Green’s function.

3. Numerical Results

The developed approach has been tested by means of several
numerical simulations. In all cases, a plane wave illumination
is assumed. Moreover, a multiview configuration, in which
the object is illuminated by subsequent different waves
impinging from𝑁𝑆 uniformly distributed directions, is used
in order to increase the available information. The scattered
field is collected into 𝑁𝑀 measurement points uniformly
distributed on a sphere of radius 𝑅𝑀 for any impinging
wave. The synthetic data used for the inversion have been
obtained by using a numerical simulator based on theMethod
of Moments [75]. A finer discretization than that used in
the inversion code is employed in order to avoid inverse
crimes. Moreover, the computed data have been corrupted
with a Gaussian noise with zero-mean value and variance
corresponding to a signal-to-noise ratio SNR.

As a first case, a single homogeneous cubic target is
considered. The center of the object is located in r𝑐 =

(0.1𝜆0, 0.1𝜆0, 0.1𝜆0), whereas its radius and relative dielectric
permittivity are equal to 𝑙 = 0.5𝜆0 and 𝜖𝑟 = 2.0, respectively.
The investigation area is a cubic volume of side 𝐷 = 𝜆0,
which has been partitioned into 𝑁 = 20 × 20 × 20 = 8000

subdomains. The number of views is 𝑁𝑆 = 6, whereas the
number of measurement points is𝑁𝑀 = 82 and the radius of
the measurement sphere is 𝑅𝑀 = 𝜆0. The maximum number
of allowed outer iterations has been set equal to 𝐾 = 20.
The performance of the approach have been firstly analyzed
with respect to the signal-to-noise ratio and to the number of
iterations of the inner loop.The following two errormeasures
are used:

𝑒data = √
∑
𝑆
𝑠=1

󵄩󵄩󵄩󵄩escatt − 𝐹 (c)
󵄩󵄩󵄩󵄩

2

∑
𝑆
𝑠=1

󵄩󵄩󵄩󵄩escatt
󵄩󵄩󵄩󵄩

2
,

𝑒RMSE =

󵄩󵄩󵄩󵄩c − cactual
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩cactual
󵄩󵄩󵄩󵄩

.

(14)

The first error measure, 𝑒data, can be used in real setting
for implementing the discrepancy principle or theGCV,while
the second one, 𝑒RMSE, can be used only for numerical testing,
since it requires the knowledge of the target cactual.

Table 1 reports the errors obtained for the considered
cases and the number of outer iterations needed to reach
the best reconstruction. As expected, with noiseless data the
inversion algorithm is always able to converge to a correct
solution and a higher value of𝐿 allows to obtain slightly better
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Table 1: Error measures for different values of the signal-to-noise
ratio and of the number of inner iterations. Homogeneous dielectric
cube.

SNR 𝐿 𝑒data 𝑒RMSE 𝐾opt

∞

1 0.088 0.57 20
2 0.06 0.54 20
3 0.046 0.52 20
4 0.038 0.52 20
5 0.032 0.51 20
10 0.027 0.51 20

30

1 0.48 0.64 20
2 0.49 0.65 12
3 0.48 0.65 9
4 0.48 0.66 8
5 0.48 0.67 8
10 0.48 0.72 6

20

1 0.62 0.66 16
2 0.62 0.67 11
3 0.61 0.68 8
4 0.62 0.68 6
5 0.62 0.69 6
10 0.61 0.74 6

10

1 0.87 0.73 7
2 0.89 0.75 5
3 0.88 0.76 4
4 0.89 0.88 2
5 0.88 0.81 3
10 0.91 0.91 2

Table 2: Error measures for different values of the number of views.
Homogeneous dielectric cube.

𝑁𝑆 𝑒data 𝑒RMSE 𝐾opt

6 0.52 0.66 5
12 0.54 0.57 9
18 0.56 0.55 9
29 0.54 0.53 12

Table 3: Error measures for different values of the number of
measurement points. Homogeneous dielectric cube.

𝑁𝑀 𝑒data 𝑒RMSE 𝐾opt

82 0.53 0.67 6
122 0.48 0.64 8
170 0.46 0.61 12
212 0.43 0.58 13

results. On the contrary, when noise is present, low values of
𝐿 provide a stronger regularization, thus allowing for a better
reconstruction. It is worth noting that in these cases, a higher
number of iterations are needed to reach the best solution,
leading to a higher computational time.

Table 4: Error measures for different values of the relative dielectric
permittivity. Homogeneous dielectric cube.

𝜀𝑟 𝑒data 𝑒RMSE 𝐾opt

1.5 0.78 0.7 3
1.75 0.63 0.66 6
2 0.53 0.64 10
2.25 0.44 0.61 14
2.5 0.38 0.59 16

Moreover, Figure 2 shows the behavior of the error mea-
sures versus the number of outer iterations and for different
values of 𝐿. The semiconvergence [79] effect is clearly visible
in Figure 2(b), confirming that lower values of 𝐿 provide a
stronger regularization, leading however to a higher number
of iterations needed to reach convergence.

An example of the reconstructed distribution of the
relative dielectric permittivity, concerning the case in which
SNR = 20 dB and 𝐿 = 3, is reported in Figure 3. As can be
seen, the target is correctly identified. As expected, the shape
is smoothed due to the regularization effect of the inversion
algorithm.

The effects of the number of views and of the measure-
ment point number on the quality of the reconstruction have
also been evaluated. The obtained results are summarized in
Table 2 (errors versus number of views) and Table 3 (errors
versus number of measurement points). As expected, as the
number of views or the number of measurement points
increases, the reconstruction error decreases. However, the
computational time increases as well (since the dimensions
of the matrices are higher and more iterations are needed).

Finally, the performance of the inversion approach with
respect to the value of the relative dielectric permittivity of
the target has been evaluated, too. The obtained results are
reported in Table 4. As can be seen, in all the considered cases
the developed algorithmprovides comparable reconstruction
results. However, as expected, for the higher values of dielec-
tric permittivity, a higher number of iterations is required
for obtaining a good solution. This is basically due to the
effects of the Newton linearization, which is less accurate
for strong scatterers (i.e., large values dielectric permittivity),
with respect to the original nonlinear operator.

In the second case, a nonhomogeneous structure has been
considered. The target is a cube with a void inclusion. The
parameters of the cube are as follows: 𝑙 = 0.9𝜆0, center r𝑐 =
(0, 0, 0), and 𝜖𝑟 = 1.5.The inclusion has a spherical shapewith
radius 𝑟𝑠 = 0.25𝜆0 and center r𝑠 = (0, 0, 0). The investigation
area is a cubic volume of side 𝐷 = 1.5𝜆0, which has been
partitioned into 𝑁 = 28 × 28 × 28 = 21952 subdomains.
The maximum number of allowed outer iterations has been
set equal to 𝐾 = 20, whereas the number of inner iterations
is 𝐿 = 2. The number of views is 𝑁𝑆 = 6, whereas 𝑁𝑀 =
101measurement points uniformly distributed on a sphere of
radius 𝑅𝑀 = 1.5𝜆0 has been considered. The distribution of
the reconstructed dielectric permittivity is shown in Figure 4.
As can be seen, the reconstruction algorithm provides a good
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Figure 2: Errormeasures versus the number of outer iterations for different values of the number of inner iterations. Homogeneous dielectric
cube. SNR = 20 dB.
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Figure 3: Reconstructed distribution of the relative dielectric permittivity. (a) 3D view; (b) 𝑥𝑦 plane (𝑧 = 0.1𝜆0); (c) 𝑥𝑧 plane (𝑦 = 0.1𝜆0);
(d) 𝑦𝑧 plane (𝑥 = 0.1𝜆0). Homogeneous dielectric cube. SNR = 20 dB. 𝐿 = 3.
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Figure 4: Reconstructed distribution of the relative dielectric permittivity. (a) 3D view; (b) 𝑥𝑦 plane (𝑧 = 0); (c) 𝑥𝑧 plane (𝑦 = 0); (d) 𝑦𝑧
plane (𝑥 = 0). Dielectric cube with a void inclusion. SNR = 25 dB. 𝐿 = 2.

reconstruction of the target, providing a good restoration of
the void inclusion too.

In the third case, a more complex configuration with
two different separate objects inside the investigation area
is assumed. The first one is a cube characterized by 𝑙 =
0.7𝜆0, center r𝑐 = (0.4𝜆0, 0.4𝜆0, 0.4𝜆0), and 𝜖𝑟 = 1.5. The
second one is a sphere with radius 𝑟𝑠 = 0.4𝜆0, centered
located at r𝑠 = (0.5𝜆0, −0.5𝜆0, −0.5𝜆0), and relative dielectric
permittivity 𝜖𝑟 = 1.5. The investigation area is a cubic volume
of side 𝐷 = 2𝜆0, which has been partitioned into 𝑁 =

30 × 30 × 30 = 27000 subdomains. 𝑁𝑆 = 6 views have
been used and, for every view, the field is collected in 𝑁𝑀 =
101 points on a sphere of radius 𝑅𝑀 = √3𝜆0. Similarly to
the previous case, the maximum number of allowed outer
iterations has been set equal to 𝐾 = 20 and the number of
inner iterations is 𝐿 = 2. The reconstructed distribution of
the relative dielectric permittivity is reported in Figure 5. As
can be seen from this figure, in this case, too, the two targets
are correctly reconstructed. It is worth noting that the two

cuts in Figures 5(b) and 5(c) refer to two planes passing only
through the first object. Consequently, only the cubic target
is visible in these two figures. On the contrary, the 𝑦𝑧 plane
considered in Figure 5(d) contains the both targets.

4. Conclusions

In this paper, an algorithm for three-dimensional nonde-
structive diagnostics through microwave inverse scattering
has been analyzed. The dielectric properties of an object (i.e.,
its contrast function) has to be restored starting from the
scattered electric field generated by the interaction with a
known electric incident field. The developed algorithm is
based on the computation of a regularized solution of the
nonlinear equation that relates the scattered electric field
in an external observation domain (i.e., the data) with the
contrast function in an inaccessible investigation domain
(i.e., the unknown). In particular, the approach is based on
an outer-inner iterative scheme, where the outer iteration is
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Figure 5: Reconstructed distribution of the relative dielectric permittivity. (a) 3D view; (b) 𝑥𝑦 plane (𝑧 = 0.4𝜆0); (c) 𝑥𝑧 plane (𝑦 = 0.4𝜆0);
(d) 𝑦𝑧 plane (𝑥 = 0.4𝜆0). Two separate objects. SNR = 25 dB. 𝐿 = 2.

the basic Newton linearization and the inner iteration is the
truncated Landweber method. Several preliminary synthetic
numerical tests have been performed in order to validate the
developedmethod. Both homogenous and nonhomogeneous
targets have been considered, and in all cases the inversion
scheme provided good restorations also for noisy data. A
natural subsequent step that will be pursued in the future is
the evaluation of the performance of the method against real
data.
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