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This paper deals with spectrum sensing in an orthogonal frequency division multiplexing (OFDM) context, allowing an
opportunistic user to detect a vacant spectrum resource in a licensed band.The proposedmethod is based on an iterative algorithm
used for the joint estimation of noise variance and frequency selective channel. It can be seen as a second-order detector, since it is
performed bymeans of theminimummean square error criterion.Themain advantage of the proposed algorithm is its capability to
perform spectrum sensing, noise variance estimation, and channel estimation in the presence of a signal. Furthermore, the sensing
duration is limited to only one OFDM symbol. We theoretically show the convergence of the algorithm, and we derive its analytical
detection and false alarm probabilities. Furthermore, we show that the detector is very efficient, even for low SNR values, and is
robust against a channel uncertainty.

1. Introduction

Wireless communications are facing a constant increase of
data-rate-consuming transmissions, due to the multiplica-
tions of the applications and services, while the available
spectrum resource is naturally limited. Furthermore, most of
the frequency bands are already allocated to specific licenses.
However, some of these licensed bands are not used at their
full capacity, which results in spectrum holes along the time
and frequency axes [1], whereas they could be exploited in
order to achieve the requirements of data rate. Away from the
usual paradigm in which the channels are allocated only for
licensed users, Mitola and Maguire Jr. defined the cognitive
radio [2], allowing an opportunistic access by unlicensed
users to the unused frequency bands. In such network, the
opportunistic users, called secondary users (SUs), can use
licensed bands when primary users (PUs) are not active. The
main condition for the SUs to use the licensed bands is to
minimize the interferences with PUs. Thus, they must be
able to sense the presence of the PUs, even if the PU’s signal
is attenuated compared to the noise level. Figure 1 depicts

the concept of spectrum sensing: a PU transmitter (PU-Tx) is
transmitting to a PU receiver (PU-Rx) while a SU transmitter
intends to transmit in the same band. In order to avoid the
interferences with the PU, the SU has to perform spectrum
sensing. In order to lighten the drawing, only one PU-Rx and
two SU-Rxs are depicted, but the network can obviously be
more complex. The process set up by the SUs to sense the
presence of the PUs is called spectrum sensing.The authors of
[3–5] propose detailed reviews of the different techniques of
spectrum sensing.Thedifferentmethods are usually classified
into two main categories: the cooperative detection and the
noncooperative detection. In this paper, we take an interest
in the latter.

The noncooperative detection concerns a sole SU who
tries to detect the presence of the PU alone. Among the wide
range of methods [3–6], one can describe the main ones: the
energy detector measures the energy of the received signal
and compares it to a threshold. It has a low complexity of
implementation and does not require any knowledge on the
PU’s signal features. However, the choice of the threshold
value depends on the noise variance, and the uncertainties
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Figure 1: Illustration of the principle of the spectrum sensing.

on the noise level may cause important degradations of the
detector performance [7, 8]. The matched-filter correlates
the received signal with the one transmitted by the PU,
which is supposed to be known at the receiver [9, 10]. This
is the optimal detector when the signal is transmitted with
AWGN only and supposed to be known at the receiver. Due
to these hypotheses, this method is generally not applicable
in practice, and its performance is degraded when the
knowledge of the signal is erroneous [11]. Less binding than
the matched-filter, the feature detectors only use several
characteristics of the signal to detect the PU. Thus, the
waveform-based sensing uses the preamble of the PU’s signal
(used for the synchronization, the estimation, etc.) to perform
a correlation with the received signal [12]. However, the
performance of the waveform-based sensing is degraded in
the presence of selective channels. In the same way, when a
CP is used in an OFDM signal, its autocorrelation function
becomes time-varying, so a second-order-based method
consists of detecting the peaks in the autocorrelation function
at time-lag 𝑇

𝑠
. More generally, the cyclostationarity detector

exploits the periodic redundancy of all telecommunications
signals to differentiate it from a pure Gaussian noise [13,
14]. As indicated in [5], the redundancy can occur due to
periodic patterns such as the CP, the symbol rate, or the
channel code. However, these second-order detectors require
large sensing time, that is, a large number of symbols to be
performed. In [15], a hybrid architecture composed of both
energy and cyclostationarity is proposed. It allows the energy
detector to compensate its limitation due to the noise uncer-
tainty thanks to a cyclostationarity detection stage whose
computation time is reduced. Another attractive technique
called eigenvalue-based detection uses the characteristics of
the covariance matrix of large-sized random matrices (e.g.,
containing noise samples only) [16–18]. Indeed, the random
matrix theory proved that the distribution of the eigenvalues
of such matrix tends to a deterministic function. In [16], if
the noise variance is known, the signal is detected if a peak
appears outside of the domain of the function.Using the same
theory, the authors of [17] propose the maximum-minimum
eigenvalue (MME) detection, whose principle consists of
comparing the ratio between the maximum and minimum
eigenvalues with a threshold to take the decision. Based on
the same theory, both techniques have the same asymptotic
performance, but the latter does not require the noise level to
be performed. However, these two methods require matrices
with very large sizes, hence, a large number of sensors and
a long sensing time. In order to use MME detection with a
single sensor, the authors of [19] propose to artificially create

a large matrix by stacking the shifted vectors of the received
sampled signal. However, this method is limited since the
rows of the created matrix are correlated.

In this paper, we propose to perform spectrum sensing
by means of a minimum mean square error (MMSE-)based
iterative algorithm developed in [20] for the joint estimation
of noise variance and frequency selective channel. Since we
consider a sole receiver, the context of the next sections will
be the noncooperative detection of a PU transmitting an
OFDM signal by a single SU in a given narrow band. In the
presence or absence of signal, the algorithm converges after
a few iterations and performs the estimation of the noise
variance. We then add a metric to the method presented in
[20] in order to turn it into a spectrum sensing algorithm.
The metric is defined by the difference between the second-
order moment 𝑀

2
of the received signal and the estimated

noise variance. If the PU is present (resp. absent), the metric
is equal to the power of the transmitted signal (resp. equal
to zero). As the algorithm is based on MMSE criterion, it
requires the estimation of the channel covariance matrix,
so the detector can be classified as a second-order statistics
detector. Compared to usual second-order statistics detectors
such asMME, the proposed one only needs the time duration
of one OFDM symbol to be performed. It is also robust
in frequency selective channels context. Furthermore, when
the PU’s signal is present, it achieves a joint estimation of
noise variance and channel. When the PU is absent, it also
performs the noise variance estimation, and it is proved
that it reaches the exact noise power value. In this paper, a
theoretical expression of the detection and the false alarm
probabilities are derived, andwe show that they are very close
to the simulations.

In this paper, the normal font𝑥 is used for scalar variables,
the boldface x is used for vectors, and the underlined boldface
x is used for matrices. Furthermore, small letters 𝑥 point out
the variables in the time domain and capital letters 𝑋 in the
frequency domain.

This paper is organized as follows: Section 2 presents
the system model and the algorithm developed in [20]. In
Section 3, we prove the convergence of the algorithm in the
absence of the signal, and we characterize the detector in
Section 4. In Section 5, we give the theoretical expressions
of the false alarm and detection probabilities. Simulations
results are depicted in Section 6, and finally we draw our
conclusions in Section 7.

2. Background

2.1. System Model. We consider the problem of the detection
of an OFDM pilot preamble over a Rayleigh fading channel
with additive white Gaussian noise (AWGN) in a given band.
After the 𝑀-points discrete Fourier transform (DFT), the
received signal is noted U. According to the presence or the
absence of the primary user (PU) in the band, the usual
hypothesis test is given by

H
0
: U = W,

H
1
: U = CH +W,

(1)
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Figure 2: Block diagram of the iterative algorithm in the realistic scenario.

where H
0
and H

1
denote the absence and the presence of

the PU hypotheses, respectively. According to the model
given in [20], the variable H is the 𝑀 × 1 complex vector
of the frequency response of the channel, composed of the
frequency response samples𝐻

𝑚
,𝑚 = 0, 1, . . . ,𝑀 − 1:

𝐻
𝑚
=

𝐿−1

∑

𝑙=0

ℎ
𝑙
exp(−2𝑗𝜋

𝑚𝜏
𝑙

𝑀
) , (2)

where 𝐿 is the number of paths of the channel and ℎ
𝑙
and

𝜏
𝑙
are the zero-mean Gaussian path coefficients and the

sampled path delays, respectively.We assume that the channel
H follows a wide sense stationary uncorrelated scattering
(WSSUS) model [21]. Consequently, |𝐻

𝑚
| follows a Rayleigh

distribution. The variable C is the 𝑀 × 𝑀 diagonal matrix
composed of the pilots𝐶

𝑚
such that |𝐶

𝑚
| = 1, without loss of

generality, andW is the𝑀×1 vector of AWGNwith variance
𝜎
2. Let us assume that, under hypothesis H

1
, the receiver is

synchronized on the position of the preamble C.

2.2. Iterative Algorithm for the Channel and Noise Variance
Estimation. We now briefly recall the steps of the algorithm
for the joint and iterative estimation of the channel and the
noise variance as given in [20], that is, under the hypothesis
H
1
. Basically, it is an MMSE-based iterative algorithm in

which, at each step, the noise variance estimation feeds the
channel estimation and vice versa. In addition to the noise
variance, the linear-MMSE (LMMSE) channel estimation
[22] requires the channel covariance matrix that has to be
estimated at the receiver. This estimated channel covariance
matrix is noted R̃

𝐻
. The algorithm from [20] is described by

Figure 2 and its steps are detailed in the following.
(1) At the beginning, only the LS channel estimation ĤLS

performed on a pilot preamble is available at the receiver, so
the only way to estimate the covariance matrix denoted by
R̃LS
𝐻
is

R̃LS
𝐻

= ĤLS
(ĤLS

)
𝐻

, (3)

where (⋅)
𝐻 is the Hermitian transposition. Furthermore, a

stopping criterion 𝑒
𝜎
is fixed. Let us denote 𝑖 to be the index

of the iteration.
(2) At the first step (𝑖 = 1) of the algorithm, the LMMSE

channel estimation [22, 23] is performed with R̃LS
𝐻
:

ĤLMMSE
(𝑖=1)

= R̃LS
𝐻
(R̃LS
𝐻
+ 𝜎̂
2

(𝑖=0)
CC𝐻)

−1

ĤLS
, (4)

where 𝜎̂
2

(𝑖=0)
points out the initialization value of the noise

variance and CC𝐻 is equal to the identity matrix I.
(3)Thenoise variance is estimated bymeans of theMMSE

criterion [24] 𝜎̂
2

(𝑖=1)
= (1/𝑀)𝐸{‖ĤLS

− Ĥ‖
2

}, with Ĥ =

ĤLMMSE
(𝑖=1)

:

𝜎̂
2

(𝑖=1)
=

1

𝑀
𝐸{

󵄩󵄩󵄩󵄩󵄩
ĤLS

− ĤLMMSE
(𝑖=1)

󵄩󵄩󵄩󵄩󵄩

2

} , (5)

with ‖ ⋅ ‖ being the Frobenius matrix norm, defined by ‖A‖ =
√tr(AA𝐻). If the algorithm keeps on computing with R̃LS

𝐻
,

it is proved in [20] that (𝜎̂2
(𝑖)
) converges to zero. Under this

condition, the algorithm enters into an endless loop. This is
due to the fact that R̃LS

𝐻
is sensitive to the noise and then it

is a rough approximation of the exact covariance matrix. In
order to obtain a more accurate channel covariance matrix, it
is now possible to use ĤLMMSE

(𝑖=1)
, such that

R̃LMMSE
𝐻

= ĤLMMSE
(𝑖=1)

(ĤLMMSE
(𝑖=1)

)
𝐻

. (6)

(4) For 𝑖 ≥ 2, the iterative estimation steps (4) and (6) are
performed by using (6):

ĤLMMSE
(𝑖)

= R̃LMMSE
𝐻

(R̃LMMSE
𝐻

+ 𝜎̂
2

(𝑖−1)
I)
−1

ĤLS
, (7)

𝜎̂
2

(𝑖)
=

1

𝑀
𝐸{

󵄩󵄩󵄩󵄩󵄩
ĤLS

− ĤLMMSE
(𝑖)

󵄩󵄩󵄩󵄩󵄩

2

} . (8)

It will be shown afterwards that the characterization of
the initialization 𝜎̂

2

(𝑖=0)
remains the same in the presence or

absence of the PU. However, it is already obvious that 𝜎̂2
(𝑖=0)

must be strictly positive; otherwise, ĤLMMSE
(𝑖)

= ĤLS in (7). In
that case, 𝜎̂2

(𝑖)
= 0, and the algorithm enters into an endless

loop.
(5)While |𝜎̂2

(𝑖)
−𝜎̂
2

(𝑖−1)
| > 𝑒
𝜎
, go back to Step 4with 𝑖 ← 𝑖+1;

otherwise, go to Step 6.
(6) End of the algorithm.We note 𝑖

𝑓
to be the index of the

last iteration.
It is proved in [20] that this algorithm converges if

the initialization value of the noise variance is chosen
such that 𝜎̂

2

(𝑖=0)
≫ 𝑀

2
, where 𝑀

2
is the second-order

moment of the received signal U. Moreover, the algorithm
converges to limits (Ĥ

(𝑖𝑓)
, 𝜎̂
2

(𝑖𝑓)
) that are close to the exact

values (H, 𝜎
2

). From (4) and (7) we can deduce the com-
plexity of the algorithm. The LMMSE channel estimation
requires 𝑀3 scalar multiplications for the matrix inversion
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andmultiplication and the noise variance𝑀2.The covariance
matrices estimation also requires 𝑀2 operations. Finally, we
then evaluate the complexity of the proposed algorithm by
O(𝑖
𝑓
𝑀
3

).
Unlike the presented model, the next section investigates

the behavior of the algorithm when the PU is absent, that is,
under hypothesis H

0
.

3. Convergence of the Iterative Algorithm
under Hypothesis H

0

The signal C is now supposed to be absent, so the received
signal is U = W. The convergence of the proposed algorithm
in the case of absence of signal is going to be proved.
Furthermore, it will be proved afterwards that the nonnull
solution allows to turn the MMSE-based algorithm into a
free band detector. To this end, the first four steps of the
iterative algorithm presented in Section 2.2 are expressed
under hypothesis H

0
.

3.1. Expression of theAlgorithmunderH
0
. Let us consider that

the receiver does not know if the signal is present or absent,
so the same formalism as in Section 2.2 is used, and the steps
of the algorithm are recalled by considering noise only. At the
beginning of the process, the LS channel estimation has been
performed, ĤLS

= C−1U = C−1W. The following steps are as
follows.

(1) From ĤLS, the channel covariance matrix is estimated
by

R̃LS
𝐻

= ĤLS
(ĤLS

)
𝐻

= WW𝐻. (9)

Additionally, a stopping criterion 𝑒
𝜎
and an initialization

𝜎̂
2

(𝑖=0)
are set.

(2) At iteration 𝑖 = 1 of the algorithm, the LMMSE
channel estimation ĤLMMSE

(𝑖=1)
is performed by using R̃LS

𝐻
:

ĤLMMSE
(𝑖=1)

= RLS
𝐻
(RLS
𝐻
+ 𝜎̂
2

(𝑖=0)
I)
−1

ĤLS
. (10)

(3) The MMSE noise variance estimation 𝜎̂
2

(𝑖=1)
is per-

formed with Ĥ = ĤLMMSE
(𝑖=1)

:

𝜎̂
2

(𝑖=1)
=

1

𝑀
𝐸{

󵄩󵄩󵄩󵄩󵄩
ĤLS

− ĤLMMSE
(𝑖=1)

󵄩󵄩󵄩󵄩󵄩

2

} , (11)

and a new covariance matrix is computed by

R̃LMMSE
𝐻

= ĤLMMSE
(𝑖=1)

(ĤLMMSE
(𝑖=1)

)
𝐻

. (12)

Indeed, it is proved in the Appendix that if the algorithm
keeps on computing with R̃LS

𝐻
= WW𝐻, then the sequence

𝜎̂
2

(𝑖)
necessarily converges to zero. When R̃LS

𝐻
is used, and in

spite of its inputs being different, the algorithm has exactly
the same response whatever the hypothesis, H

0
or H
1
.

(4) Then, for 𝑖 ≥ 2, iteratively perform the channel and
the noise variance estimation:

ĤLMMSE
(𝑖)

= R̃LMMSE
𝐻

(R̃LMMSE
𝐻

+ 𝜎̂
2

(𝑖−1)
I)
−1

ĤLS
, (13)

𝜎̂
2

(𝑖)
=

1

𝑀
𝐸{

󵄩󵄩󵄩󵄩󵄩
ĤLS

− ĤLMMSE
(𝑖)

󵄩󵄩󵄩󵄩󵄩

2

} . (14)

From these first four steps of the algorithm, it is now
possible to prove that the algorithm converges to a nonnull
solution under H

0
.

3.2. Scalar Expression of the Sequence (𝜎̂
2

(𝑖)
) under H

0
. The

convergence of the algorithm is now going to be proved,
and its limit characterized. To this end, we will first obtain a
scalar expression of the sequence (𝜎̂2

(𝑖)
).We use theHermitian

property of R̃LS
𝐻

= (R̃LS
𝐻
)

𝐻

, and we develop (12) with (10) to get

R̃LMMSE
𝐻

= ĤLMMSE
(𝑖=1)

(ĤLMMSE
(𝑖=1)

)
𝐻

= R̃LS
𝐻
(R̃LS
𝐻
+ 𝜎̂
2

(𝑖=0)
I)
−1

ĤLS

× (R̃LS
𝐻
(R̃LS
𝐻
+ 𝜎̂
2

(𝑖=0)
I)
−1

ĤLS
)

𝐻

= R̃LS
𝐻
(R̃LS
𝐻
+ 𝜎̂
2

(𝑖=0)
I)
−1

ĤLS
(ĤLS

)
𝐻

× (R̃LS
𝐻
(R̃LS
𝐻
+ 𝜎̂
2

(𝑖=0)
I)
−1

) .

(15)

Let us assume that 𝑀 is large enough to justify the
approximation tr(WW𝐻) = tr(𝜎2I). Since the estimation
of the noise variance is calculated by means of the trace in
(14), we make the assumption that as a first approximation
R̃LS
𝐻

≈ 𝜎
2I, and then it is possible to replace RLMMSE

𝐻
by

R̃LMMSE
𝐻

= 𝜎
2I(𝜎2I + 𝜎̂

2

(𝑖=0)
I)
−1

R̃LS
𝐻
(𝜎
2I(𝜎2I + 𝜎̂

2

(𝑖=0)
I)
−1

)

=
𝜎
6

(𝜎2 + 𝜎̂
2

(𝑖=0)
)
2
I

(16)
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in (14). Thus, by reinjecting (16) in (13) and (14), it yields

𝜎̂
2

(𝑖+1)
=

1

𝑀
𝐸{

󵄩󵄩󵄩󵄩󵄩
ĤLS

− ĤLMMSE
(𝑖+1)

󵄩󵄩󵄩󵄩󵄩

2

}

=
1

𝑀
𝐸{

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

ĤLS
− R̃LMMSE
𝐻

× (R̃LMMSE
𝐻

+ 𝜎̂
2

(𝑖)
I)
−1

ĤLS
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

}

=
1

𝑀
𝐸

{{

{{

{

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

W −
𝜎
6

(𝜎2 + 𝜎̂
2

(𝑖=0)
)
2
I

×(
𝜎
6

(𝜎2 + 𝜎̂
2

(𝑖=0)
)
2
I + 𝜎̂
2

(𝑖)
I)
−1

W

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

}}

}}

}

=
1

𝑀
𝐸

{{

{{

{

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝜎̂
2

(𝑖)
I((

𝜎
6

(𝜎2 + 𝜎̂
2

(𝑖=0)
)
2

+ 𝜎̂
2

(𝑖)
) I)

−1

)W

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

}}

}}

}

=

𝜎
2

𝜎̂
4

(𝑖)
(𝜎
2

+ 𝜎̂
2

(𝑖=0)
)
4

(𝜎6 + 𝜎̂
2

(𝑖)
(𝜎2 + 𝜎̂

2

(𝑖=0)
)
2

)

2
.

(17)

For a better readability, we note the following mathemat-
ical developments:

𝐴 = 𝜎
2

+ 𝜎̂
2

(𝑖=0)
. (18)

3.3. Convergence of the Sequence (𝜎̂2
(𝑖)
) to a Nonnull Solution.

One can observe that the sequence (𝜎̂
2

(𝑖+1)
) is built from a

function 𝑓
𝑠1
such that if we note 𝑥 = 𝜎̂

2

(𝑖)
, we have

𝑓
𝑠1
(𝑥) =

𝜎
2

𝐴
4

𝑥
2

(𝜎6 + 𝐴2𝑥)
2
. (19)

The sequence converges if 𝑓
𝑠1
has at least one fixed point.

Zero is an obvious fixed point, but it has been proved in the
Appendix that the algorithm enters into an endless loop if
(𝜎̂
2

(𝑖)
) converges to zero.We then solve the equation𝑓

𝑠1
(𝑥) = 𝑥

to find the other fixed points:

𝑓
𝑠1
(𝑥) = 𝑥

⇐⇒
𝜎
2

𝐴
4

𝑥
2

(𝜎6 + 𝐴2𝑥)
2
= 𝑥

⇐⇒ 𝜎
2

𝐴
4

𝑥
2

= 𝑥(𝜎
6

+ 𝐴
2

𝑥)
2

.

(20)

Since we exclude zero as a solution, the previous expres-
sions can be simplified by𝑥, and the problem amounts to look

for real roots of the polynomial𝐴4𝑥2+𝑥(2𝐴2𝜎6−𝜎2𝐴4)+𝜎12.
Since it is a second order polynomial, in order to find real
solutions, the first condition on the initialization 𝜎̂

2

(𝑖=0)
is

to obtain the discriminant Δ = (2𝐴
2

𝜎
6

− 𝜎
2

𝐴
4

)
2

− 4𝐴
4

𝜎
12

positive; that is,

Δ ≥ 0 ⇐⇒ (2𝐴
2

𝜎
6

− 𝜎
2

𝐴
4

)
2

≥ 4𝐴
4

𝜎
12

⇐⇒ 𝐴
2

≥ 4𝜎
4

⇐⇒ (𝜎
2

+ 𝜎̂
2

(𝑖=0)
)
2

≥ 4𝜎
4

⇐⇒ 𝜎̂
2

(𝑖=0)
≥ 3𝜎
2

.

(21)

As 𝜎
2 is absolutely unknown, one can find a stronger

condition on 𝜎̂
2

(𝑖=0)
, conditionally to Δ > 0. We then find the

roots 𝑟+
𝑠
and 𝑟
𝑠−
of the polynomial under the conditionΔ > 0:

𝑟
+

𝑠−
=

(𝜎
2

𝐴
4

− 2𝐴
2

𝜎
6

)
±

√(2𝐴2𝜎6 − 𝜎2𝐴4)
2

− 4𝐴4𝜎12

2𝐴4

⇐⇒ 𝑟
+

𝑠−
=

(𝜎
2

𝐴
2

− 2𝜎
6

)
±

√𝜎4𝐴4 − 4𝜎8𝐴2

2𝐴2
.

(22)

If we notice that when 𝜎̂
2

(𝑖=0)
tends to +∞, then 𝐴 = 𝜎

2

+

𝜎̂
2

(𝑖=0)
also tends to +∞, we get

lim
𝐴→∞

𝑟
+

𝑠
=
𝜎
2

𝐴
2

+ 𝜎
2

𝐴
2

2𝐴2
= 𝜎
2

,

lim
𝐴→∞

𝑟
𝑠−

=
𝜎
2

𝐴
2

− 𝜎
2

𝐴
2

2𝐴2
= 0.

(23)

It can be seen that by choosing a sufficiently large
initialization value 𝜎̂

2

(𝑖=0)
, the sequence (𝜎̂

2

(𝑖)
) converges to a

value as close as possible to the exact value of the noise
variance 𝜎2. This characterization of the initialization value
𝜎̂
2

(𝑖=0)
perfectly tallies with the one made for the sufficient

condition in [20]; that is, 𝜎̂2
(𝑖=0)

≫ 𝑀
2
. Moreover, it will

be further shown that this condition allows to differentiate
H
0
from H

1
. Thus, choosing 𝜎̂

2

(𝑖=0)
with a large value is

the condition for the algorithm to converge to a nonnull
solution for both hypotheses H

0
and H

1
. Besides that, since

it converges, the stopping criterion |𝜎̂
2

(𝑖)
− 𝜎̂
2

(𝑖−1)
| < 𝑒
𝜎
can also

be the same under H
0
. Finally, the MMSE-based algorithm

can be used as a free band detector.
Figure 3 displays the function 𝑓

𝑠1
for different values of

(𝜎̂
2

(𝑖=0)
), compared with 𝑦 = 𝑥 and for a fixed value 𝜎2 = 1. By

comparing the curves of𝑓
𝑠1
for different initializations values,

we verify that the larger the value of 𝜎̂2
(𝑖=0)

, the closer 𝜎̂2
(𝑖𝑓)

to
the real value of 𝜎2.

4. Proposed Detector

4.1. Decision Rule for the Proposed Detector. In this section,
a decision rule for the detector is proposed. To this end,
whatever H

0
or H
1
, it is supposed that the algorithm has
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Figure 3: Aspect of 𝑓
𝑠1
for different values of 𝜎2

(0)
, 𝜎2 = 1 compared

with 𝑦 = 𝑥.

converged; that is, the condition |𝜎̂
2

(𝑖)
− 𝜎̂
2

(𝑖−1)
| < 𝑒

𝜎
is

reached and then 𝑖 = 𝑖
𝑓
. The second-order moment 𝑀

2
=

(1/𝑀)∑
𝑀−1

𝑚=0
|𝑈
𝑚
|
2 of the received signal is expressed under

the hypotheses H
0
and H

1
:

𝑀
2
=

{{{{{

{{{{{

{

1

𝑀

𝑀−1

∑

𝑚=0

󵄨󵄨󵄨󵄨𝑊𝑚
󵄨󵄨󵄨󵄨

2

, if H
0

1

𝑀

𝑀−1

∑

𝑚=0

󵄨󵄨󵄨󵄨𝐶𝑚𝐻𝑚 +𝑊
𝑚

󵄨󵄨󵄨󵄨

2

, if H
1
.

(24)

The second-order moment 𝑀
2
is the decision metric used

for the energy detector. Here, a different metric noted M is
proposed and defined by

M =
󵄨󵄨󵄨󵄨󵄨
𝑀
2
− 𝜎̂
2
󵄨󵄨󵄨󵄨󵄨
, (25)

where 𝜎̂2 = 𝜎̂
2

(𝑖𝑓)
is the noise variance estimation performed

by the proposed iterative algorithm. From (24), the metric
(25) is rewritten according to the hypotheses H

0
and H

1
:

M =

{{{{{

{{{{{

{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑀

𝑀−1

∑

𝑚=0

󵄨󵄨󵄨󵄨𝑊𝑚
󵄨󵄨󵄨󵄨

2

− 𝜎̂
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, under H
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑀

𝑀−1

∑

𝑚=0

󵄨󵄨󵄨󵄨𝐶𝑚𝐻𝑚 +𝑊
𝑚

󵄨󵄨󵄨󵄨

2

− 𝜎̂
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, under H
1
.

(26)

By fixing a threshold 𝜍, the decision criterion is now

H
0
, if M < 𝜍,

H
1
, else.

(27)

The detection and false alarm probabilities are defined by

𝑃
𝑑
= 𝑃 (M > 𝜍 | H

1
) ,

𝑃fa = 𝑃 (M > 𝜍 | H
0
) .

(28)

The detection probability 𝑃
𝑑
is the probability to decide

H
1
while the PU is present, and the false alarm probability

𝑃fa is the probability to decide H
1
while the PU is absent.

As mentioned in [6, 25], the sensibility of the detector (the
expected value of 𝑃fa and 𝑃

𝑑
) depends on the application.

In a cognitive radio context, the SU has to minimize the
interference with the PU, so the probability of detection has
to be maximized, whereas if the false alarm probability is not
optimized, it only implies that the SUmisses white spaces. On
the contrary, in a radar application, a false alarm could have
serious consequences, especially in a military context.

4.2. Expression of the Proposed Detector. By taking into
account the previous decision rule, it is possible to extend
the practical algorithm proposed in the scenario of the
joint estimation of the SNR and the channel for free band
detections, as it is summed up in Algorithm 1.

It can be seen that the structure of Algorithm 1 is similar
to the one of [20] and summarized in Section 2.2, but with
a detection part. Thus, compared to the methods of the
literature, the proposed one not only returns the decision H

0

and H
1
but also provides

(i) the noise variance estimation, if H
0
;

(ii) the channel and SNR estimations, if H
1
.

An a priori qualitative analysis of the detector can be
done. Indeed, from (26), one can deduce that by supposing
a good estimation of 𝜎̂2, M tends to a value close to zero
under H

0
and to a value close to 𝑃

𝑠
under H

1
. By supposing

a normalized signal power, one can suppose that choosing a
value 𝜍 between zero and one allows getting a viable detector.
Concerning the value of the threshold 𝑒

𝜎
, since it ensures the

convergence of the algorithm, it has no effect on the detector
performance. This property will be shown by simulations
afterward.

In the context of cognitive radio, the SUs have to target
a given detection probability, noted 𝑃

𝑡

𝑑
. Thus, according to

the Neyman-Pearson criterion [26], the best value of the
threshold 𝜍 can be analytically derived (when it is possible)
by solving 𝑃(M > 𝜍 | H

1
) ≥ 𝑃

𝑡

𝑑
and by maximizing the

likelihood ratio test (LRT)

Λ (𝑥) =
𝑝 (𝑥 | H

1
)

𝑝 (𝑥 | H
0
)
≷
H1
H0
𝜍. (29)

To this end, the probability density functions (pdfs) of M
have to be expressed, which is proposed in the next section.
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begin
Initialization: R̃LS

𝐻
, 𝑒
𝜎
> 0, 𝜎̂2

(𝑖=0)
and 𝜍;

𝑖 ← 1;
while 󵄨󵄨󵄨󵄨󵄨𝜎̂

2

(𝑖)
− 𝜎̂
2

(𝑖−1)

󵄨󵄨󵄨󵄨󵄨
> 𝑒
𝜎
do

if 𝑖 = 1 then
Perform LMMSE channel estimation;
Perform the noise variance estimation;
Calculate the matrix R̃LMMSE

𝐻
;

else
Perform an LMMSE channel estimation with R̃LMMSE

𝐻
;

Perform the noise variance estimation;
end
𝑖 ← 𝑖 + 1;

end
Calculate the metricM;
if M < 𝜍 then

return H
0
;

else
return H

1
;

end
end

Algorithm 1: Application of the MMSE-based algorithm to free band detection.

5. Detection and False Alarm Probabilities

5.1. Probability Density Function of M under H
1
. Under the

hypothesisH
1
, since it is proved in [20] that the noise variance

estimation is very accurate, it is reasonable to suppose that
the noise variance estimation is good enough to consider that
𝜎̂
2

≈ (1/𝑀)∑
𝑀−1

𝑚=0
|𝑊
𝑚
|
2, so the contribution of 𝐶

𝑚
𝐻
𝑚
is

prevailing inM (26) so that

M =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑀

𝑀−1

∑

𝑚=0

(
󵄨󵄨󵄨󵄨𝐶𝑚𝐻𝑚 +𝑊

𝑚

󵄨󵄨󵄨󵄨

2

) − 𝜎̂
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑀

𝑀−1

∑

𝑚=0

(
󵄨󵄨󵄨󵄨𝐶𝑚𝐻𝑚

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝑊𝑚

󵄨󵄨󵄨󵄨

2

+ CF
𝑚
) − 𝜎̂
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

(30)

where ∀𝑚 = 0, . . . ,𝑀 − 1, CF
𝑚

are the cross-factors
(𝐶
𝑚
𝐻
𝑚
𝑊
∗

𝑚
) + (𝐶

𝑚
𝐻
𝑚
𝑊
∗

𝑚
)
∗, whose means (for a sufficiently

large value of𝑀) are equal to zero, since𝐻
𝑚
and𝑊

𝑚
are zero-

mean uncorrelated Gaussian processes. The development of
(30) then simply yields

M =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑀

𝑀−1

∑

𝑚=0

󵄨󵄨󵄨󵄨𝐶𝑚𝐻𝑚
󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝑊𝑚

󵄨󵄨󵄨󵄨

2

− 𝜎̂
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
1

𝑀

𝑀−1

∑

𝑚=0

󵄨󵄨󵄨󵄨𝐻𝑚𝐶𝑚
󵄨󵄨󵄨󵄨

2

.

(31)

The result in (31) obtained with the approximation 𝜎̂
2

≈

(1/𝑀)∑
𝑀−1

𝑚=0
|𝑊
𝑚
|
2 may be debated, since it has been proved

in [20] that the noise estimation under hypothesis H
1
is

slightly biased. However, it will be shown in Section 6 that
this approximation is accurate for low values of 𝜎2. From

the channel frequency response expression (2) and remem-
bering that 𝐶

𝑚
𝐶
∗

𝑚
= 1, the metric (31) can be rewritten by

M =
1

𝑀

𝑀−1

∑

𝑚=0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐿−1

∑

𝑙=0

ℎ
𝑙
exp(−2𝑗𝜋

𝑚𝛽
𝑙

𝑀
)𝐶
𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

=
1

𝑀

𝑀−1

∑

𝑚=0

(

𝐿−1

∑

𝑙1=0

ℎ
𝑙1
exp(−2𝑗𝜋

𝑚𝛽
𝑙1

𝑀
)𝐶
𝑚
)

× (

𝐿−1

∑

𝑙2=0

ℎ
𝑙2
exp(−2𝑗𝜋

𝑚𝛽
𝑙2

𝑀
)𝐶
𝑚
)

∗

=

𝐿−1

∑

𝑙=0

󵄨󵄨󵄨󵄨ℎ𝑙
󵄨󵄨󵄨󵄨

2

+
1

𝑀

𝑀−1

∑

𝑚=0

𝐿−1

∑

𝑙1=0

𝐿−1

∑

𝑙2=0

𝑙2 ̸= 𝑙1

ℎ
𝑙1
ℎ
∗

𝑙2
exp(−2𝑗𝜋

𝑚 (𝛽
𝑙1
− 𝛽
𝑙2
)

𝑀
) .

(32)

According to the Rayleigh distributed WSSUS channel
model, whatever 𝑙 = 0, . . . , 𝐿−1, the gains ℎ

𝑙
are uncorrelated

zero-mean Gaussian processes. For a large enough value 𝑀,
let us assume that the mean of the cross-factors of the right
side in (32) are equal to zero. Finally, the metricM is simply
written as follows:

M =

𝐿−1

∑

𝑙=0

󵄨󵄨󵄨󵄨ℎ𝑙
󵄨󵄨󵄨󵄨

2

, under H
1
. (33)
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M then follows a chi-square distribution with 2𝐿 degrees of
freedom.The probability density function (pdf) noted 𝑝M(𝑥)

of the decision statistic under H
1
is then expressed by

𝑝M (𝑥) =
1

2𝐿𝑃𝐿
𝑠
Γ (𝐿)

𝑥
𝐿−1 exp(− 𝑥

2𝑃
𝑠

) , under H
1
, (34)

where Γ(⋅) is the gamma function [27].

5.2. Probability Density Function of M under H
0
. The the-

oretical probability density function (pdf) expression of the
metric under the hypothesis H

0

M =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑀

𝑀−1

∑

𝑚=0

󵄨󵄨󵄨󵄨𝑊𝑚
󵄨󵄨󵄨󵄨

2

− 𝜎̂
2

(𝑖)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(35)

is now developed. To this end, let us assume that the
initialization value of the algorithm is chosen large enough to
state 𝜎̂2 ≈ 𝜎

2, in accordance with the previously formulated
hypotheses in Section 3.3. Whatever 𝑚 = 0, . . . ,𝑀 − 1,
each sample 𝑊

𝑚
follows a zero-mean Gaussian process with

variance 𝜎
2; |𝑊
𝑚
|
2 has a chi-square distribution 𝜒

2

2
with a

degree of liberty equal to 2:

𝜒
2

2
(𝑥) =

1

𝜎2
𝑒
−𝑥/𝜎
2

. (36)

Themean and the variance of this distribution are equal to
𝜎
2 and 𝜎

4, respectively. In an OFDM context, we reasonably
suppose that 𝑀 is large enough (e.g., 𝑀 > 100) to con-
sider that from the central limit theorem (1/𝑀)∑

𝑀−1

𝑚=0
|𝑊
𝑚
|
2

follows a normal distribution N ∼ (𝜎
2

, 𝜎
4

/𝑀), and then
(1/𝑀)∑

𝑀−1

𝑚=0
|𝑊
𝑚
|
2

− 𝜎̂
2 follows a centered normal distri-

bution N ∼ (0, 𝜎
4

/𝑀). Consequently, the metric M =

|(1/𝑀)∑
𝑀−1

𝑚=0
|𝑊
𝑚
|
2

− 𝜎̂
2

(𝑖)
| has a chi distribution 𝜒

1
with one

degree of liberty:

𝑝M (𝑥) =
√2

Γ (1/2)√𝜎4/𝑀

exp(−1
2
(

𝑥

√𝜎4/𝑀

)

2

) ,

under H
0
.

(37)

As a conclusion, the probability density functions of the
metricM, according to H

0
and H

1
, are given by

𝑝M (𝑥)

=

{{{{

{{{{

{

√2

Γ (1/2)√𝜎4/𝑀

exp(−1
2
(

𝑥

√𝜎4/𝑀

)

2

) , under H
0

1

2𝐿𝑃𝐿
𝑠
Γ (𝐿)

𝑥
𝐿−1 exp(− 𝑥

2𝑃
𝑠

) , under H
1
.

(38)

5.3. Analytical Expressions of 𝑃
𝑑

and 𝑃fa. The detection
and false alarm probabilities 𝑃

𝑑
and 𝑃fa are obtained by

Table 1: Table of parameters of the channel model.

Channel model
Path 1 Path 2 Path 3 Path 4

Delay 0ms 0.7ms 1.5ms 2.2ms
Gain 0.7448 0.5214 0.3724 0.1862

integrating (38) between the fixed threshold 𝜍 and +∞. For
the calculation of 𝑃

𝑑
, the solution is derived in [28, 29]:

𝑃
𝑑
= 𝑃 (M > 𝜍 | H

1
)

= ∫

+∞

𝜍

𝑥
𝐿−1

2𝐿𝑃𝐿
𝑠
Γ (𝐿)

exp(− 𝑥

2𝑃
𝑠

)𝑑𝑥

=
Γ (𝐿, 𝜍/2𝑃

𝑠
)

Γ (𝐿)
,

(39)

where Γ(⋅, ⋅) is the incomplete gamma function [27]. In the
case H

0
, we have

𝑃fa = ∫

+∞

𝜍

𝑝M (𝑥) 𝑑𝑥

= ∫

+∞

𝜍

√2

Γ (1/2)√𝜎4/𝑀

𝑒
−(1/2)(𝑥/√𝜎

4
/𝑀)

2

𝑑𝑥.

(40)

By using the variable change𝑋 = 𝑥/√2𝜎4/𝑀 and know-
ing that Γ(1/2) = √𝜋, one can recognize the complementary
error function 𝑒𝑟𝑓𝑐(𝑥) = 1 − 𝑒𝑟𝑓(𝑥):

𝑃fa = ∫

+∞

𝜍/√2𝜎
4
/𝑀

2

√𝜋
𝑒
−𝑋
2

𝑑𝑋 = 𝑒𝑟𝑓𝑐(
𝜍√𝑀

√2𝜎2
) . (41)

Since the incomplete gamma function is not directly
invertible in (39), it is not possible to derive an analytical
expression of the threshold 𝜍 in function of the targeted
detection probability 𝑃

𝑡

𝑑
. However, an approximation by

means of a computer calculation or a series expansion of
the invert of (39) or a simple characterization of 𝜍 by
simulations can be done. We will consider this third solution
thereafter. Furthermore, the next section aims to characterize
the performance of the proposed detection algorithm and the
validity of the proposed analytical developments.

6. Simulations Results

6.1. Simulations Parameters. The signal parameters used for
the simulations are based on those of the digital radio mon-
diale (DRM/DRM+) standard [30]. This standard designs
the digital radio broadcasting over the current AM/FM
bands. When it is transmitted, the signal is composed of
148 independent carriers. The symbol and the cyclic prefix
durations are 14.66ms and 5.33ms, respectively. Although the
DRM standard recommends a pilot distribution in staggered
rows, we consider a block-type pilot arrangement, according
to the model used in [20]. The channel used in the presence
of a PU is based on the 𝑈𝑆 𝐶𝑜𝑛𝑠𝑜𝑟𝑡𝑖𝑢𝑚 model of the
DRM/DRM+ standard, whose path gains are normalized.The
channel parameters are summed up in Table 1.
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Figure 4: |𝑀
2
− 𝜎̂
2

| versus the iteration number under H
0
and H

1
,

for SNR = 0 dB.

6.2. Choice of the Threshold 𝜍. Figure 4 depicts the metric
M = |𝑀

2
− 𝜎̂
2

| versus the number of iterations, under the
hypotheses H

0
and H

1
. The SNR is fixed equal to 0 dB. In

presence of signal, the average signal power 𝑃
𝑠
is equal to 1.

The simulation is performed by means of 4000 simulation
runs.

It can be seen that the a priori qualitative analysis is ver-
ified. Indeed, for a sufficient number of iterations (according
to the value 𝑒

𝜎
, as shown thereafter),M converges to𝑃

𝑠
under

H
1
and converges toward zero under H

0
. It has been noticed

that it is not possible to find an exact value of 𝜍 according to
𝑃(M > 𝜍 | H

1
) = 𝑃

𝑡

𝑑
. However, it is observable on Figure 4

that the choice of the threshold is not restrictive. Indeed,
choosing 𝜍 as small as expected ensures a probability 𝑃

𝑑

close to one, and, for a sufficient number of iterations, it also
ensures a low value for 𝑃fa. Nevertheless, reducing the value
of 𝑒
𝜎
increases the number of required iterations, as shown in

the following. Hence, for an expected detection probability,
a tradeoff between the complexity and the acceptable level
of false alarm probability has to be taken into account, since
each iteration requires O(𝑖

𝑓
𝑀
3

) operations.

6.3. Effect of the Choice of 𝑒
𝜎
on the Detector Performance. It is

shown in this section that the choice of the threshold 𝑒
𝜎
value

does not have any effect on the detection performance of the
proposed method but only impacts the convergence speed
of the algorithm. Figure 5 depicts the curves of detection
and false alarm probabilities 𝑃

𝑑
and 𝑃fa versus the SNR from

−15 dB to 10 dB. In order to ensure the convergence of the
algorithm, 𝑒

𝜎
must have a low value. The subfigures (a)

and (b) then depict the curves 𝑃
𝑑
and 𝑃fa for 𝑒

𝜎
= 0.01

and 𝑒
𝜎

= 0.0001, respectively. According to the previous
recommendations, the initialization 𝜎2

(𝑖=0)
is equal to 40×𝑀

2
.

We also arbitrarily fix the threshold 𝜍 = 0.01, its effect on
the detection performance being further studied. The figure
is obtained thanks to 2000 simulation runs.

We observe that the curves of 𝑃
𝑑
and 𝑃fa match from

Figures 5(a) to 5(b). 𝑃fa is equal to zero or nearly for all SNR
values and 𝑃

𝑑
reaches one from SNR = −5 dB. The detector

can then reach the perfect one from SNR ≥ −5 dB, that
is, in low SNR environment. We conclude that, assuming
a value of 𝑒

𝜎
low enough to ensure the convergence of the

algorithm, this threshold does not have any effect on the
detection performance of the proposed method.

Figure 6 displays the iterations number the algorithm
needs before it stops versus the SNR from −10 to 10 dB. We
consider three different values for the threshold: 𝑒

𝜎
= 0.01,

0.001, and 0.0001. The simulations conditions remain the
same.

Although Figures 5(a) and 5(b) display almost the same
probabilities whatever the threshold 𝑒

𝜎
, they differ from each

other according to the number of iterations the algorithm
requires before stopping. Indeed, remembering that we com-
pare |𝜎̂2

(𝑖)
− 𝜎̂
2

(𝑖−1)
| with 𝑒

𝜎
, the lower 𝑒

𝜎
, the larger the number

𝑖 of iterations needed to reach 𝑒
𝜎
. However, Figure 6 shows

that the maximum mean of iterations is less than 7 for SNR
= −10 dB and shows the maximum mean of iterations is
less than 5 for SNR = −10 dB and 𝑒

𝜎
= 0.0001, which is a

reasonable number of iterations. We conclude that the choice
of 𝑒
𝜎
has no effect on the detector efficiency, while it allows the

convergence of the algorithm. Besides this result, the number
of required iterations reasonably increases when 𝑒

𝜎
and the

SNR have low values. The detector then remains usable in
practice under these conditions.

6.4. Detector Performance with Channel Uncertainty. In this
part, we study the behavior of the proposed detector when
a non-WSS channel is considered. To this end, we artificially
correlate the different paths by inserting the gain ℎ

0
into the

other path gains. Thus, from the originally created channel
impulse response [ℎ

0
, . . . , ℎ

𝐿−1
] with independent paths, we

build a new correlated vector [ℎ
0
, . . . , ℎ̃

𝑙
, . . . , ℎ̃

𝐿−1
] such that,

for 𝑙 = 1, . . . , 𝐿 − 1, we define a correlation coefficient 𝜌
ℎ
by

𝜌
ℎ
=

𝐸 {ℎ
0
ℎ̃
∗

𝑙
}

𝜎
0
𝜎̃
𝑙

, (42)

where ℎ̃
𝑙
= ℎ
𝑙
+𝛼
𝑙
ℎ
0
, 𝛼
𝑙
being a coefficient that is calculated in

function of the expected 𝜌
ℎ
, and 𝜎

2

0
and 𝜎̃

2

𝑙
are the variances

of ℎ
0
and ℎ̃

𝑙
, respectively. Figure 7 displays the detection

probability 𝑃
𝑑
versus the SNR for the proposed detection

under a channel correlation condition. Three curves are
considered: the reference (𝜌

ℎ
= 0) and two correlated

channels with 𝜌
ℎ
= 0.1 and 𝜌

ℎ
= 0.5. We observe a limited

gap of 1 dB between the reference curve and the two others.
We conclude that the proposed detector is robust against the
channel uncertainty.

6.5. Receiver Operating Characteristic of the Detector. The
performance of a detector is usually evaluated by means of
the receiver operating characteristic (ROC) curves, depicting
the detection probability 𝑃

𝑑
in function of the false alarm

probability 𝑃fa. The optimal detector is logically reached at
the point (𝑃fa = 0, 𝑃

𝑑
= 1). The curve 𝑃fa = 𝑃

𝑑
is called line
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of chance and corresponds to a detector that makes as much
good decisions as false alarms. If the ROC curve is above the
first bisector, the detector is efficient, since 𝑃

𝑑
> 𝑃fa.

Figure 8 shows the ROC curves of the proposed detector
for low SNR values (−10 dB and SNR = 0 dB). It is compared
to the energy detector and the second-order moment-based
MME [31]. The simulations conditions remain the same,
and we fix the threshold 𝑒

𝜎
= 0.01. In Figure 8(a), the

proposed detector is compared to the usual energy detector,
whose metric M is equal to the second order-moment of
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Figure 7: Detection probability versus SNR for a non-WSSUS
channel.

the received signal𝑀
2
.Thismetric is compared to a threshold

𝜍
𝑒
to obtain the following decision rule:

H
0
, if M < 𝜍

𝑒

H
1
, else.

(43)

In Figure 8(b), the proposed detector is also compared
to the usual MME detector, whose metric M is equal
to the ratio of the maximum and the nonzero minimum
eigenvalues of the received signal covariance matrix R̆; that
is, M = 𝜆max/𝜆min. The same aforementioned decision rule
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Figure 8: Receiver operating characteristic (ROC) curves of the proposed method compared to the energy and MME detectors.

is used. Since a SISO system is assumed, R̆ is obtained by
concatenating 𝑁 consecutive OFDM symbols so that U

𝑁
=

[U
1
, . . . ,U

𝑁
] and then R̆ = U

𝑁
U𝑇
𝑁
. In that way, U

𝑁
is

equivalent to a system with 𝑁 sensors. However, due to the
nature of the channel, the different received OFDM symbols
are correlated. In Figure 8(b), the ROC curves of MME are
obtained for𝑁 = 4, 10, and 20 symbols, and the SNR is equal
to −10 dB. Each point of the curves is obtained by means of
2000 simulation runs.

We observe in Figure 8(a) that the proposed detector
outperforms the energy detector, whatever the SNR. Indeed,
as we consider the detection of a preamble transmitted over
a Rayleigh channel, the power of the received signal 𝑃

𝑆
in

(30) is not constant and follows a chi-square distribution.
Consequently, for simulations made at a fixed SNR, the
noise variance is also a varying process, which deteriorates
the detector performance. For additional details about the
theoretical development of the energy detection of signals
with random amplitude, please refer to [28, 29]. We also
may explain the performance of our detector by the fact
that we use the same sensing time to compare the energy
detector and the proposed algorithm, that is, only oneOFDM
symbol length.The 148 samples of one OFDM symbol are not
enough to obtain an accurate energy detector. Figure 8(a) also
confirms that the proposed detector is very efficient, since it
is able to reach the perfect detector for 𝜍 = 0.01. Indeed, for
SNR = 0 dB, we observe that the ROC curve reaches the point
(𝑃fa = 0, 𝑃

𝑑
= 1), as we remarked in Figures 5(a) and 5(b) for

SNR ≥ −5 dB. In Figure 8(b), we observe that MME requires
𝑁 = 20 symbols to reach the performance of the proposed
method, because MME is efficient for a very large size ofU

𝑁
,

and the vectors of the latter matrix are correlated. Thus, for

a given performance, the complexity ofMME isO(𝑁𝑀
2

) (for
the computation and the diagonalization of R̆) and the one
of the proposed algorithm is O(𝑖

𝑓
𝑀
3

). Since we reasonably
have 𝑁 < 𝑖

𝑓
𝑀, we conclude that the iterative method

is more complex than usual second-order moment-based
techniques. However, the proposed algorithm also performs
the noise variance estimation if H

0
and the SNR and channel

estimation if H
1
, which is an advantage by comparison with

the techniques of the literature.
Figure 9 compares the ROC curves of the proposed

detector given by simulation with the theoretical ones 𝑃
𝑑

and 𝑃fa given by (39) and (41), respectively. We notice that
the theoretical curve for SNR = 0 dB is very close to the
one obtained by simulation, whereas for SNR = −10 dB, the
difference is more noticeable. This observation tallies with
the discussion on the approximation 𝜎̂2 ≈ (1/𝑀)∑

𝑀−1

𝑚=0
|𝑊
𝑚
|
2

in the calculation of the metric M under the hypothesis H
1
.

Indeed, this approximation is justified for high values of SNR
but becomeswrong for the very low SNRvalues.However, the
theoretical curves give an idea of the detector performance
for a given SNR, even for low SNR values.

7. Conclusion

In this paper, an iterative algorithm for spectrum sensing
in a cognitive radio context has been presented. Originally
proposed in [20] for the joint estimation of the noise and the
channel, this method is based on the second-order moment
of the received signal. In the presence of a primary user
(PU), the algorithm estimates the channel and the noise
variance. If the PU is not active, the algorithm returns a
very accurate estimation of the noise level. By comparing



12 International Journal of Antennas and Propagation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False alarm probability

D
et

ec
tio

n 
pr

ob
ab

ili
ty

Theoretical curve, SNR = −10dB
Theoretical curve, SNR = 0dB
Simulation curve, SNR = −10dB
Simulation curve, SNR = 0dB

Random detector

Figure 9: Comparison of the receiver operating characteristic
(ROC) curves obtained by simulation and in theory.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f
s

x

y = x

fs, 𝜎
2 = 1 fs, 𝜎

2 = 0.1

fs, 𝜎
2 = 0.5

Figure 10: Aspect of 𝑓 for different values of 𝜎2 compared with 𝑦 =

𝑥.

the noise variance to the second moment of the received
signal estimation (useful signal with noise or only noise),
it is then possible to determine if the PU is present or
absent. From that an analytical expression of the detection
and false alarm probabilities have been proposed, and it is
shown that they are very close to the simulations. It is also
shown that the detector reaches the perfect one from very low
SNR values. The algorithm offers numerous advantages as it
performs a PU detection, the noise variance, and the channel
estimation if the PU is active and it returns the noise level in

the frequency band when the PU is absent, without changing
the structure proposed in [20]. The future work concerning
the detector will focus on the synchronization of the SU on
the PU’s signal.

Appendix

If the algorithm keeps on computing at each iteration 𝑖 with
the covariance matrix R̃LS

𝐻
under hypothesis H

0
, then we

deduce the following for Step 4.
Perform the LMMSE channel estimation

ĤLMMSE
(𝑖+1)

= R̃LS
𝐻
(R̃LS
𝐻
+ 𝜎̂
2

(𝑖)
I)
−1

ĤLS
. (A.1)

Perform the MMSE noise variance estimation

𝜎̂
2

(𝑖+1)
=

1

𝑀
𝐸{

󵄩󵄩󵄩󵄩󵄩
ĤLS

− ĤLMMSE
(𝑖+1)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

} . (A.2)

It is assumed that 𝑀 is large enough to get tr(WW𝐻) =

tr(𝜎2I). We make in first approximation R̃LS
𝐻

≈ 𝜎
2I, so the

development of (A.2) yields

𝜎̂
2

(𝑖+1)
=

1

𝑀
𝐸{

󵄩󵄩󵄩󵄩󵄩
ĤLS

− ĤLMMSE
(𝑖+1)

󵄩󵄩󵄩󵄩󵄩

2

𝐹

}

=
1

𝑀
𝐸{

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

ĤLS
− R̃LS
𝐻
(R̃LS
𝐻
+ 𝜎̂
2

(𝑖)
I)
−1

ĤLS
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

} ,

(A.3)

and by factorizing by C−1:

=
1

𝑀
𝐸{

󵄩󵄩󵄩󵄩󵄩󵄩
W − 𝜎

2I(𝜎2I + 𝜎̂
2

(𝑖)
I)
−1

W
󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

}

=
1

𝑀
𝐸{

󵄩󵄩󵄩󵄩󵄩󵄩
(I − (𝜎

2

+ 𝜎̂
2

(𝑖)
− 𝜎̂
2

(𝑖)
) I((𝜎2 + 𝜎̂

2

(𝑖)
) I)
−1
)W

󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

}

=
1

𝑀
𝐸{

󵄩󵄩󵄩󵄩󵄩󵄩
(𝜎̂
2

(𝑖)
I((𝜎2 + 𝜎̂

2

(𝑖)
) I)
−1
)W

󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

}

=
𝜎̂
4

(𝑖)

(𝜎2 + 𝜎̂
2

(𝑖)
)
2

1

𝑀
𝐸{‖W‖

2

𝐹
}

=
𝜎̂
4

(𝑖)
𝜎
2

(𝜎2 + 𝜎̂
2

(𝑖)
)
2
.

(A.4)

The sequence (𝜎̂2
(𝑖)
) is built from a function 𝑓

𝑠
such that if

we note 𝑥 = 𝜎̂
2

(𝑖)
, we obtain

𝑓
𝑠
(𝑥) =

𝑥
2

𝜎
2

(𝜎2 + 𝑥)
2
, (A.5)

with 𝑥 ∈ R+. Figure 10 displays the curve of 𝑓
𝑠
for different

values of 𝜎2 and compares them with 𝑦 = 𝑥.
It is trivial that from the expression of 𝑓

𝑠
in (A.5) that the

only solution of 𝑓
𝑠
(𝑥) = 𝑥 is zero. We find the same results

as in the case of a received pilot preamble under hypothesis



International Journal of Antennas and Propagation 13

H
1
; that is, if the algorithm is exclusively performed with

R̃LS
𝐻
, then the sole limit of 𝜎̂2

(𝑖+1)
is zero and the algorithm

enters into an endless loop. It justifies the change of channel
covariance matrix from R̃LS

𝐻
to R̃LMMSE
𝐻

under hypothesis H
1

as well as under hypothesis H
0
.
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