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The inverse problem of estimating the smallest region of localization (minimum source region) of a source or scatterer that can
produce a given radiation or scattered field is investigated with the help of the multipole expansion. The results are derived in the
framework of the scalar Helmholtz equation.The proposed approach allows the estimation of possibly nonconvexminimum source
regions. The derived method is illustrated with an example relevant to inverse scattering.

1. Introduction

It has been shown (see [1, 2]) that, given the far field associated
to an unknown radiating source, it is possible to uniquely
define the minimum convex source region associated to the
given far field. The theoretical principles can be traced back
to the treatise of Müller ([3, ths. 26, 27, 29]) who used the
spherical wave or multipole expansion of the radiated field to
show that, for a fixed origin of coordinates, say 𝑂, there is a
minimum spherical source region of radius 𝑅min, 𝐵min(𝑂) =

{r ∈ R3 : 𝑟 ≡ |r| ≤ 𝑅min(𝑂)}, such that, in order for a source
to be able to produce the given far field radiation pattern, it
must lie in the interior of a spherical volume centered about
the same origin and having a radius that is at least as large
as 𝑅min. Furthermore, the radiated field outside 𝐵min is an
analytic function that can be analytically continued up to the
boundary of a minimum source region 𝑉min located inside
𝐵min; see [4, page 143]. Figure 1(a) illustrates the minimum
source region and the respective minimum spherical source
region corresponding to a given origin. From the point of
view of propagation or diffraction, then the far field can be
inverse-diffracted up to the boundary of 𝑉min ⊆ 𝐵min. In
addition, clearly if one considers another origin 𝑂

󸀠, then one
can also find another minimum spherical volume 𝐵min(𝑂

󸀠
)

centered about this origin and so on. Then if one considers
a set of, say, 𝑛 origins and 𝑛 associated minimum spherical
volumes, the intersection of all such source regions Bmin
establishes a sharper bound on the minimum source region
𝑉min ⊆ Bmin which lies in the interior of such intersection,

as is illustrated in Figure 1(b). By means of this procedure it
is theoretically possible to uniquely define and compute the
convex scattering support orminimumconvex source region,
say 𝐵min,conv ⊇ 𝑉min, which is a subset of the convex hull
of any source producing the given far field. This minimum
convex source region is the smallest convex support of
any source producing that field and represents important
source localization information that can be inverted uniquely
from the far field data despite the general nonuniqueness
(without further priors) of the full inverse source problem
of reconstructing the actual source that generated the given
far field; see, for example, [5, 6] for discussions of the
inverse source problem and the relevant nonradiating sources
corresponding to the null space of the forward source-to-field
mapping. In this connection, it is worth commenting that
for zero far fields the minimum source region does not exist
(empty set). Any nonradiating source can produce that trivial
far field, and of course no source at all also produces that
same far field. However, for nontrivial far fields (associated to
fields obeying the radiation condition) the minimum source
region is a nonempty set (since, as is well known, the only
solution to the homogeneous Helmholtz equation obeying
the radiation condition is the zero field). Consequently, here
and henceforth we implicitly assume nontrivial far fields, for
which one can always define correspondingminimum source
regions.

Themethod in [1] applies to the minimum convex source
region. For geometrical reasons, this plane wave expansion
approach cannot be used to estimate nonconvex minimum
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Figure 1: (a) Minimum source region 𝑉min and the minimum spherical volume 𝐵min(𝑂) for a given origin 𝑂. (b) Bounding region for the
minimum source region obtained from the intersection of minimum spherical source regions for different origins.

source regions. In this paper we use the multipole expansion
to obtain the respective closed form formula to estimate the
full minimum source region including nonconvex minimum
source regions that cannot be derived with the existing
methods. To achieve this goal, first we derive the respective
multipole theory counterpart of the key formula (equation
(6)) in [1] for estimation of the convex support. Later we
derive the respective generalization to tackle the pending
nonconvex support, which completes the computation of the
minimum source region.

One of the main appeals of the multipole expansion is
its validity for both near and far fields; hence the results
of this work apply to imaging and inverse scattering with
either near or far fields. For example, in the subsurface
sensing problem illustrated in Figure 2, probing sources and
scattering sensors can be used that are in the near or far zone
of the target. The theory and algorithms of this work provide
a framework to quantitatively characterize source regions in
the investigation domain thatmust reside in the interior of the
scatterer, thereby offering valuable localization information
for the extraction of subsequent target information. Among
other questions, the role of the probing source positions
in rendering target information can be quantitatively inves-
tigated with the proposed analytical and numerical tools
based on the multipole expansion. This contribution thus

Target 
Far-field receivers 

Near-field 
transmitter 

Borehole 

Scattered field 

Figure 2: Subsurface sensing scenario involving near probing fields
and far zone sensors.Themultipole theory imaging approach of this
paper is useful for imaging with either near or far fields.

sheds light on the information about the support of a source
or scatterer that is contained in near or far exterior field
data. In particular, even though the inverse source problem
exhibits general nonuniqueness, the minimum source region
is a piece of information about the sought-after source that
can be deduced uniquely from the exterior field. Also, in
relation to alternative imagingmethods, this approach has the
particular appeal that it applies in theory to the extraction of
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information about the support of a scatterer using a single
probing field.

The rest of the paper is organized as follows. Section 2
presents the multipole-theory-based approach for estimating
bounds for the minimum source region, in theory up to
the minimum convex source region. Our main result of
this section is given in connection with (17). The physical
framework is one of radiation, involving the linear map, from
equivalent volume sources confined within given spherical
volumes, to the far fields. Section 3 provides an alternative
approach based on the complementary point of view of
(exterior) propagation or diffraction, involving a map from
boundary values of the fields (or equivalent Huygens’ surface
sources) to the far fields. The main result of this section,
given in connection with (44), is equivalent to the previous
one in (17). Section 4 provides a complementary, interior
diffraction approach which allows the estimation of the
possibly nonconvex minimum source region. This approach
leads to the key nonconvex support estimation formula (69).
The theoretical results in Sections 2–4 emphasize the context
of the scalar Helmholtz operator in 3D space. To expand
the scope of practical applications and examples that can
be handled via the same general theoretical framework, in
Section 5 we derive the 2D counterpart of the main results in
Sections 2–4 applicable to the 2D Helmholtz operator which
is relevant to electromagnetic problems involving transverse
magnetic polarization. In Section 6 we discuss the practical
computational implementation with an inverse scattering
example. Section 7 provides concluding remarks.

2. Radiation-Based Analysis

2.1. Multipole Radiation. Consider wavefields 𝜓 described by
the scalar Helmholtz equation:

(∇
2
+ 𝑘
2
) 𝜓 (r) = −𝜌 (r) , r ∈ R

3
, (1)

where 𝑘 > 0 is thewavenumber of the field and 𝜌 is a source of
support𝑉.This source can be an active source (emitter) or an
induced source such as a scatterer excited by incident fields.
The radiated field 𝜓 obeys Sommerfeld’s radiation condition.

Consider the smallest set 𝐵
𝑅
≡ {r ∈ R3 : 𝑟 ≡ |r| ≤ 𝑅}

which contains the source support such that 𝑉 ⊆ 𝐵
𝑅
. It is

well known ([7, equations (9.93), (9.98)]; [8, equations (3.12),
(3.14)]) that the radiated field admits the following multipole
expansion for 𝑟 > 𝑅:

𝜓 (r) = 𝑖𝑘

∞

∑

𝑙=0

𝑙

∑

𝑚=−𝑙

𝑎
𝑙,𝑚

ℎ
(1)

𝑙
(𝑘𝑟) 𝑌𝑙,𝑚 (r̂) , 𝑟 > 𝑅, (2)

where r̂ ≡ r/𝑟, ℎ(1)
𝑙
(⋅) is the spherical Hankel function of the

first kind, order 𝑙, 𝑌
𝑙,𝑚

is the spherical harmonic of degree
𝑙 and order 𝑚 (see [9, Section 12.6]), and the multipole
moments 𝑎

𝑙,𝑚
, where 𝑙 = 0, 1, . . . ,∞;𝑚 = −𝑙, −𝑙+1, . . . , 𝑙−1, 𝑙,

are given in terms of the source by

𝑎
𝑙,𝑚

= ∫𝑑𝑟𝑟
2
𝑗
𝑙 (𝑘𝑟) ∫

𝑆
2

𝑑r̂𝑌∗
𝑙,𝑚

(r̂) 𝜌 (r) , (3)

where 𝑗
𝑙
(⋅) is the spherical Bessel function of the first kind

and order 𝑙 and 𝑆
2 denotes the unit sphere. It follows from

the large argument approximation for the spherical Hankel
function,

ℎ
(1)

𝑙
(𝑘𝑟) ∼

exp [𝑖 (𝑘𝑟 − 𝜋𝑙/2)]

𝑖𝑘𝑟
, (4)

that in the far zone the generated field behaves like

𝜓 (𝑟r̂) ∼ 𝑓 (r̂) exp (𝑖𝑘𝑟)
𝑟

, (5)

where the far field radiation pattern 𝑓(r̂) is given by ([8,
equation (3.19)])

𝑓 (r̂) =
∞

∑

𝑙=0

𝑙

∑

𝑚=−𝑙

(−𝑖)
𝑙
𝑎
𝑙,𝑚

𝑌
𝑙,𝑚 (r̂) (6)

which in view of the orthonormality of the spherical harmon-
ics implies

𝑎
𝑙,𝑚

= 𝑖
𝑙
∫
𝑆
2

𝑑r̂𝑌∗
𝑙,𝑚

(r̂) 𝑓 (r̂) . (7)

The radiated power is proportional to the squared 𝐿
2

norm of the far field radiation pattern, given from (6) and
the orthonormality of the spherical harmonics by

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

2
= ∫
𝑆
2

𝑑r̂󵄨󵄨󵄨󵄨𝑓 (r̂)󵄨󵄨󵄨󵄨
2
=

∞

∑

𝑙=0

𝑙

∑

𝑚=−𝑙

󵄨󵄨󵄨󵄨𝑎𝑙,𝑚
󵄨󵄨󵄨󵄨

2
< ∞. (8)

It is henceforth assumed that (8) is obeyed.

2.2. Equivalent Minimum Energy Sources. Our radiation-
based treatment of the inverse support problem will be based
on equivalent sources 𝜌

𝑎
of support 𝐵

𝑎
≡ {r ∈ R3 : 𝑟 ≤ 𝑎}

that produce the same far field as 𝜌. They are given by [5]

𝜌
𝑎 (r) = 𝑀

𝐵
𝑎
(r)
∞

∑

𝑙=0

𝑙

∑

𝑚=−𝑙

[
𝑎
𝑙,𝑚

𝜎
2

𝑙
(𝑎)

] 𝑗
𝑙 (𝑘𝑟) 𝑌𝑙,𝑚 (r̂) , (9)

where the indicator or masking function𝑀
𝜏
(r) is equal to 1 if

r ∈ 𝜏 and 0 otherwise and where the singular values 𝜎
𝑙
(𝑎) of

the linear source-to-far field mapping are defined by

𝜎
2

𝑙
(𝑎) = ∫

𝑟≤𝑎

𝑑𝑟𝑟
2
𝑗
2

𝑙
(𝑘𝑟) =

𝑎
3

2
[𝑗
2

𝑙
(𝑘𝑎) − 𝑗

𝑙−1
(𝑘𝑎) 𝑗

𝑙+1
(𝑘𝑎)] .

(10)

The series expansion (9) defines the so-called minimum 𝐿
2

norm or minimum functional energy source of support 𝐵
𝑎

that produces the given far field. For this representation to be
physically meaningful it must be well-behaved as we outline
next.

It is easy to show from the asymptotic form (see [3, page
71])

𝑗
𝑙
(𝑧) ∼ √

𝜋

2𝑧

(𝑧/2)
𝑙+1/2

Γ (𝑙 + 3/2)
, 𝑙 󳨀→ ∞, (11)
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which implies

𝜎
2

𝑙
(𝑎) ∼

𝜋𝑎
3
(𝑘𝑎)
2𝑙

22𝑙+2 (2𝑙 + 3) Γ2 (𝑙 + 3/2)
, 𝑙 󳨀→ ∞, (12)

plus the property (see [3, Lemma 13])

󵄨󵄨󵄨󵄨𝑌𝑙,𝑚 (r̂)
󵄨󵄨󵄨󵄨 ≤

√
2𝑙 + 1

4𝜋
, (13)

and standard convergence tests, that, for 𝑎 > 𝑅, the series
expansion (9) converges absolutely and uniformly in 𝐵

𝑎
⊃ 𝐵
𝑅

and the𝐿2 normor functional energy of the equivalent source
𝜌
𝑎
is finite, that is,

∞

∑

𝑙=0

𝑙

∑

𝑚=−𝑙

󵄨󵄨󵄨󵄨𝑎𝑙,𝑚
󵄨󵄨󵄨󵄨

2

𝜎
2

𝑙
(𝑎)

< ∞. (14)

Thus there is a well-behaved equivalent source 𝜌
𝑎
∈ 𝐿
2
(𝐵
𝑎
⊃

𝐵
𝑅
) of the form (9) valid for any original𝑉-supported source

𝜌. The two sources 𝜌 and 𝜌
𝑎
are equivalent in the sense that

they produce the same multipole moments and thereby also
the same (exterior) field in R3 \ 𝐵

𝑎
:

𝜓 (𝑟r̂) = 𝑖𝑘

∞

∑

𝑙=0

𝑙

∑

𝑚=−𝑙

𝑎
𝑙,𝑚

ℎ
(1)

𝑙
(𝑘𝑟) 𝑌

𝑙,𝑚
(r̂) , 𝑟 > 𝑎. (15)

Furthermore, depending on the particular far field, it
is possible that the equivalent source 𝜌

𝑎
in (9) remains

meaningful, for example, in the finite 𝐿
2 norm sense (14),

for some radius 𝑎 ≤ 𝑅. The infimum of the set of such
radii defines the radius𝑅min of theminimum spherical source
region as we elaborate next.

2.3. Minimum Spherical Source Regions. The minimum
spherical source region 𝐵min ≡ {r ∈ R3 : 𝑟 ≤ 𝑅min} can be
estimated by asking the question whether a physically rea-
sonable source of support 𝐵min can be manufactured which
produces the desired far field or equivalently the associated
multipole moments of the field. We have explored different
criteria for the physical reasonableness, concluding that a
number of plausible alternatives are equivalent to the canoni-
cal Picard’s condition defining the range of the linearmapping
from 𝐿

2 sources confined within a spherical volume to 𝐿
2 far

fields which obey (8). In particular, we require the equivalent
source to obey (14). Thus we define the radius 𝑅min of the
minimum spherical volume 𝐵min as

𝑅min ≡ inf{𝑎 ∈ R
+
:

∞

∑

𝑙=0

𝑙

∑

𝑚=−𝑙

󵄨󵄨󵄨󵄨𝑎𝑙,𝑚
󵄨󵄨󵄨󵄨

2

𝜎
2

𝑙
(𝑎)

< ∞} , (16)

where inf means “infimum”.

The following result follows from (16) and the asymptotic
property (12).

Main Result 1. One has

𝑅min = sup{𝑎 ∈ R
+
: lim
𝑙→∞

√2𝑙 + 3 Γ (𝑙 + 3/2)

(𝑘𝑎/2)
𝑙

󵄨󵄨󵄨󵄨𝑎𝑙,𝑚
󵄨󵄨󵄨󵄨 ̸= 0,

at least one 𝑚} ,

(17)

where sup means “supremum”.

Proof. Two possibilities arise which explain the use of “inf”
(infimum) in (16) instead of just “minimum”. In particular, the
region of convergence may be closed or open. If it is closed,
then condition (16),

∞

∑

𝑙=0

𝑙

∑

𝑚=−𝑙

󵄨󵄨󵄨󵄨𝑎𝑙,𝑚
󵄨󵄨󵄨󵄨

2

𝜎
2

𝑙
(𝑎)

< ∞, (18)

holds for radius 𝑎 ≥ 𝑅min while, if it is open, condition (18)
holds for radius 𝑎 > 𝑅min.

Let us consider first the case of a closed region of
convergence (𝑎 ≥ 𝑅min). According to the D’Alembert ratio
test and using the asymptotics (12), convergence at 𝑎 = 𝑅min
implies

lim
𝑙→∞

󵄨󵄨󵄨󵄨𝑎𝑙+1,𝑚
󵄨󵄨󵄨󵄨

2
𝜎
2

𝑙
(𝑅min)

󵄨󵄨󵄨󵄨𝑎𝑙,𝑚
󵄨󵄨󵄨󵄨

2
𝜎
2

𝑙+1
(𝑅min)

= lim
𝑙→∞

󵄨󵄨󵄨󵄨𝑎𝑙+1,𝑚
󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑎𝑙,𝑚
󵄨󵄨󵄨󵄨

2

(2𝑙 + 3) (2𝑙 + 5)

(𝑘𝑅min)
2

≤ 1

(19)

while divergence for 𝑎 < 𝑅min,

∞

∑

𝑙=0

𝑙

∑

𝑚=−𝑙

󵄨󵄨󵄨󵄨𝑎𝑙,𝑚
󵄨󵄨󵄨󵄨

2

𝜎
2

𝑙
(𝑎)

= ∞, 𝑎 < 𝑅min, (20)

implies that at least for some𝑚 the associated 𝑙-indexed sum
diverges so that

lim
𝑙→∞

󵄨󵄨󵄨󵄨𝑎𝑙+1,𝑚
󵄨󵄨󵄨󵄨

2
𝜎
2

𝑙
(𝑎)

󵄨󵄨󵄨󵄨𝑎𝑙,𝑚
󵄨󵄨󵄨󵄨

2
𝜎
2

𝑙+1
(𝑎)

= lim
𝑙→∞

󵄨󵄨󵄨󵄨𝑎𝑙+1,𝑚
󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑎𝑙,𝑚
󵄨󵄨󵄨󵄨

2

(2𝑙 + 3) (2𝑙 + 5)

(𝑘𝑎)
2

≥ 1

at least one 𝑚, 𝑎 < 𝑅min.

(21)

Since in (21) 𝑎 can be arbitrarily close to 𝑅min and the (𝑘𝑎)2
factor depends continuously on 𝑎, then, according to (19), (21)
necessarily

lim
𝑙→∞

󵄨󵄨󵄨󵄨𝑎𝑙+1,𝑚
󵄨󵄨󵄨󵄨

2
𝜎
2

𝑙
(𝑅min)

󵄨󵄨󵄨󵄨𝑎𝑙,𝑚
󵄨󵄨󵄨󵄨

2
𝜎
2

𝑙+1
(𝑅min)

= 1 at least one 𝑚 (22)
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and furthermore

lim
𝑙→∞

󵄨󵄨󵄨󵄨𝑎𝑙+1,𝑚
󵄨󵄨󵄨󵄨

2
𝜎
2

𝑙
(𝑎)

󵄨󵄨󵄨󵄨𝑎𝑙,𝑚
󵄨󵄨󵄨󵄨

2
𝜎
2

𝑙+1
(𝑎)

> 1 at least one 𝑚, 𝑎 < 𝑅min (23)

so that necessarily

lim
𝑙→∞

󵄨󵄨󵄨󵄨𝑎𝑙,𝑚
󵄨󵄨󵄨󵄨

2

𝜎
2

𝑙
(𝑎)

̸= 0 at least one 𝑚, 𝑎 < 𝑅min (24)

which gives the desired result

lim
𝑙→∞

󵄨󵄨󵄨󵄨𝑎𝑙,𝑚
󵄨󵄨󵄨󵄨

𝜎
𝑙 (𝑎)

̸= 0 at least one 𝑚, 𝑎 < 𝑅min. (25)

If on the other hand the region of convergence is open, then

∞

∑

𝑙=0

𝑙

∑

𝑚=−𝑙

󵄨󵄨󵄨󵄨𝑎𝑙,𝑚
󵄨󵄨󵄨󵄨

2

𝜎
2

𝑙
(𝑅min)

= ∞ (26)

so that

lim
𝑙→∞

󵄨󵄨󵄨󵄨𝑎𝑙+1,𝑚
󵄨󵄨󵄨󵄨

2
𝜎
2

𝑙
(𝑅min)

󵄨󵄨󵄨󵄨𝑎𝑙,𝑚
󵄨󵄨󵄨󵄨

2
𝜎
2

𝑙+1
(𝑅min)

≥ 1 at least one 𝑚 (27)

which by considerations analogous to those employed above
gives (23) and in turn (25). It follows that the condition in
(25) can be used to define 𝑅min as is done in (17) where we
have also borrowed from the asymptotics in (12).

2.4. Computation Based on Multiple Origins. The proposed
multipole radiation theory approach to estimate the mini-
mum convex source region then consists of the following
steps: (1) consider a number 𝑛 of origins of coordinates, 𝑂

𝛼
,

𝛼 = 1, 2, . . . , 𝑛, within the region of interest. (2) For each
origin, compute via the test (17) the associated minimum
radius 𝑅min(𝑂𝛼) and associated minimum spherical volume
𝐵min(𝑂𝛼) = {r ∈ R3 : |r − 𝑂

𝛼
| ≤ 𝑅min(𝑂𝛼)}. (3) The inter-

section of the regions 𝐵min(𝑂𝛼), 𝛼 = 1, 2, . . . , 𝑛 defines a
region Bmin bounding the minimum convex source region
𝐵min,conv in the sense that 𝐵min,conv ⊆ Bmin. The estimate
Bmin becomes closer to 𝐵min,conv as one takes more sample
origins and their corresponding minimum spherical vol-
umes. For far origins the surface of the minimum spherical
volume behaves locally as a plane, and thus, for example, tak-
ing all the points in a sufficiently large sphere as origins and
computing their minimum spherical volumes, one obtains
the minimum convex source region 𝐵min,conv.

3. Diffraction-Based Analysis

Next we develop the companion diffraction form of the the-
ory and algorithms for support estimation. In the diffraction
point of view, one focuses on the propagation of fields outside
the source from a given region (e.g., a closed surface) to
another (e.g., another closed surface). There are two versions
of this approach. One is useful for the estimation of the
minimum convex source region of a far field, and the other

is the key for the estimation of the true minimum source
region, which can be possibly nonconvex and which lies
inside the minimum convex source region. In particular, in
the context of spherical regions, which allows application of
solutions of the Helmholtz equation in spherical coordinates
or in multipole domain, we consider two situations. One is
the exterior inverse diffraction problem consisting of (back)
propagation of fields that are known for 𝑟 ≥ 𝑎 into a spherical
surface of radius 𝑏 < 𝑎 centered about the same origin. The
other situation is one involving an interior inverse diffraction
problem, where one (back) propagates fields that are known
in the interior of a given spherical volume of radius 𝑏 (for
𝑟 ≤ 𝑏) to a spherical surface of radius 𝑎 > 𝑏 centered about
the same origin. Solutions associated to the first problem
yield a method for computing bounds for the minimum
convex source region of a far field while solutions to the
second problem provide a method to sharpen the estimate
of the minimum source region by refining the nonconvex
boundaries of the minimum source region.

In this section we establish the diffraction-based algo-
rithm for the minimum convex source region. We find
that it is equivalent to the one based on the radiation-
based approach discussed earlier. In the next section we
develop the companion diffraction-based algorithm for the
possibly nonconvex minimum source region. The respective
radiation-based nonconvex support inversion method is not
discussed in the paper since, as its convex counterpart, it gives
in the end the same algorithm.

3.1. Forward Problem. According to (2), the field at the sphere
defined by 𝑟 = 𝑏 > 𝑅 is given by

𝜓
𝑏 (r̂) ≡ 𝜓 (𝑏r̂) = 𝑖𝑘∑

𝑙,𝑚

𝑎
𝑙,𝑚

ℎ
(1)

𝑙
(𝑘𝑏) 𝑌𝑙,𝑚 (r̂) . (28)

It follows from (28) and the orthonormality of the spherical
harmonics that

𝑏̂
𝑙,𝑚

≡ ∫
𝑆
2

𝑑r̂𝑌∗
𝑙,𝑚

(r̂) 𝜓𝑏 (r̂) = 𝑖𝑘𝑎
𝑙,𝑚

ℎ
(1)

𝑙
(𝑘𝑏) . (29)

Then the mapping from the field at 𝑟 = 𝑏, in particular,

𝜓
𝑏 (r̂) = ∑

𝑙,𝑚

𝑏̂
𝑙,𝑚

𝑌
𝑙,𝑚 (r̂) , (30)

to the multipole moments 𝑎
𝑙,𝑚
, which are related to the far

field radiation pattern via (6), (7), is characterized by the
relation

𝑎
𝑙,𝑚

=
𝑏̂
𝑙,𝑚

[𝑖𝑘ℎ
(1)

𝑙
(𝑘𝑏)]

. (31)

From the asymptotic relation (see [3, page 77])

ℎ
(1)

𝑙
(𝑘𝑟) ∼ −𝑖

Γ (𝑙 + 1/2)

2√𝜋
(
2

𝑘𝑟
)

𝑙+1

, 𝑙 ≫ 𝑘𝑟, (32)

we get ℎ(1)
𝑙
(𝑘𝑏) → ∞ as 𝑙 → ∞ so that from (31) 𝑎

𝑙,𝑚
→ 0

as 𝑙 → ∞. Thus the fine details of the field at 𝑟 = 𝑏 are
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not contained in the far field, which is the reason behind the
ill-posedness of the associated inverse diffraction problem
of reconstructing the near field at 𝑟 = 𝑏 from the far field.
Furthermore, using the rule of thumb [ℎ

(1)

𝑙
(𝑘𝑏)]
−1

≃ 0 for
𝑙 ≳ 𝑘𝑏, then

𝑎
𝑙,𝑚

=
𝑏̂
𝑙,𝑚

[𝑖𝑘ℎ
(1)

𝑙
(𝑘𝑏)]

, 𝑙 ≲ 𝑘𝑏,

𝑎
𝑙,𝑚

≃ 0, 𝑙 ≳ 𝑘𝑏;

(33)

hence only the fine details of the near field at 𝑟 = 𝑏 up to
expansion index 𝑙 ≃ 𝑘𝑏 are visible in the far zone, under noise
or perturbations.

It also follows from (2), (28), (29), (30), and (31) that the
more general forwardmapping from the field𝜓

𝑏
at 𝑟 = 𝑏 (𝜓

𝑏
)

to the field 𝜓
𝑎
at 𝑟 = 𝑎 > 𝑏 where

𝜓
𝑎 (r̂) ≡ 𝜓 (𝑎r̂) = ∑

𝑙,𝑚

𝑎
𝑙,𝑚

𝑌
𝑙,𝑚 (r̂) (34)

is described by

𝑎
𝑙,𝑚

= [
ℎ
(1)

𝑙
(𝑘𝑎)

ℎ
(1)

𝑙
(𝑘𝑏)

] 𝑏̂
𝑙,𝑚

. (35)

3.2. Inverse Problem. Consider now the inverse diffraction
problem of estimating 𝜓

𝑏
from knowledge of 𝜓

𝑎
where 𝑏 <

𝑎. Equivalently 𝑎
𝑙,𝑚

for 𝑟 = 𝑎 > 𝑏 is given (measured or
specified), and the problem consists of estimating 𝑏̂

𝑙,𝑚
for

𝑟 = 𝑏 < 𝑎 assuming that the field obeys the homogeneous
Helmholtz equation for 𝑟 > 𝑏 and the radiation condition at
infinity. Then inverting (35),

𝑏̂
𝑙,𝑚

= [
ℎ
(1)

𝑙
(𝑘𝑏)

ℎ
(1)

𝑙
(𝑘𝑎)

] 𝑎
𝑙,𝑚

. (36)

The field at 𝑟 = 𝑏 < 𝑎 is given by (30) and is square-integrable
if it obeys the Picard condition:

󵄩󵄩󵄩󵄩𝜓𝑏
󵄩󵄩󵄩󵄩

2
= ∫
𝑆
2

𝑑r̂󵄨󵄨󵄨󵄨𝜓𝑏 (r̂)
󵄨󵄨󵄨󵄨

2
= ∑

𝑙,𝑚

󵄨󵄨󵄨󵄨󵄨
𝑏̂
𝑙,𝑚

󵄨󵄨󵄨󵄨󵄨

2

= ∑

𝑙,𝑚

󵄨󵄨󵄨󵄨𝑎𝑙,𝑚
󵄨󵄨󵄨󵄨

2
[
ℎ
(1)

𝑙
(𝑘𝑏)

ℎ
(1)

𝑙
(𝑘𝑎)

]

2

< ∞

(37)

which by recalling the asymptotic relation (32) requires for 𝐿2
convergence

lim
𝑙→∞

(
𝑎

𝑏
)

𝑙
󵄨󵄨󵄨󵄨𝑎𝑙,𝑚

󵄨󵄨󵄨󵄨 = 0, 𝑏 < 𝑎, (38)

and furthermore one can show that, if the Picard condition
does not hold, then

lim
𝑙→∞

(
𝑎

𝑏
)

𝑙
󵄨󵄨󵄨󵄨𝑎𝑙,𝑚

󵄨󵄨󵄨󵄨 ̸= 0, 𝑏 < 𝑎, at least one 𝑚. (39)

This result applies in both near and far zones and is the key for
the respective extensions to the near zone. In the far zone case,
for 𝑎 → ∞, we use the far field results associated to (30) and
(31), obtaining that the 𝐿2 requirement for the reconstructed
field or Picard condition becomes

∑

𝑙,𝑚

󵄨󵄨󵄨󵄨𝑎𝑙,𝑚
󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨󵄨
ℎ
(1)

𝑙
(𝑘𝑏)

󵄨󵄨󵄨󵄨󵄨

2

< ∞ (40)

which requires for convergence

lim
𝑙→∞

󵄨󵄨󵄨󵄨󵄨
ℎ
(1)

𝑙
(𝑘𝑏)

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑎𝑙,𝑚
󵄨󵄨󵄨󵄨 = 0, (41)

which in view of (32) gives

lim
𝑙→∞

Γ (𝑙 +
1

2
) (

2

𝑘𝑏
)

𝑙
󵄨󵄨󵄨󵄨𝑎𝑙,𝑚

󵄨󵄨󵄨󵄨 = 0. (42)

Moreover, if the Picard condition does not hold,

lim
𝑙→∞

Γ (𝑙 +
1

2
) (

2

𝑘𝑏
)

𝑙
󵄨󵄨󵄨󵄨𝑎𝑙,𝑚

󵄨󵄨󵄨󵄨 ̸= 0 at least one 𝑚, (43)

and we arrive through arguments analogous to those leading
to main result 1 to the following result whose proof is omitted
for economy.

Main Result 2. One has

𝑅min = sup{𝑏 ∈ R
+
: lim
𝑙→∞

Γ (𝑙 + 1/2)

(𝑘𝑏/2)
𝑙

󵄨󵄨󵄨󵄨𝑎𝑙,𝑚
󵄨󵄨󵄨󵄨 ̸= 0,

at least one 𝑚} .

(44)

Equation (44) is the diffraction-based counterpart of the
result (17) discussed earlier in the radiation-based approach.
Furthermore, clearly if

lim
𝑙→∞

Γ (𝑙 + 1/2)
󵄨󵄨󵄨󵄨𝑎𝑙,𝑚

󵄨󵄨󵄨󵄨

(𝑘𝑎/2)
𝑙

̸= 0, (45)

then also

lim
𝑙→∞

√2𝑙 + 3 Γ (𝑙 + 3/2)
󵄨󵄨󵄨󵄨𝑎𝑙,𝑚

󵄨󵄨󵄨󵄨

(𝑘𝑎/2)
𝑙

̸= 0. (46)

In addition, clearly if

lim
𝑙→∞

√2𝑙 + 3 Γ (𝑙 + 3/2)
󵄨󵄨󵄨󵄨𝑎𝑙,𝑚

󵄨󵄨󵄨󵄨

(𝑘𝑎/2)
𝑙

̸= 0, (47)

then also

lim
𝑙→∞

Γ (𝑙 + 1/2)
󵄨󵄨󵄨󵄨𝑎𝑙,𝑚

󵄨󵄨󵄨󵄨

(𝑘𝑎󸀠/2)
𝑙

̸= 0, 𝑎
󸀠
< 𝑎. (48)

As a consequence, the value of 𝑅min defined by main results 1
and 2 (see (17) and (44)) is in fact the same. Thus the respec-
tive diffraction-based algorithm to estimate the minimum
convex source region is the same outlined in Section 2.4.

Here we also wish to point out that the Picard condition
adopted above is quite fundamental, as it is germane in
defining the class of realizable fields not only in the 𝐿2 sense
but also in the uniform and absolute convergence senses.This
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can be shown for the diffraction-based approach from a result
in [3, thm. 12, page 77].

4. Estimation of the (Possibly Nonconvex)
Minimum Source Region

In order to sharpen the estimate of the minimum source
region, including nonconvex regions, we must consider
forward and inverse diffraction problems in the near field,
associated to a complementary geometry where the field data
are known in the interior of a given spherical volume (interior
data) and the field is backpropagated into outer concentric
spheres. If the far field is known in closed form, then it
is theoretically possible to estimate also the associated near
field. If, on the other hand, the data are experimental or com-
putational and thus subject to noise and perturbations, then
the near field can be estimated only up to an essentially finite-
dimensional representation as outlined in the discussion of
(33).

First we review the radiation problem from a perspective
that complements our discussion in Section 2.1 and intro-
duces the forward and inverse diffraction problems leading to
the sought-aftermethod to extract nonconvex source support
information. It is well known that the solution of (1) that
obeys Sommerfeld’s radiation condition can be expressed as
the Green function integral:

𝜓 (r) = ∫𝑑r󸀠𝐺(r, r󸀠) 𝜌 (r󸀠) , (49)

where the outgoing wave Green function

𝐺(r, r󸀠) =
𝑒
𝑖𝑘|r−r󸀠|

4𝜋
󵄨󵄨󵄨󵄨r − r󸀠󵄨󵄨󵄨󵄨

. (50)

Furthermore, in view of the addition theorem for spherical
Hankel functions (see [7, page 428]),

𝐺(r, r󸀠)

= 𝑖𝑘

∞

∑

𝑙=0

𝑙

∑

𝑚=−𝑙

𝑗
𝑙
(𝑘𝑟
<
) ℎ
(1)

𝑙
(𝑘𝑟
>
) 𝑌
𝑙,𝑚

(r̂) 𝑌∗
𝑙,𝑚

(r̂󸀠) ,
(51)

where 𝑟
<
= min(𝑟, 𝑟󸀠) (where 𝑟󸀠 ≡ |r󸀠|) and 𝑟

>
= max(𝑟, 𝑟󸀠).

The result (51) holds for any choice of the origin of
coordinates.Thus if, for one origin,𝑂, we denote in spherical
coordinates r = (𝑟, 𝜃, 𝜙) and r̂ = (𝜃, 𝜙), and r󸀠 = (𝑟

󸀠
, 𝜃
󸀠
, 𝜙
󸀠
)

and r̂󸀠 = (𝜃
󸀠
, 𝜙
󸀠
), while for another origin, 𝑂󸀠, we use r =

(𝑟
𝑂
󸀠 , 𝜃
𝑂
󸀠 , 𝜙
𝑂
󸀠) and r̂

𝑂
󸀠 = (𝜃

𝑂
󸀠 , 𝜙
𝑂
󸀠), and r󸀠 = (𝑟

󸀠

𝑂
󸀠 , 𝜃𝑂󸀠 , 𝜙

󸀠

𝑂
󸀠)

and r̂󸀠 = (𝜃
󸀠

𝑂
󸀠 , 𝜙
󸀠

𝑂
󸀠), then (51) holds and also

𝐺(r, r󸀠)

= 𝑖𝑘

∞

∑

𝑙=0

𝑙

∑

𝑚=−𝑙

𝑗
𝑙
(𝑘𝑟
<,𝑂
󸀠) ℎ
(1)

𝑙
(𝑘𝑟
>,𝑂
󸀠) 𝑌
𝑙,𝑚

(r̂
𝑂
󸀠) 𝑌
∗

𝑙,𝑚
(r̂󸀠
𝑂
󸀠) ,

(52)

where 𝑟
<,𝑂
󸀠 = min(𝑟

𝑂
󸀠 , 𝑟
󸀠

𝑂
󸀠) and 𝑟

>,𝑂
󸀠 = max(𝑟

𝑂
󸀠 , 𝑟
󸀠

𝑂
󸀠). It is

possible to choose the coordinate systems𝑂 and𝑂
󸀠 such that

O

V

R

Figure 3: Illustration of an origin 𝑂 for which the support of the
source 𝜌 is confined within a ball of radius 𝑅 centered at this origin.

𝑟
<
= 𝑟
󸀠 while 𝑟

<,𝑂
󸀠 = 𝑟
𝑂
󸀠 in which case the results (51) and

(52) give

∞

∑

𝑙=0

𝑙

∑

𝑚=−𝑙

𝑗
𝑙
(𝑘𝑟
󸀠
) ℎ
(1)

𝑙
(𝑘𝑟) 𝑌𝑙,𝑚 (r̂) 𝑌

∗

𝑙,𝑚
(r̂󸀠)

=

∞

∑

𝑙=0

𝑙

∑

𝑚=−𝑙

𝑗
𝑙
(𝑘𝑟
𝑂
󸀠) ℎ
(1)

𝑙
(𝑘𝑟
󸀠

𝑂
󸀠) 𝑌𝑙,𝑚 (r̂𝑂󸀠) 𝑌

∗

𝑙,𝑚
(r̂󸀠
𝑂
󸀠) .

(53)

This result is useful to show that the minimum source region
of a set of point sources is the set of the point source locations.

For a source 𝜌 whose support 𝑉 is confined inside a ball
of radius 𝑅 centered about the origin 𝑂 (see Figure 3), we
obtain from (49) and (51) the result (2) with 𝑎

𝑙,𝑚
given by (3)

which defines the field for 𝑟 > 𝑅, as expected. Furthermore,
since there exists a source inside the minimum source region
𝑉min ⊆ 𝑉 that produces the given far field (see (9)) and
thereby also the same multipole moments 𝑎

𝑙,𝑚
, it follows that

we can also apply (49) and (51) to this source, obtaining

𝜓 (r) = 𝑖𝑘

∞

∑

𝑙=0

𝑙

∑

𝑚=−𝑙

𝑎
𝑙,𝑚

ℎ
(1)

𝑙
(𝑘𝑟) 𝑌

𝑙,𝑚
(r̂) , 𝑟 > 𝑅min, (54)

where 𝑅min is the radius of the smallest spherical volume
that is centered about the same origin and contains the
minimum source region 𝑉min ⊆ 𝑉 of the given far field, as
is illustrated in Figure 4. Expression (54) is implicit in the
diffraction-based inverse support approach of Section 3. The
result (54) holds for any origin 𝑂. The intersection of the
minimum spherical source regions 𝐵min = {r ∈ R3 : 𝑟 ≤

𝑅min} for different origins establishes a convex region where
the minimum source region resides, and it is theoretically
possible for sufficiently many such origins to actually define
the minimum convex source region 𝐵min,conv of the given far
field, which is defined by the convex hull of the minimum
source region 𝑉min and which is contained in the convex hull
of the original source’s support 𝑉. Now, since (54) holds for
any origin, this also means that we can compute the radiated
field (due to any source inside the minimum source region
that generates the given far field) everywhere outside the
minimum convex source region. Once this is done we can
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V

R

Vmin

Rmin

Figure 4: This figure expands the interpretation of Figure 3. It
illustrates the relations between 𝑉min and 𝑉, and 𝑅min and 𝑅, for the
same source and origin shown in Figure 3.

use this information to refine our estimate of the minimum
source region beyond the minimum convex source region by
extracting the respective nonconvex support information as
we explain next.

To extract the desired nonconvex support informationwe
note that, if, on the other hand, the origin of coordinates𝑂 is
such that 𝑉 is contained outside a ball of radius 𝑅int centered
at the origin (see Figure 5), then the field in the interior of this
circle of radius 𝑅int is given from (49) and (51) by

𝜓 (r) = 𝑖𝑘

∞

∑

𝑙=0

𝑙

∑

𝑚=−𝑙

𝑔
𝑙,𝑚

𝑗
𝑙 (𝑘𝑟) 𝑌𝑙,𝑚 (r̂) , 𝑟 < 𝑅

int
, (55)

where

𝑔
𝑙,𝑚

= ∫

∞

𝑅
int
𝑑𝑟𝑟
2
ℎ
(1)

𝑙
(𝑘𝑟) ∫

𝑆
2

𝑑r̂𝑌∗
𝑙,𝑚

(r̂) 𝜌 (r) . (56)

Furthermore, since there exists a source inside the minimum
source region that produces the given far field and thereby
also the samefield outside𝑉 as the original source𝜌, it follows
that by applying (49), (51) to the source inside 𝑉min while
using (53), (55), (56) we obtain

𝜓 (r) = 𝑖𝑘

∞

∑

𝑙=0

𝑙

∑

𝑚=−𝑙

𝑔
𝑙,𝑚

𝑗
𝑙 (𝑘𝑟) 𝑌𝑙,𝑚 (r̂) , 𝑟 < 𝑅

int
min, (57)

where the critical radius 𝑅
int
min is the radius of the largest

spherical volume centered about the same origin that is
disjoint to the minimum source region 𝑉min and is in fact
tangential to it in a way that allows the extraction of its
nonconvex content as is illustrated in Figures 6, 7, and 8.
We detail in the following the methodology to compute
this critical radius 𝑅int

min and elaborate the method to extract
nonconvex support information about the minimum source
region.

So far (in the two previous sections) we have derived
a methodology to estimate the minimum convex source
region 𝐵min,conv. We also know from the discussion following
(54) that it is theoretically possible to estimate the field
everywhere outside theminimum convex source region from

V

O

Rint

Figure 5: Illustration of an origin 𝑂 for which the support of the
source 𝜌 is contained outside a ball of radius 𝑅int centered at this
origin.

VVmin

Rint
Rint

min

Figure 6: This figure expands the interpretation of Figure 5. It
illustrates the relations between 𝑉min and 𝑉, and 𝑅

int
min and 𝑅

int, for
the same source and origin shown in Figure 5.

the knowledge of the far field or the multipole moments.
To estimate the minimum source region 𝑉min we will back-
propagate the fields in the interior of a spherical volume of
radius 𝑅 that is centered at the origin 𝑂 up to the critical
sphere of radius 𝑅int

min beyond which such backpropagation
is not possible (since for larger radius the backpropagated
field is not 𝐿2). Clearly the spherical volumes whose fields
will be backpropagated must be such that their interior
fields are known (they can be computed from the far field).
Therefore we pick first spherical volumes of center 𝑂 and
radius 𝑅

int that are entirely localized outside the derived
minimum convex source region (see Figure 7) since their
interior fields can be computed via (54) from the far field
or the multipole moments. Subsequently, as the respective
backpropagations are carried out into concave boundaries of
the minimum source region, we will as a by product also
compute the backpropagated fields up to those boundaries,
so that we will be able to choose spherical volumes of center
𝑂 and radius 𝑅int intersecting the minimum convex source
region but outside the best current estimate of the boundary
of the minimum source region. The process is illustrated
in Figure 8. In the discussion that follows, it is implicitly
assumed that the field in the interior of a spherical region of
radius 𝑏 centered at the origin has been estimated this way
from previous computation steps, and the goal is to compute
the radius 𝑅int

min of the largest sphere up to which the available
exterior radiated field can be backpropagated, which defines
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V

Rint
min

Bmin,conv

Figure 7: Illustration of theminimumconvex source region𝐵min,conv
corresponding to the minimum source region 𝑉min in Figure 6. The
radiated field can be estimated everywhere outside𝐵min,conv, and this
information can be used subsequently to estimate the critical radius
𝑅
int
min of the largest sphere up to which the known radiated field can

be backpropagated, which establishes a boundary for the minimum
source region 𝑉min. The geometry of this backpropagation pierces
or intersects concave portions of 𝐵min,conv, allowing the extraction
of the pending nonconvex support information of 𝑉min that is not
contained in 𝐵min,conv.

Bmin,conv

Vmin

Figure 8: Successive application of the diffraction-based estimation
of the critical sphere of radius𝑅int

min, based on field information avail-
able from previous iterations. This method allows the estimation of
concave boundaries of the minimum source region. Thus it allows,
in theory, the estimation of the minimum source region 𝑉min which
can be nonconvex.

the possibly nonconvex boundary of the minimum source
region.

4.1. Forward Problem. In view of (57) it follows that if the
field is prescribed at the sphere defined by 𝑟 = 𝑎 < 𝑅

int
min,

in particular,

𝜓
𝑎
(r̂) = 𝜓 (𝑎r̂) = ∑

𝑙,𝑚

𝑎
𝑙,𝑚

𝑌
𝑙,𝑚

(r̂) , 𝑎 < 𝑅
int
min, (58)

where

𝑎
𝑙,𝑚

= 𝑔
𝑙,𝑚

𝑗
𝑙
(𝑘𝑎) , (59)

Rint
min

Vmin

b

Figure 9: Backpropagation of the field at the sphere of radius 𝑟 =

𝑏 to the respective field at a larger concentric sphere. This process
breaks down at the critical radius 𝑅int

min which defines the sought-
after boundary of the minimum source region 𝑉min.

then the field 𝜓
𝑏
(r̂) ≡ 𝜓(𝑏r̂) for any 𝑟 = 𝑏 < 𝑎 can be

computed from 𝜓
𝑎
or equivalently 𝑎

𝑙,𝑚
via

𝜓
𝑏
(r̂) = ∑

𝑙,𝑚

𝑏
𝑙,𝑚

𝑌
𝑙,𝑚

(r̂) , (60)

where

𝑏
𝑙,𝑚

= 𝑎
𝑙,𝑚

𝑗
𝑙
(𝑘𝑏)

𝑗
𝑙
(𝑘𝑎)

(61)

which in view of (11) gives

lim
𝑙→∞

𝑏
𝑙,𝑚

𝑎
𝑙,𝑚

= (
𝑏

𝑎
)

𝑙

. (62)

4.2. Inverse Problem. Consider now the interior inverse
diffraction problem of reconstructing the field at 𝑟 = 𝑎 (𝜓

𝑎
)

from knowledge of the field for 𝑟 ≤ 𝑏 < 𝑎 (𝜓
𝑏
) (see Figure 9).

We obtain

𝜓
𝑎 (r̂) = ∑

𝑙,𝑚

𝑏
𝑙,𝑚

[
𝑗
𝑙
(𝑘𝑎)

𝑗
𝑙
(𝑘𝑏)

]𝑌
𝑙,𝑚 (r̂) (63)

which by requiring square-integrability of the solution gives

∑

𝑙,𝑚

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑙,𝑚

󵄨󵄨󵄨󵄨󵄨

2

[
𝑗
𝑙 (𝑘𝑎)

𝑗
𝑙
(𝑘𝑏)

]

2

< ∞. (64)

On the other hand, if it is not possible to find an 𝐿
2 field at

𝜓
𝑎
capable of producing the given field 𝜓 for 𝑟 ≤ 𝑏 < 𝑎, then

necessarily the series in (64) diverges, which can be shown to
imply

lim
𝑙→∞

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑙,𝑚

󵄨󵄨󵄨󵄨󵄨
[
𝑗
𝑙 (𝑘𝑎)

𝑗
𝑙
(𝑘𝑏)

] ̸= 0, at least one 𝑚. (65)

Using the asymptotic result (11), this implies

lim
𝑙→∞

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑙,𝑚

󵄨󵄨󵄨󵄨󵄨
(
𝑎

𝑏
)

𝑙

̸= 0, at least one 𝑚. (66)
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Equivalently, we can rewrite (65) and (66) as

lim
𝑙→∞

󵄨󵄨󵄨󵄨𝑗𝑙 (𝑘𝑎)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑔𝑙,𝑚

󵄨󵄨󵄨󵄨 ̸= 0, at least one 𝑚. (67)

Thus from (11),

lim
𝑙→∞

(
𝑘𝑎

2
)

𝑙

[Γ (𝑙 +
3

2
)]

−1
󵄨󵄨󵄨󵄨𝑔𝑙,𝑚

󵄨󵄨󵄨󵄨 ̸= 0, at least one 𝑚.

(68)

The radius 𝑅int
min, defining the boundary of the (generally

nonconvex) minimum source region, is then given by the
infimum value of 𝑎 such that (66) and (68) hold. We
summarize this result as follows.

Main Result 3. One has

𝑅
int
min = inf{𝑎 ∈ R

+
: lim
𝑙→∞

(
𝑘𝑎

2
)

𝑙

[Γ (𝑙 +
3

2
)]

−1
󵄨󵄨󵄨󵄨𝑔𝑙,𝑚

󵄨󵄨󵄨󵄨 ̸= 0,

at least one 𝑚} .

(69)

4.3. Algorithm. Themethod to estimate theminimum source
region now takes complete form as follows.

(1) Applying the exterior inverse diffraction approach of
the previous subsection, compute the convex region
Bmin where 𝑉min ⊆ 𝐵min,conv ⊆ Bmin. For sufficiently
many computational origins, it is possible that the
estimateBmin = 𝐵min,conv.

(2) Consider next reference origins outsideBmin, say𝑂𝛼,
𝛼 = 1, 2, . . . , 𝑛, and evaluate the field (via the exterior
inverse diffraction approach) over spheres centered
about those origins and having radius as large as
possible but not intersecting the volume Bmin. Let
us assume such computational surfaces correspond to
radii 𝑏

𝛼
, with centers 𝑂

𝛼
.

(3) Using the value of the field on such surfaces, as
computed via exterior inverse diffraction from far
field data, compute the respective minimum radius
𝑅
int
min(𝛼).

(4) Compute the union 𝑈
int of all the regions 𝐵int

min(𝛼) =

{r ∈ R3 : |r−𝑂
𝛼
| ≤ 𝑅

int
min(𝛼)}. Compute the respective

complement 𝑈int
= {r ∈ R3 : r ∉ 𝑈

int
}.

(5) Compute the intersection of 𝑈int and Bmin, which
defines the revised estimate 𝑉min,est ⊇ 𝑉min for the
minimum source region which can be nonconvex, in
particular,

𝑉min,est = Bmin ∩ 𝑈
int
. (70)

(6) The information used in the previous steps is the
field outside the convex regionBmin. However, as the
estimate 𝑉min,est becomes closer to 𝑉min than Bmin,
we need to repeat steps (2)–(4) for computational

surfaces located outside the best current estimate
𝑉min,est, whose respective fields for the required back-
propagation are computed via the interior inverse
diffraction approach explained in this section. The
counterpart of step (5) associated to the second
and following iterations is 𝑉min,est(“𝑐𝑢𝑟𝑟𝑒𝑛𝑡

󸀠󸀠
) =

𝑉min,est(“𝑝𝑟𝑒V𝑖𝑜𝑢𝑠
󸀠󸀠
)∩𝑈

int. By continuing this process
(see Figure 8), it is theoretically possible to obtain
𝑉min,est = 𝑉min, as desired.

5. Theory and Algorithms in 2D Space

We consider next the 2D version of the theory for the
Helmholtz operator in 2D space. To tie the results to electro-
magnetic applications, we consider radiation and scattering
problems involving transversemagnetic 𝑧 (TM𝑧) polarization
for which radiation is governed by the 2D Helmholtz equa-
tion

(∇
2
+ 𝑘
2
) 𝐸
𝑧 (r) = −𝑖𝜔𝜇𝐼

𝑧 (r) , (71)

where the wavenumber

𝑘 = 𝜔√𝜇𝜖, (72)

where𝜔 is the angular oscillation frequency, 𝜖 is the free space
permittivity, and 𝜇 is the free space permeability and where
𝐸
𝑧
is the 𝑧 component of the electric field and 𝐼

𝑧
is the 𝑧

component of the current distribution that produces the field.
The radiated field is well known to be given by

𝐸
𝑧
(r) = −𝑖𝜔𝜇∫𝑑r󸀠𝐺(r, r󸀠) 𝐼

𝑧
(r󸀠)

= −
𝜔𝜇

4
∫𝑑r󸀠𝐻(1)

0
(𝑘

󵄨󵄨󵄨󵄨󵄨
r − r󸀠󵄨󵄨󵄨󵄨󵄨) 𝐼𝑧 (r

󸀠
) ,

(73)

where 𝐺(r, r󸀠) is the outgoing wave 2D Green function of the
Helmholtz operator and 𝐻

(1)

0
is the Hankel function of the

first kind and order 0. From the addition theorem for Hankel
functions, we have

𝐻
(1)

0
(𝑘

󵄨󵄨󵄨󵄨󵄨
r − r󸀠󵄨󵄨󵄨󵄨󵄨) = 4𝑖𝐺 (r, r󸀠)

=

∞

∑

𝑚=−∞

𝐽
𝑚
(𝑘𝜌
<
)𝐻
(1)

𝑚
(𝑘𝜌
>
) 𝑒
−𝑖𝑚(𝜙−𝜙

󸀠
)
,

(74)

where 𝜌
<
= min(𝜌, 𝜌󸀠) and 𝜌

>
= max(𝜌, 𝜌󸀠) where 𝜌 is the

distance from r to the origin of coordinates and 𝜌
󸀠 is the

distance from r󸀠 to the origin. The result (74) holds for any
choice of the origin of coordinates. Thus if for one origin, 𝑂,
we denote r = (𝜌, 𝜙) and r󸀠 = (𝜌

󸀠
, 𝜙
󸀠
), and for another origin,

𝑂
󸀠, r = (𝜌

𝑂
󸀠 , 𝜙
𝑂
󸀠) and r󸀠 = (𝜌

󸀠

𝑂
󸀠 , 𝜙
󸀠

𝑂
󸀠), then (74) holds and also

4𝑖𝐺 (r, r󸀠)

=

∞

∑

𝑚=−∞

𝐽
𝑚
(𝑘𝜌
<,𝑂
󸀠)𝐻
(1)

𝑚
(𝑘𝜌
>,𝑂
󸀠) 𝑒
−𝑖𝑚(𝜙

𝑂
󸀠−𝜙
󸀠

𝑂
󸀠 )
,

(75)
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where of course 𝜌
<,𝑂
󸀠 = min(𝜌

𝑂
󸀠 , 𝜌
󸀠

𝑂
󸀠) and 𝜌

>,𝑂
󸀠 =

max(𝜌
𝑂
󸀠 , 𝜌
󸀠

𝑂
󸀠). It is possible to choose the coordinate systems

𝑂 and 𝑂
󸀠 such that 𝜌

<
= 𝜌
󸀠 while 𝜌

<,𝑂
󸀠 = 𝜌
𝑂
󸀠 in which case

the results (74) and (75) give

∞

∑

𝑚=−∞

𝐽
𝑚
(𝑘𝜌
󸀠
)𝐻
(1)

𝑚
(𝑘𝜌) 𝑒

−𝑖𝑚(𝜙−𝜙
󸀠
)

=

∞

∑

𝑚=−∞

𝐽
𝑚
(𝑘𝜌
𝑂
󸀠)𝐻
(1)

𝑚
(𝑘𝜌
󸀠

𝑂
󸀠) 𝑒
−𝑖𝑚(𝜙

𝑂
󸀠−𝜙
󸀠

𝑂
󸀠 ).

(76)

This result is useful to show that the minimum source region
of a set of point sources is the set of the point source locations.

For a source whose support 𝑉 is confined inside a 2-ball
or disk of radius 𝑅 centered about the origin𝑂, we have from
(73) and (74)

𝐸
𝑧
(r = (𝜌, 𝜙))

= −
𝜔𝜇

4

∞

∑

𝑚=−∞

𝑎
𝑚
𝐻
(1)

𝑚
(𝑘𝜌) 𝑒

−𝑖𝑚𝜙
, 𝜌 > 𝑅,

(77)

where

𝑎
𝑚
= ∫

𝑅

0

𝑑𝜌
󸀠
𝜌
󸀠
∫

2𝜋

0

𝑑𝜙
󸀠
𝐽
𝑚
(𝑘𝜌
󸀠
) 𝑒
𝑖𝑚𝜙
󸀠

𝐼
𝑧
(𝜌
󸀠
, 𝜙
󸀠
) . (78)

Using the large argument approximation for the Hankel
function

𝐻
(1)

𝑚
(𝑘𝜌) ∼ √

2

𝜋𝑘𝜌
𝑒
𝑖[𝑘𝜌−𝑚(𝜋/2)−𝜋/4]

, (79)

we get from (85) the far zone behavior:

𝐸
𝑧
(𝜌, 𝜙) ∼ −

𝜔𝜇

4
√

2

𝜋𝑘𝜌
𝑒
𝑖(𝑘𝜌−𝜋/4)

𝑓 (𝜙) , (80)

where the far field radiation pattern

𝑓 (𝜙) =

∞

∑

𝑚=−∞

𝑖
−𝑚

𝑎
𝑚
𝑒
−𝑖𝑚𝜙 (81)

so that in view of the orthogonality of the complex exponen-
tials for integer𝑚

𝑎
𝑚
=

𝑖
𝑚

2𝜋
∫

2𝜋

0

𝑑𝜙𝑒
𝑖𝑚𝜙

𝑓 (𝜙) . (82)

In addition, it can be shown that there is a source inside
theminimumsource region𝑉min ⊆ 𝑉 that generates the given
far field, which is associated to themultipole moments 𝑎

𝑚
. By

applying the above formulation to this source, we obtain

𝐸
𝑧
(r = (𝜌, 𝜙))

= −
𝜔𝜇

4

∞

∑

𝑚=−∞

𝑎
𝑚
𝐻
(1)

𝑚
(𝑘𝜌) 𝑒

−𝑖𝑚𝜙
, 𝜌 > 𝑅min,

(83)

where 𝑅min is the radius of the smallest ball that is centered
about the same origin and contains the minimum source
region 𝑉min ⊆ 𝑉 of the given far field. Now, since (83)
holds for any origin, this means that we can compute a valid
radiated field associated to the given far field everywhere
outside the minimum convex source region of the given far
field.

On the other hand, if the origin of coordinates 𝑂 is such
that 𝑉 is contained outside a circle of radius 𝑅int centered at
the origin, then the field in the interior of this circle of radius
𝑅
int is given from (73) and (74) by

𝐸
𝑧
(r = (𝜌, 𝜙))

= −
𝜔𝜇

4

∞

∑

𝑚=−∞

𝑔
𝑚
𝐽
𝑚
(𝑘𝜌) 𝑒

−𝑖𝑚𝜙
, 𝜌 < 𝑅

int
,

(84)

where

𝑔
𝑚
= ∫

∞

𝑅
int
𝑑𝜌
󸀠
𝜌
󸀠
∫

2𝜋

0

𝑑𝜙
󸀠
𝐻
(1)

𝑚
(𝑘𝜌
󸀠
) 𝑒
𝑖𝑚𝜙
󸀠

𝐼
𝑧
(𝜌
󸀠
, 𝜙
󸀠
) . (85)

Furthermore, since there is a source inside 𝑉min ⊆ 𝑉 that
generates the same field as𝐸

𝑧
for 𝜌 < 𝑅

int, it also follows from
the same formulation that

𝐸
𝑧
(r = (𝜌, 𝜙))

= −
𝜔𝜇

4

∞

∑

𝑚=−∞

𝑔
𝑚
𝐽
𝑚
(𝑘𝜌) 𝑒

−𝑖𝑚𝜙
, 𝜌 < 𝑅

int
min,

(86)

where 𝑅int
min is the radius of the largest ball centered about the

same origin that is disjoint to the minimum source region
𝑉min and is tangential to it in a way that defines a concave
boundary of 𝑉min.

Let us derive next convex and nonconvex bounds for the
minimum source region of a given far field based on the
results above. Equations (80) and (81) define the far fieldwhile
the field for 𝜌 = 𝑎 > 𝑅 is defined by (77); that is,

𝐸
𝑧
(𝑎, 𝜙) = −

𝜔𝜇

4

∞

∑

𝑚=−∞

𝑎
𝑚
𝐻
(1)

𝑚
(𝑘𝑎) 𝑒

−𝑖𝑚𝜙
. (87)

The backpropagation of the far field or the field for 𝜌 = 𝑎 >

𝑅 in (87) to a more interior circle of radius 𝜌 = 𝑏 < 𝑎 is
described by

𝐸
𝑧
(𝑏, 𝜙) = −

𝜔𝜇

4

∞

∑

𝑚=−∞

𝑎
𝑚
𝐻
(1)

𝑚
(𝑘𝑏) 𝑒

−𝑖𝑚𝜙 (88)

and ismeaningful only if the backpropagated field is 𝐿2 which
means

∞

∑

𝑚=−∞

󵄨󵄨󵄨󵄨𝑎𝑚
󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨󵄨
𝐻
(1)

𝑚
(𝑘𝑏)

󵄨󵄨󵄨󵄨󵄨

2

< ∞. (89)

The smallest circle onto which the field can be backpropa-
gated this way defines the minimum circle 𝐵min associated
to the given far field 𝑓(𝜙) or equivalently the multipole
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moments 𝑎
𝑚
and is defined as 𝐵min = {r ∈ R2 : |r| ≤ 𝑅min}

where

𝑅min = inf{𝑏 ∈ R
+
:

∞

∑

𝑚=−∞

󵄨󵄨󵄨󵄨𝑎𝑚
󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨󵄨
𝐻
(1)

𝑚
(𝑘𝑏)

󵄨󵄨󵄨󵄨󵄨

2

< ∞} . (90)

Since𝐻(1)
𝑚

(𝑧) = √2𝑧/𝜋ℎ
𝑚−1/2

(𝑧), it follows from (32) that

𝐻
𝑚 (𝑧) ∼ −

𝑖

𝜋
Γ (𝑚) (

2

𝑧
)

𝑚

, 𝑚 󳨀→ ∞. (91)

It follows from (90), (91), and a methodology similar to the
one leading to main results 1 and 2 that the following 2D
counterpart of main result 2 holds.

Main Result 2󸀠 (2D Space). One has

𝑅min = sup{𝑏 ∈ R
+
: lim
𝑚→∞

Γ (𝑚) (
2

𝑘𝑏
)

𝑚
󵄨󵄨󵄨󵄨𝑎𝑚

󵄨󵄨󵄨󵄨 ̸= 0} . (92)

Finally, like in the 3D case, convex bounds for the
minimum source region can be estimated as the intersection
of the minimum circles corresponding to different origins.
In principle one can estimate the minimum convex source
region using this approach. We consider next the comple-
mentary approach based on an interior diffraction problem
that allows the estimation of nonconvex support information
up to the (possibly nonconvex) minimum source region.

After a bounding region for the minimum convex source
region is estimated by applying the above method (main
result 2󸀠) for different origins, one can also backpropagate
the fields everywhere outside the respective minimum circles
of these origins, which accounts for a determination of
the radiated field everywhere outside the derived bounding
region for the minimum convex source region. The thus
computed field corresponds to the unique field due to
any source confined to the given bounding region for the
minimum convex source region and producing the specified
far field. Subsequently one can choose a number of origins
all of which are outside the derived bounding region for
the minimum convex source region. One can construct
circles of finite radius centered at these origins for which the
generated field is known in their interior, from the previous
backpropagation computations. Nonconvex bounds for the
minimum source region can be estimated by considering
the backpropapation of the field from any of these circles
up to a larger circular region. The largest circular region
for which such backpropagation is well-behaved defines a
bounding region for the minimum source region which can
reveal nonconvex support information. The key idea has
been detailed in the previous section for the 3D case. We
outline next only the key main results unique to the 2D case
computations.

Consider for a given origin𝑂, chosen outside the derived
bounding region for the minimum convex source region, a
circular region centered at that origin and residing outside the
bounding region for the minimum source region. It follows
from (84) and (85) with the substitution of 𝑉 by the derived
bounding region that in the interior of the circular region in

question the field obeys an expansion of the form (84). The
field at a circle of radius 𝜌 = 𝑏 inside this region is then

𝐸
𝑧
(𝑏, 𝜙) = −

𝜔𝜇

4

∞

∑

𝑚=−∞

𝑔
𝑚
𝐽
𝑚
(𝑘𝑏) 𝑒

−𝑖𝑚𝜙
. (93)

Backpropagation to a more exterior circle of radius 𝜌 = 𝑎 > 𝑏

is done via

𝐸
𝑧
(𝑎, 𝜙) = −

𝜔𝜇

4

∞

∑

𝑚=−∞

𝑔
𝑚
𝐽
𝑚
(𝑘𝑎) 𝑒

−𝑖𝑚𝜙 (94)

which is meaningful so long as

∞

∑

𝑚=−∞

󵄨󵄨󵄨󵄨𝑔𝑚
󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨𝐽𝑚 (𝑘𝑎)
󵄨󵄨󵄨󵄨

2
< ∞. (95)

The largest circle of radius 𝑅int
min onto which the field can be

backpropagated this way defines a bounding region for the
minimum source region associated to the given far field 𝑓(𝜙)

or equivalently the multipole moments 𝑎
𝑚
. From (95),

𝑅
int
min = sup{𝑎 ∈ R

+
:

∞

∑

𝑚=−∞

󵄨󵄨󵄨󵄨𝑔𝑚
󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨𝐽𝑚 (𝑘𝑎)
󵄨󵄨󵄨󵄨

2
< ∞} . (96)

The minimum source region 𝑉min ⊆ 𝐵
int
min where 𝐵

int
min = {r ∈

R2 : r ∉ 𝐵
int
min}.

Since 𝐽
𝑚
(𝑧) = √2𝑧/𝜋𝑗

𝑚−1/2
(𝑧), it follows from (11) that

𝐽
𝑚
(𝑧) ∼

(𝑧/2)
𝑚

Γ (𝑚 + 1)
, 𝑚 󳨀→ ∞. (97)

Now it follows from (96), (97), and a methodology similar
to the one leading to main results 1–3 that the following 2D
counterpart of main result 3 holds.

Main Result 3󸀠 (2D Space). One has

𝑅
int
min = inf {𝑎 ∈ R

+
: lim
𝑚→∞

(
𝑘𝑎

2
)

𝑚 󵄨󵄨󵄨󵄨𝑔𝑚
󵄨󵄨󵄨󵄨

Γ (𝑚 + 1)
̸= 0} . (98)

The detailed summary of the algorithm to estimate (pos-
sibly nonconvex) bounds for 𝑉min based on the combination
of exterior and interior diffraction approaches in 2D space is
similar to the one presented for the 3D case at the end of the
previous section and needs not be (essentially) repeated here.
Instead we conclude the paper with a detailed illustrative
example applicable to cylindrical scatterers whose length is
much larger than the wavelength so that they can be handled
via the 2D Helmholtz equation model.

6. Example

We consider electromagnetic wave scattering by a perfect
electric conductor (PEC) circular cylinder of radius 𝑅 cen-
tered about the origin. One of the main appeals of the multi-
pole expansion is that it allows treatment of both near and far
fields. In this example we consider both near and far probing
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fields combined with sensing in the far zone of the scatterer.
It is assumed that the cylinder’s length is so much larger than
the wavelength that it can be modelled as being infinitely
long along the 𝑧 axis, which facilitates description of the
corresponding wave radiation, propagation, and scattering
via the 2D Helmholtz equation model.

Consider scattering of the field due to an infinitely long
antenna (in the respective 3D picture) or a point source
located outside the PEC circle (in the equivalent 2D frame-
work).Thefield scattered by the PEC cylinder upon incidence
of the field, due to an infinite line of constant current 𝐼

𝑒

located at position r󸀠 given in cylindrical coordinates as r󸀠 =
(𝜌
󸀠
, 𝜙
󸀠
), is given by ([10, section 11.5.5])

𝐸
𝑧
(𝜌, 𝜙)

= −
𝑘
2
𝐼
𝑒

4𝜔𝜖

∞

∑

𝑚=−∞

𝑎
𝑚
𝐻
(1)

𝑚
(𝑘𝜌) 𝑒

−𝑖𝑚𝜙
, 𝜌 > 𝑅,

(99)

where

𝑎
𝑚
= −

𝐽
𝑚
(𝑘𝑅)

𝐻
(1)

𝑚 (𝑘𝑅)

𝐻
(1)

𝑚
(𝑘𝜌
󸀠
) 𝑒
𝑖𝑚𝜙
󸀠

(100)

so that

lim
𝑚→∞

Γ (𝑚) (
2

𝑘𝑏
)

𝑚
󵄨󵄨󵄨󵄨𝑎𝑚

󵄨󵄨󵄨󵄨 = lim
𝑚→∞

Γ (𝑚) (𝑅
2
/𝑏𝜌
󸀠
)
𝑚

Γ (𝑚 + 1)

(101)

which means

lim
𝑚→∞

Γ (𝑚) (
2

𝑘𝑏
)

𝑚
󵄨󵄨󵄨󵄨𝑎𝑚

󵄨󵄨󵄨󵄨 = 0, 𝑏 >
𝑅
2

𝜌󸀠
,

lim
𝑚→∞

Γ (𝑚) (
2

𝑘𝑏
)

𝑚
󵄨󵄨󵄨󵄨𝑎𝑚

󵄨󵄨󵄨󵄨 = ∞, 𝑏 <
𝑅
2

𝜌󸀠
.

(102)

In view of main result 2󸀠, this means that the smallest ball
circumscribing the minimum source region is the ball 𝐵min =

{r ∈ R2 : 𝜌 ≤ 𝑅
2
/𝜌
󸀠
}. In other words the largest dimension

𝐷 of the minimum source region must be 𝐷 = 2𝑅
2
/𝜌
󸀠. Note

that, if 𝜌󸀠 → ∞ as is the case for plane wave excitation, we
obtain 𝐷 = 0 corresponding to a multipole source localized
in the origin.

These analytical results assume perfect data, including
access to the evanescent spectrum; hence they do not put
realistic constraints to avoid unrealistically high near fields
and currents (superdirectivity). Furthermore, they hold only
for the test origin (𝑥 = 0, 𝑦 = 0). Still, they establish strict
bounds which constitute valuable localization information
about the target. In practice the data are essentially finite-
dimensional. The respective finite-dimensional results are,
in fact, more stable and correspond to larger minimum
source regions contained inside the original target support.
Estimation of target support based on realistic finite dimen-
sional exterior field data and arbitrary test origins is handled
numerically by requiring that the functional energy in (89)
and (95) exhibits a reasonable value. The concrete approach
we adopt in connection with the functional energy (89),
that is, main result 2󸀠, is to automatically estimate the peak
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Figure 10: Boundary of theminimum source region defined by𝑅min
for test origin (𝑥 = 2, 𝑦 = 2).
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Figure 11: Improved boundary of the minimum source region
corresponding to two test origins: (𝑥 = 2, 𝑦 = 2) and (𝑥 = 0, 𝑦 =

10).

curvature point of the “log(energy) versus minimum radius
𝑅min” curve and to use this peak curvature point as the
calculated minimum radius 𝑅min.

For the numerical illustration, we considered a probing
field of wavelength 𝜆 = 1 due to a source at (𝑥 = −4, 𝑦 = 0),
and a PEC conductor scatterer of radius 𝑅 = 0.707. Figure 10
shows a contour plot of the scatterer and the boundary of
the minimum source region obtained for test origin (𝑥 =

2, 𝑦 = 2). Figure 11 shows the updated boundary after
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Figure 12: Improved boundary of the minimum source region,
which essentially coincideswith the true target support, correspond-
ing to three test origins: (𝑥 = 2, 𝑦 = 2), (𝑥 = 0, 𝑦 = 10), and
(𝑥 = 0, 𝑦 = 0). Also shown is the contour plot of the amplitude of
the backpropagated field associated to the field data.

considering test origin (𝑥 = 0, 𝑦 = 10). Figure 12 shows the
computed boundary of the minimum source region for test
origin (𝑥 = 0, 𝑦 = 0), which coincides well with the original
scatterer support. In this figure we also show for reference
the backpropagated field corresponding to the given field
data, which reveals the dominant scattering center at the
edge of the true source region. Figure 13 shows the computed
boundary obtained from the intersection of the results for
the three test origins above plus (𝑥 = −2, 𝑦 = 2) and
(𝑥 = −10, 𝑦 = 0). In this figure we also show for reference
the analytically derived boundary for the minimum source
region corresponding to this case, which as expected is inside
the obtained computational boundary for the minimum
region.The shape of the computedminimum region suggests
that this approach is robust in estimating the shape in those
portions of the scatterer that are within line of sight of the
probing source. There appears to be more limited shape
information corresponding to the shaded portion of the
scatterer.The obtained results suggest that robust estimations
of target support are, on the other hand, likely for incident
fields carrying a broader spectrum of incident plane waves
due, for example, to diversity in the location of the excitation
sources or opportunistic multipathing.

7. Conclusion

Expressions were derived to estimate the smallest region
of localization of a source or scatterer that can produce a
given exterior field. The results are based on the multipole
expansion.Thisminimum source region of the given exterior
field data can be used to approximately localize sources
or scatterers. The derived results permit analytical study

0 1 2

0

0.5

1

1.5

2

−2
−2

−1.5

−1

−0.5

−1

x (𝜆)

y
(𝜆

)
Figure 13: Computed boundary of the minimum source region
based on test origins (𝑥 = 2, 𝑦 = 2), (𝑥 = 0, 𝑦 = 10), (𝑥 =

0, 𝑦 = 0), (𝑥 = −2, 𝑦 = 2), and (𝑥 = −10, 𝑦 = 0). Also shown
is the contour plot of the real part of the incident field due to the
point source at (𝑥 = −4, 𝑦 = 0) and the analytical boundary of the
minimum source region (small circle in the figure) which ignores
the finite-dimensional nature of the field under realistic noise and
perturbations.

of imaging and inverse scattering problems that cannot be
handled via the plane wave expansion method of previous
work. The results were illustrated analytically and numeri-
cally for a PEC scatterer excited by line sources in the near
or far zone of the scatterer. The numerical results illustrate
some of the limitations in shape reconstruction arising from
limited views. The same results suggest that target shapes
may be robustly estimated when driven by incident fields
corresponding to linear superpositions of different sources
or incident directions, and this can be done using location
diversity and exploiting reverberations in the surrounding
medium. We plan to report elsewhere the full vector, elec-
tromagnetic generalization of the scalar multipole theory
approach to target support estimation that was presented in
this paper.
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