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A cognitive transceiver is required to opportunistically use vacant spectrum resources licensed to primary users. Thus, it relies on a
complete adaptive behavior composed of: reconfigurable radio frequency (RF) parts, enhanced spectrum sensing algorithms, and
sophisticated machine learning techniques. In this paper, we present a review of the recent advances in CR transceivers hardware
design and algorithms. For the RF part, three types of antennas are presented: UWB antennas, frequency-reconfigurable/tunable
antennas, and UWB antennas with reconfigurable band notches. The main challenges faced by the design of the other RF blocks
are also discussed. Sophisticated spectrum sensing algorithms that overcome main sensing challenges such as model uncertainty,
hardware impairments, and wideband sensing are highlighted. The cognitive engine features are discussed. Moreover, we study
unsupervised classification algorithms and a reinforcement learning (RL) algorithm that has been proposed to perform decision-

making in CR networks.

1. Introduction

Cognitive radio (CR) provides a solution to the inefficient use
of the frequency spectrum [1-3]. This inefficiency is due to
the current radio spectrum regulations which assign specific
bands to particular services and grant licensed bands access
to only licensed users. CR implements dynamic spectrum
allocation policies by allowing unlicensed users (secondary
users) to access spectrum bands licensed to primary users
while avoiding interference with them [2, 3]. This necessitates
at the RF front end more constraints on the antenna design,
the development of algorithms for sensing the surrounding
environment, and autonomously adapting to particular situ-
ations through a cognitive engine [1, 4-9]. These three design
elements are introduced in this section and presented in more
detail in the rest of this paper.

Spectrum underlay and spectrum overlay represent the
two main approaches of sharing spectrum between pri-
mary users (PUs) and secondary users (SUs). The underlay
approach imposes constraints on the transmission power,
which can be satisfied using ultrawideband antennas (UWB).

UWRB antennas are also used for channel sensing in overlay
CR but must be frequency reconfigurable or tunable. In
this case, a single-port antenna can have UWB response for
sensing and can be reconfigured for tunable narrowband
operation when needed to communicate over a white space.
It is also possible to use dual-port antennas for overlay CR,
in which one port has UWB frequency response and is
used for channel sensing, and the second port is frequency-
reconfigurable/tunable and used for communicating. In a
third possible spectrum sharing approach, the antennas could
be UWB antennas but should have the ability to selectively
induce frequency notches in the bands used by PUs, thus
avoiding any interference to them and giving the UWB
transmitters of the SUs the chance to achieve long-distance
communication.

Aside from the antenna, the design of the other RF blocks
faces main challenges related to the ADC/DAC, the dynamic
range or range of signal strengths to deal with, to the linearity
of low-noise amplifiers (LNAs), and to the frequency agility
of the duplexer and filters.



In CR, smart transceivers scan the spectrum in order
to find white spaces and transmit adaptive signals. This
functionality requires sophisticated algorithms to overcome
practical imperfections such as model uncertainty and hard-
ware nonideality. Some of the well-known spectrum sensing
algorithms are energy detection [10-12], matched filter-
based detection [11, 13], cyclostationarity-based detection
[14-18], covariance-based sensing [19, 20], and eigenvalue-
based sensing [21-23]. Blind detectors were also introduced
to elude the model uncertainty problem. Spectrum sensing
algorithms could be affected by RF impairments by inducing
unwanted frequency components in the collected signal spec-
trum. The effects of such impairments are reduced through
a postprocessing of the signal [24-26]. In addition, a robust
detector based on smart digital signal processing lowers the
effects of RF impairments and guarantees a high sensing
accuracy.

The concept of cognitive radios (CRs) goes beyond
dynamic spectrum access (DSA) applications and aims to
improve the quality of information (Qol) of users [5]. This
requires an intelligent radio that uses spectrum sensing
techniques to observe the RF activities and is able to
autonomously adapt to particular situations [9]. This is
achieved through a reasoning engine which executes actions
based on certain hard-coded rules and strategies [27]. Hard-
coded policies are completely specified by the system designer
and may result in the desired performance as long as
the operating conditions do not deviate from the original
assumed model. However, due to unexpected changes in
the RF environment, the hard-coded rules may not lead to
optimal performance, making them inefficient in this case.
Cognitive radios, however, can overcome this problem by
updating or augmenting their own sets of policies and rules
based on past experience [27], which may lead to a more
reliable communication performance [9, 27]. This makes the
learning ability a fundamental building block of any CR to
achieve autonomous intelligent behavior [9, 27-29].

In this paper, Section2 presents the antenna designs
for CR: ultrawideband (UWB) antennas, antennas with
reconfigurable band rejection, and frequency-reconfigurable
or tunable antennas. It also briefly discusses the challenges
faced by the design of RF blocks for CR devices. Section 3
discusses spectrum sensing by presenting challenges, novel
solutions, and spectrum sensing algorithms. RF imperfec-
tions and wideband sensing are also studied and recent blind
detectors, robust algorithms, and wideband techniques are
presented. Section 4 presents a cognitive engine and several
unsupervised classification algorithms for autonomous signal
classification in CRs, and a reinforcement learning (RL)
algorithm that performs decision-making in CR networks.
Conclusive remarks are given in Section 6.

2. RF Frontends for Cognitive Radio

CR transceivers are required to look for and operate in
white spaces, which could exist anywhere inside a wide
frequency range. This comes different from conventional
wireless transceivers which are bound to certain preallocated
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frequency bands. As a result, significant challenges have to
be dealt with when designing the RF components of a CR
transceiver, such as the antennas, the power amplifiers (PAs),
the filters/duplexers, and the analog-to-digital and digital-to-
analog converters (ADCs/DACs).

2.1. Antennas for Cognitive Radio. Two main approaches of
sharing spectrum between primary users (PUs) and sec-
ondary users (SUs) exist: spectrum underlay and spectrum
overlay. In the underlay approach, SUs should operate below
the noise floor of PUs, and thus contingent constraints are
imposed on their transmission power. Ultrawideband (UWB)
technology is very suitable as the enabling technology for this
approach. In spectrum overlay CR, SUs search for unused
frequency bands, called white spaces, and use them for
communication.

UWB antennas are used for underlay CR and also
for channel sensing in overlay CR. For communication in
overlay CR, the antenna must be frequency reconfigurable
or tunable. Single- and dual-port antennas for overlay CR
can be designed. In the dual-port case, one port has UWB
frequency response and is used for channel sensing, and the
second port, which is frequency reconfigurable/tunable, is
used for communicating. In the more challenging single-port
design, the same port can have UWB response for sensing and
can be reconfigured for tunable narrowband operation when
required to communicate over a white space.

A third possible spectrum sharing approach results from
the use of the UWB technology in an overlay scheme. Here,
the antennas could basically be UWB antennas but should
have the ability to selectively induce frequency notches in
the bands used by PUs, thus avoiding any interference to
them and giving the UWB transmitters of the SUs the chance
to increase their output power and hence to achieve long-
distance communication.

A concise review of antenna designs for cognitive radio,
covering the above three antenna types, is given in [30].

2.1.1. UWB Antennas. UWB antennas were originally meant
to radiate very short pulses over short distances. They have
been used in medical applications, GPRs, and other short-
range communications requiring high throughputs. The lit-
erature is rich with articles pertaining to the design of UWB
antennas [31-41]. For example, the authors in [31] present a
unidirectional UWB antenna based on a full-ground plane.
To keep this full-ground plane, they sequentially employ a
list of broadbanding techniques: (1) resonance overlapping,
(2) slot, (3) parasitic patch, (4) Vivaldi blending, (5) stepped
notch, and (6) rectangular and T-shape slits. The resulting
antenna has an impedance bandwidth from 3.6 GHz to
10.3 GHz while keeping the unidirectionality of the radiation
pattern.

In general, the guidelines to design UWB antennas
include the following.

(i) The proper selection of the patch shape. Round shapes
and round edges lead to smoother current flow and,as
a result, to better wideband characteristics.
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F1GURE 1: Configuration and photo of the UWB antenna in [42]. The antenna combines several bandwidth enhancement techniques.
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FIGURE 2: Reflection coefficient of the UWB antenna in Figure 1.

(ii) The good design of the ground plane. Partial ground
planes, and ground planes with specially designed
slots, play a major role in obtaining UWB response.
Keeping a full-ground plane is possible, but in that
case an elaborate work has to be done on the patch
design.

(iii) The matching between the feed line and the patch.
This is achieved using either tapered connections,
inset feed, or slits under the feed in the ground plane.

(iv) The use of fractal shapes, which are known for their
self-repetitive characteristic, used to obtain multi-
and wideband operation, and their space-filling prop-
erty, which leads to increasing the electrical length
of the antenna without tampering with its overall
physical size.

Combinations of these guidelines were used in the fol-
lowing two examples. The UWB design presented in [42]
features a microstrip feed line with two 45° bends and a
tapered section for size reduction and matching, respectively.
The ground plane is partial and comprises a rectangular part
and a trapezoidal part. The patch is a half ellipse with the cut
made along the minor axis. Four slots whose location and size
relate to a modified Sierpinski carpet, with the ellipse as the
basic shape, are incorporated into the patch. The geometry of
this antenna is shown in Figure 1. Four techniques are applied
for good impedance matching over the UWB range: (1) the
specially selected patch shape, (2) the tapered connection
between the patch and the feed line, (3) the optimized partial
ground plane, and (4) the slots whose design is based on
the knowledge of fractal shapes. As a result, this antenna
has an impedance bandwidth over the 2-11 GHz range, as
shown in Figure 2, and thus can operate in the bands used
for UMTS, WLAN, WiMAX, and UWB applications. It has
omnidirectional radiation patterns due to the partial ground
plane.

The effect of the ground plane on the performance of
UWRB antennas is studied in [43]. Herein, it is proven that
it is possible to obtain an ultrawide impedance bandwidth
using either a partial ground plane or a ground plane with
an optimized large slot, where in both cases the same exact
patch is used. This design has a coplanar-waveguide feed that
connects to an egg-shaped radiator. A photo of both versions
is given in Figure 3.

2.1.2. Antennas with Reconfigurable Band Rejection. As pre-
viously stated, UWB technology is usually associated with
the CR underlay mode. It can, however, be implemented in
the overlay mode. The difference between the two modes
is the amount of transmitted power. In the underlay mode,
UWB has a considerably restricted power, which is spread
over a wide frequency band. In the overlay mode, however,



FIGURE 3: Two UWB antennas with optimized ground planes [43].
One has a partial ground plane and the other has a ground plane
with a large slot.

the transmitted power can be much higher. It actually can
be increased to a level that is comparable to the power
of licensed systems, which allows for communication over
medium to long distances. But this mode is only applicable if
two conditions are met: (1) if the UWB transmitter ensures
that the targeted spectrum is completely free of signals of
other systems, or if it shapes its pulse to have nulls in
the bands used by these systems, and (2) if the regulations
are revised to allow for this mode of operation [44]. Pulse
adaptation for overlay UWB CR has been discussed in [45].
UWRB can also operate in both underlay and overlay modes
simultaneously. This can happen by shaping the transmitted
signal so as to make part of the spectrum occupied in an
underlay mode and some other parts occupied in an overlay
mode. In the overlay UWB scenario, the antenna at the front
end of the CR device should be capable of operating over the
whole UWB range, for sensing and determining the bands
that are being used by primary users, and should also be able
to induce band notches in its frequency response to prevent
interference to these users. Even if the UWB power is not
increased having these band notches prevent raising the noise
floor of primary users.

Antennas that allow the use of UWB in overlay CR should
have reconfigurable band notches. Several band-notching
techniques are used in such antennas, the most famous of
which is the use of split-ring resonators (SRRs) [46] and
the complementary split-ring resnators (CSRRs) [47]. SRRs
have attracted great interest among electromagneticians and
microwave engineers due to their applications to the synthesis
of artificial materials (metamaterials) with negative effective
permeability. From duality arguments, CSRRs, which are the
negative image of SRRs and roughly behave as their dual
counterparts, can generate a negative permittivity media.

Some recent UWB antenna designs with fixed band
notches are reported in [48-55]. The works in [56-59] are for
UWB antennas with reconfigurable band notches.

A UWRB design with a single reconfigurable band notch is
proposed in [60]. The configuration of this design and a photo
of its fabricated prototype are shown in Figure 4. Originally,
the antenna is a UWB monopole based on a microstrip line
feed and a partial ground plane. The patch is rectangular with
rounded corners. A slit is etched in the ground below the
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feed, for better matching. As a result, this antenna has an
impedance bandwidth that covers the whole UWB frequency
range. Four nested CSRRs are incorporated in the patch.
Three electronic switches are mounted across the slots. The
sequential activation (deactivation) of the switches leads to
the functioning of a larger (smaller) CSRR and thus results in
anotch at alower (higher) frequency. The following switching
cases are considered: Case 1 when all three switches are ON,
Case 2 when only S3 is deactivated, Case 3 when only S1
is ON, and finally Case 4 when all switches are OFE. The
resulting reflection coefficient plots, corresponding to the
different switching states, are shown in Figure 5. The plots
show one notch, which can occur in one of 3 bands or can
completely disappear. In the latter case, the antenna retrieves
its UWB response, which enables it to sense the whole UWB
range.

The antenna reported in [61] is capable of concurrently
inducing three band notches, which are independently con-
trollable, using only three RF switches. This is done using
three CSRRs etched on the patch. There are eight switching
cases for this design, with one of them being the original
UWB no-notch case. A UWB antenna with reconfigurable
band notches can also be designed by incorporating a
bandstop filter in the feed line of a UWB antenna. With this
structure, the switching elements will be mounted on the
feed line, away from the radiating patch, which makes the
bias circuit of the switches simpler to design. Such a filter
antenna (filtenna) with two reconfigurable rejection bands is
presented in [62]. Its structure is shown in Figure 6. The UWB
antenna is based on a rounded patch and a partial rectangular
ground plane. A reconfigurable filter with two stop bands
is incorporated along its microstrip feed line. The filter is
based on one rectangular single-ring CSRR etched on the
line and two identical rectangular single-ring SRRs placed in
close proximity to it. The resonance of the CSRR is controlled
via a switch and that of the two SRRs via two switches
that are operated in parallel. As a result, there are four
switching scenarios. The resulting reflection coeflicient plots
are shown in Figure 7. Case 1, where no band notches exist,
allows the antenna to sense the UWB range to determine
the narrowband primary services that are transmitting inside
the range. In the other three cases, the notches block the
UWB pulse components in the 3.5 GHz band, the 5.5 GHz
band, or both. It should be noted that notches due to the
SRRs and the CSRR around the feed are stronger than those
due to CSRRs or any notching structures implemented in the
patch. This is because energy is concentrated in a smaller
area in the feed and coupling with the SRRs/CSRR is higher.
Due to the location of the switches, connecting the DC bias
lines, especially to the SRRs, which are DC-separated from
anything else, is an easy task. A wire can be used to drive the
switch on the CSRR. A note is that extra band notches can be
obtained by placing more SRRs around the feed line. Tunable
versions of these notches can be obtained by replacing the RF
switches with varactors.

2.1.3. Frequency-Reconfigurable/Tunable Antennas. Anten-
nas designed for overlay CR should have the capability to
sense the channel and communicate over a small portion
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of it. These antennas can be implemented as dual port,
where one port is UWB and the other is narrowband and
frequency reconfigurable. They can also be designed as single
port, where the same port is used for both sensing and
communicating, and thus should switch between wideband
and narrowband operations. For the dual-port designs, the
isolation between the two ports is an issue. More elaborate
work is required for single-port designs.

A dual-port antenna for overlay was proposed in [63]. Its
structure consists of two printed antennas, namely, wide- and
narrowband antennas. The design in [64] also combines wide
and narrow band antennas, where the wideband one covers
the 2.6-11 GHz range and the narrowband one is tunable,
using a varactor, between 6.85 GHz and 7.20 GHz. A simple
dual-port design is presented in [65]. The configuration
of this design, which comprises two microstrip-line-fed
monopoles sharing a common partial ground, is shown in
Figure 8. The sensing UWB antenna is based on an egg-
shaped patch. The UWB response of the sensing antenna is
guaranteed by the design of the patch, the partial ground

plane, and a feed matching section. The communicating
antenna is a simple microstrip line matched to the 50 — Q
feed line. Two electronic switches are incorporated along this
line. Controlling these switches leads to various resonance
frequencies within the UWB range, as shown in Figure 9 for
three considered switching cases.

Dual-port antennas enable simultaneous sensing and
communicating over the channel, but have limitations in
terms of their relatively large size, the coupling between
the two ports, and the degraded radiation patterns. These
limitations are solved by the use of single-port antennas, but
these are only suitable when the channel does not change
very fast, and thus sensing and communication are possible,
sequentially.

Single-port reconfigurable wideband/narrowband anten-
nas are reported in [66-68]. The design in [66] has a wide
bandwidth mode covering the 1.0-3.2 GHz range and three
narrowband modes within this range. In [67], fifteen PIN
diode switches are used on a single-port Vivaldi antenna,
leading to a wideband operation over the 1-3 GHz band and
six narrowband states inside this range. GaAs field-effect
transistor (FET) switches are used in [68] to connect multiple
stubs of different lengths to the main feed line of a UWB
circular-disc monopole. The result is an antenna that can be
operated in a UWB mode or in a reconfigurable narrowband
mode over one of three frequency subbands: the first covers
2.1-2.6 GHz, the second covers 3.6-4.6 GHz, and finally the
third covers a dual band of 2.8-3.4 GHz and 4.9-5.8 GHz. The
design in [69] is a filtenna based on a reconfigurable bandpass
filter embedded in the feed line of a UWB monopole. A
UWRB and five narrowband operation modes characterize this
design.

A printed Yagi-Uda antenna tunable over the 478-
741MHz UHF TV band is presented in [70], where the
narrowband frequency tunability is obtained by loading the
driver dipole arms and four directors with varactor diodes.
A miniaturized tunable antenna for TV white spaces is
reported in [71]. In [72], two PIN diodes and two varactors
are employed for narrow band tuning between 1.39 and
2.36 GHz. A Vivaldi-based filtenna with frequency tunability
over the 6.1-6.5 GHz range is presented in [73]. The single-
port designs in [70, 72, 73] are only capable of narrowband
operation, which means that wideband spectrum sensing has
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to be done progressively, a narrow chunk of frequencies at a
time. This is also the case with the filtenna design shown in
Figure 10. Here, a tunable bandpass filter is embedded along
the microstrip feed line of a UWB monopole antenna, where
the filter is based on a T-shaped slot incorporated in the
microstrip line between a pair of gaps. For the purpose of
achieving frequency tunability, a varactor is included in the
design, as indicated. Changing the capacitance of the varactor
changes the notch band, caused by the T-shaped slot,and as a
result the narrow passband of the overall filter. The DC lines
of the varactors are connected with ease. Due to the presence
of the two gaps, DC is separated from both the antenna port
and the patch. Two surface-mount inductors are used over the
DC lines as RF chokes. The computed reflection coefficient
plots are given in Figure 11. They show narrowband tunability

over the 4.5-7 GHz frequency range, for capacitance values
between 0.3 and 7 pE.

2.2. RF Design Challenges. The design challenges for the RF
section of a CR transceiver are well reviewed in [74-76].
Diagrams of a CR transceiver architecture appear in [74].
For wideband operation, such as that required for sensing,
the main challenges relate to the ADC/DAC, the dynamic
range, or range of signal strengths to deal with, which could
be as wide as 100 dB, to the linearity of low-noise amplifiers
(LNAs), which has to be high, and to achieve impedance
matching over a wide frequency range. For tunable narrow-
band operation, the key issues are the frequency agility of the
duplexer and filters.

2.2.1. ADCs and DACs. In many situations, the desired signal
received by wireless device could sometimes be 100 dB weaker
than other in-band signals generated by nearby transmitters
of the same communication standard or some out-of-band
blockers caused by any transmitter. This would demand a
dynamic range of about 100 dB on the ADC. Ideally, the RF
signals received by a CR system should be digitized as close
to the antenna as possible, so that all the processing is done
at the level of the digital signal processor (DSP). In this case,
the ADC and DAC should have the 100 dB dynamic range,
explained earlier, be operable over a UWB frequency range
and handle significant levels of power. These requirements
are still far beyond the limits of available technology, that is
why the more realistic CR receivers reduce both the required
dynamic range and the conversion bandwidth by having
downconversion and filtering functions implemented before
ADC.

On the path towards ideal CR receivers, several ADCs can
be used in parallel to widen the conversion bandwidth. In
[77], a parallel continuous time AX ADC is presented, which
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FIGURE 10: Geometry and photo of a tunable narrowband filtenna.
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requires very complex digital synthesis filters. The hybrid
filter bank-based ADC presented in [78] could be a promising
solution for CR applications, but its use necessitates high
resource calibration since it is sensitive to analog filter errors
and imperfections. A solution that provides good perfor-
mance in terms of speed employs time interleaving [79],
but it lacks the resolution and dynamic range. To suppress
low order nonlinearities of parallel ADCs and nonlinearities
caused by pre-ADC analog components, gigital postlineariza-
tion is desired. The technique in [80, 81] combines time
multiplexing and frequency multiplexing by using bandpass
charge sampling filters as analysis filters in hybrid filter banks

architecture. This leads to reduced complexity of analog
analysis filters and simultaneously of the sensitivity to analog
errors and imperfections. Yet, the practical implementation
with the aim of widening the bandwidth and sensitivity still
requires a deeper investigation.

RF DAC:s are utilized in the fully digital RF transmitters
presented in [82, 83]. The design of these DACs is less
challenging than that of ADCs, although more improvements
are still necessary.

2.2.2. Low-Noise Amplifier. A receiver’s performance is pri-
marily determined by the linearity and adequate matching
over a wide frequency range of the broadband or tunable
LNA. A broadband LNA topology achieving a frequency
range of 50 MHz to 10 GHz was proposed in [76]. The
input capacitance is canceled by the LNA using inductive
behavior provided by negative feedback. Advanced CMOS
technologies make it easier to design such high-frequency
LNAs without any large inductors. On the other hand, the
linearity issue becomes crucial because the supply voltage
for core transistors decreases to around 1V in 90nm or
more advanced processes, which results in a limited voltage
swing. LNAs using thick-oxide transistors may prevent this
problem [84]. The mixer-first RF front ends [85, 86] are
another approach for improving linearity performance. An
impedance translation technique, which uses passive mixers
followed by capacitive loads, can provide low impedance for
out-of-band blockers [87, 88], which makes it attractive.

The even-order nonlinearity of the LNA also should be
considered in wideband CR systems. This is because second-
order intermodulation (IM2) products generated by an LNA
can fall within the CR band, thus corrupting the desired signal
even before downconversion. A differential LNA topology
seems attractive here, but a balun is necessary if the antenna
is single ended. Design of low-loss baluns operating across
two or three decades of bandwidth is challenging. A useful
balun-LNA topology is proposed in [89].
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2.2.3. Downconversion Mixer. Another issue in the wideband
operation of a CR device is harmonic mixing. The RF signal is
often downconverted using square-wave local-oscillator (LO)
signals that contain large odd-order harmonic components.
This is done to obtain flat performances of noise and gain
across a wide frequency range. The use of a harmonic-
rejection mixer (HRM) is one way to remove odd-order
LO harmonics. The authors in [90, 91] propose techniques
to improve harmonic rejection ratios (HRRs). However, if
seventh- and higher-order LO harmonics are to be rejected,
the HRMs become much more complex.

2.2.4. Wideband Frequency Synthesizer. Multiple oscillators
could be used to cover a wide frequency range. This solves
the issue of the trade-off between tuning range and phase
noises. For acceptable phase noise figures, the tuning range of
inductor-capacitor (LC-) type oscillators is typically limited
to about +15% at frequencies of tens of gigahertz. Frequency
synthesizers for CR having two oscillators to support a wider
frequency range are reported in [84, 92].

3. Spectrum Sensing in Cognitive Radios

In a CR scenario, secondary users are allowed to detect,
exploit, and use underutilized spectral resources licensed
to primary users. Such opportunistic behavior urges CR
transceivers to scan the spectrum in order to find white spaces
and transmit adaptive signals. Thus, spectrum sensing is the
key function of smart receivers since it enables the cognitive
cycle proposed by Mitola in [4, 93]. This functionality creates
unique signal processing challenges and requires sophisti-
cated algorithms to overcome practical imperfections such as
model uncertainty and hardware imperfections.

To address these challenges, CR researchers proposed in
the last decade various detectors that have different complex-
ity levels, performance results, and requirements for imple-
mentation. Well-known spectrum sensing algorithms, sorted
in an ascending order of complexity are energy detection
(ED) [10-12], matched filter (MF-) based detection [11, 13],
cyclostationarity-based detection (CSD) [14-18], covariance-
based sensing [19, 20], and eigenvalue-based sensing [21-
23]. Some of these methods require a priori knowledge of
noise and/or signal power information; these include ME,
CSD (relying on the full or partial knowledge of signal and
noise levels), and ED (having a threshold dependent on the
estimated noise power level). Blind detectors were recently
proposed to elude the model uncertainty problem relying on
advanced digital signal processing techniques.

In a cognitive receiver, RF impairments could harm the
performance of the spectrum sensing algorithm by inducing
unwanted frequency components in the collected signal
spectrum. To mitigate the effects of such impairments, “Dirty
RF” is applied on the SU receiver inducing a postprocessing of
the signal, thus compensating analog imperfections [24-26].
A robust detector, based on smart digital signal processing,
should be able to digitally lower the effects of RF impairments
and guarantee a high sensing accuracy.

The early-designed spectrum sensing algorithms aimed
to detect a white space from narrow frequency bands where
many emerging wireless applications require an opportunis-
tic usage of a wideband spectrum [94-97]. Consequently, SUs
are forced to scan a wide range of potential spectra and detect
available holes to be able to transmit. One of the main con-
cerns of the CR community is to conceive wideband spectrum
sensing methods to replace the complicated implementation
of high sampling rate ADCs, capable of downconverting
wideband signals.

The selection of signal processing algorithms and their
parameters reflects the speed and sensing time of the
cognitive receiver. A complex signal processing algorithm
should respect an optimum sensing value depending on the
capabilities of the radio and its temporal characteristics in the
environment. On the other hand, the ADC is considered as
the primary bottleneck of the DSP architecture since it forces
the clock speed of the system. Moreover, the selection of the
digital signal processing platform affects the speed of the front
end. All these parameters influence the sensing frequency and
speed of cognitive radio receivers. For that, researchers focus
on implementing sensing algorithms with low complexity,
high speed, and flexibility in order to conceive an adaptive
CR terminal.

In the following sections, we will describe three main
practical spectrum sensing challenges and novel solutions.
Model uncertainty, RF imperfections, and wideband sensing
are studied and recent blind detectors, robust algorithms, and
wideband techniques are presented. Accordingly, in the rest
of this paper, we provide an overview of the state of the art of
spectrum sensing algorithms that were proposed to answer
these three major and hot research challenges.

3.1. Blind Detectors. As per regulation specifications, sec-
ondary users are required to detect very weak licensed
users in order to protect primary transmissions [98, 99].
Any missed detection will enable an unlicensed transmis-
sion on a busy channel harming the incumbent primary
signal. Unfortunately, many detectors reveal performance
degradation at low SNR due to inappropriate estimation
of the signal or noise models. This phenomenon is known
as SNR wall [10, 100]. For the ED, an estimation of the
noise variance is required to select a suitable threshold.
Imperfect knowledge of the noise model, especially in low
SNR scenarios, will consequently deteriorate the efficiency of
this algorithm. The SNR wall phenomenon also harms any
detector based on the received signal’s moments. Using coop-
erative spectrum sensing techniques or relying on calibration
and compensation algorithms are possible solutions to the
model uncertainty problem [100, 101]. However, using totally
blind detectors, which detect the presence of a signal without
any knowledge of signal or noise parameters, is considered
the ideal alternative. Two recently proposed blind detectors
are described below.

3.1.1. Blind Eigenvalue-Based Detector. Zeng et al. devised a
blind detector based on the computation of the minimum
and maximum eigenvalues A, and A, of the sample
covariance matrix R(Ng) defined in [22]. The test statistics
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(a) Define the received vector x,, given by:

x(n) =[x, (n),x, (1),..., %y (n)]T

L-1+Ng
R(Ng) = N. XX
S

n=L
(d) Compute A, and A

max min

1/6

V= (\/ﬁS+M)2 <1+

(\/ﬁs - \/W)z (NsML)

The decision test:

max >H1

A “Ho

min

v

Initialize: Acquire L consecutive data samples and assume that there are (M > 1) receivers (antennas),
and (Ny) is the total number of collected samples.

(b) The collection of L consecutive outputs X, is defined as:
X, = [xT(n),xT(n— D,....x'(n-L+ 1)]T

(c) Compute the sample covariance matrix R(Nj):

the maximum and minimum eigenvalues of the matrix R(Nj).
(e) Compute the threshold » for the test statistics:

-2/3
(VNg+ VML) "
F (1= Pgy) |,
where F| is the Tracy-Widom distribution of order 1 [102].

(f) Decide on H, or H, by computing the ratio between A, and A, :

ALGORITHM I: Steps of the MME detector.

of this maximum-minimum eigenvalue (MME) detection is
simply given by

Amax H;

m% HY ¢))
where v is the threshold calculated by using the number
of acquired samples, the smoothing factor used for the
calculation of R(Ny), and a selected probability of false alarm.
It is expected that noise produces small eigenvalues, whereas
the correlation inherited in modulated signals increases the
eigenvalues. The proposed test statistic does not depend on
any knowledge of noise, signal, or channel models; thus
it is not sensitive to the model uncertainty problem. The
detailed computational steps of this scheme are described in
Algorithm 1.

3.1.2. The CAF Symmetry-Based Detector. This blind spec-
trum sensing detector is based on the symmetry property of
the cyclic autocorrelation function (CAF). Benefiting from
the sparsity property of CAE the compressed sensing tool
is adopted in this algorithm. A test statistic is defined,
without the computation of any threshold, by checking if the
estimated CAF exhibits symmetry or not. As demonstrated
in [103], a positive symmetry check affirms the presence
of a primary signal. The estimation of the cyclic autocor-
relation vector is computed using an iterative optimization
technique, called the orthogonal matching pursuit (OMP)
[104]. The computational complexity of this algorithm is
reduced by limiting the number of acquired samples and the
number of needed iterations to ensure its practical feasibility.
Algorithm 2 summarizes the main steps of this detector.

3.2. Robust Sensing Algorithms. In practice, CR receivers
are composed of several sources of hardware imperfections

such as low noise amplifiers (LNA), mixers, local oscillators
(LO), and analog-to-digital converters (ADC). The most
critical result of such impairments is the appearance of
new frequency components in the received signal, classi-
fied in intermodulation distortions (IM), cross modulation
(XM), and phase distortion (AM/PM). Consequently, strong
primary users could harm the performance of traditional
spectrum sensing techniques by adding unwanted spectrum
components via front-end’s nonlinearity. When these compo-
nents overlap with weak secondary users, a degradation in the
reliability of SU transmissions occurs. They can also virtually
occupy the whole spectrum, thus decreasing the opportunity
to find a vacant transmission band. In both scenarios, the
accuracy of any proposed algorithm will be deteriorated. To
mitigate these effects, a robust detector algorithm should
be equipped with a compensation functionality to digitally
reduce the effects of nonlinearities. Possible compensation
algorithms could be based on feed-forward techniques with
reference nonlinearity, feed-back equalization, and train-
ing symbol-based equalization. A well-known feed-forward
technique to alleviate phase noise, carrier frequency off-
set, nonlinearities, I/Q imbalance, or ADC impairments is
described below.

3.2.1. The AIC Algorithm. In [25], Valkama et al. devised the
adaptive interference cancellation (AIC) algorithm, which
is a feed-forward algorithm for the mitigation of second,
third, and fifth order intermodulation distortion. The idea
is to model the distortion caused by the interferer and then
subtract them from the received signal. A mathematical
formulation of the distortion model and order is studied
before implementing the algorithm. Then, an imitation of
the distortion products and an adaptive adjustment of their
levels are performed to compensate the distorted signal.
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Initialize: Acquire n data samples from the spectrum sensing interval formed by N
samples and set (I + 1) the number of OMP iterations, and (M) the number of delays 7s

For M different values of 7,
(a) Calculate the autocorrelation vector f, given by:

£, = [£,00), £:(Dsees £ N = DT,
where f.(t) = y(t) y(t + 7).
(b) Calculate the elements of the matrix A performing the IDFT transform:
a . eXnp-D@-D/N
(p.9)

The OMP algorithm
(c) Estimate the cyclic autocorrelation vector by solving the following system of
equations: Ar, = f_ by using an iterative optimization technique called
Orthogonal Matching Pursuit (OMP) that delivers an approximated solution F,.

Symmetry check
(d) Calculate the symmetry index for this value of 7, by ignoring the first amplitude that
corresponds to the first iteration of OMP, and measuring the mean value of the abscissa
of the remaining (I — 1) non zero elements in ¥,. The symmetry index is given by:

sym

I
1
(T) _ ~
IND® = 721 E,.
End For

Equivalent symmetry check:

1 & .
INDGE = - > [INDR) | < 0.
i=1

sym sym

ALGORITHM 2: Steps of the CAF symmetry-based detector.

The algorithm, illustrated in Figure 12, starts by splitting the
band of the received signal in order to differentiate between
the strong PU and other frequency components (SUs +
distortions). The band splitting is accompanied by a coarse
energy detector used to locate the strong interferer. Then a
parallel block of reference nonlinearities is used to extract
potential distortion products from the strong interferer. An
adaptive filter, the least mean square (LMS), is used to adjust
digitally created distortions levels. The adaptive filter utilizes
the distorted signal resulted from the band splitter as an
input parameter and minimizes the common error signal
e(t). The adjusted nonlinearities are finally subtracted from
the received signal to cleanse the band from nonlinearity
distortions. It is shown in [26] that the application of the
AIC algorithm before the detector increases the detection
reliability in CR devices.

3.3. Wideband Spectrum Sensing. Several emerging wireless
applications and regulation encourage cognitive receivers
to scan a wideband spectrum to find potential spectrum
holes. In contrast to the narrowband techniques mentioned
above, wideband spectrum sensing methods aim to sense a
frequency bandwidth exceeding the coherence bandwidth of
the channel. A frequent example deals with the design of an
algorithm capable of sensing the whole ultra-high-frequency
(UHF) TV band (between 300 MHz and 3 GHz). Practically,
wideband scanning could be performed via the following two
different methods.

(1) By using a filter bank formed by preset multiple nar-
rowband pass filters BPFs [105]. This hardware-based
solution requires more hardware components, thus
increasing the cost and the RF impairments harmful

Coarse ED +
band splitter

Reference
nonlinearity

FIGURE 12: The AIC algorithm.

effect, and limiting the flexibility of the radio by fixing
the number of filters. After each filter, a narrowband
state-of-the-art technique is implemented.

(2) By using sophisticated signal processing techniques.
In fact, narrowband sensing techniques cannot be
directly applied to scan a wideband since they
are based on single binary decision for the whole
spectrum. Thus, they cannot simultaneously identify
vacant channels that lie within the wideband spec-
trum. Recently proposed wideband spectrum sensing
can be broadly categorized into two types:

(i) Nyquist wideband sensing processes digital sig-
nals taken at or above the Nyquist rate, for exam-
ple, the wavelet transform-based technique;

(ii) sub-Nyquist wideband sensing acquires signals
using a sampling rate lower than the Nyquist
rate, for example, the compressive sensing tech-
nique.



12

Wideband of interest

Partitioned narrow band
K—

fO fl f2 fn—l fn fN f

FIGURE 13: A wideband spectrum seen as a train of narrowband
signals and presenting frequency irregularities.

In the following sections, two approaches to perform
wideband spectrum sensing are discussed.

3.3.1. Wavelet Transform-Based Technique. In this method,
the SU transceiver scans a wideband without using a bank
of narrow BPFs. Alternatively, a wideband receiver will be
based on high-speed digital signal processing to search
over multiple frequency bands in an adaptive manner. The
obtained digital signal will be modeled as a train of consec-
utive narrow frequency bands as illustrated in Figure 13. To
identify these bands and search for potential spectrum holes,
the wavelet transform will be used to locate edges between
different narrow subbands [106]. The corresponding block
diagram is depicted in Figure 14. Wavelet transform is used
in mathematics to locate irregularities [95]. Consequently,
it will be a good candidate to differentiate between the
narrow subbands of wideband signal [97,107]. A wavelet edge
detector is able to identify the average power level within each
identified subband which will lead to the localization of the
spectrum holes.

The analysis using wavelet transform is based on a
function known as the principal wavelet v which has a
finite energy. Wavelets are used to transform a given signal
into another representation that models the information
related to the signal in a more utile way. Wavelets could
be manipulated in two different ways: moved along the
frequency axis or stretched with a variable energy. A Wavelet
transform, obtained by summing the product of the signal
multiplied by the wavelet, is calculated at different spots of
the signal and for different combinations of the wavelet. This
calculation could be monitored to detect the irregularities of
the signal by observing the different values of the wavelet
transform.

3.3.2. Compressive Sensing Technique. A major implementa-
tion challenge lies in the very high sampling rates required
by conventional spectral estimation methods which have to
operate at or above the Nyquist rate. However, to solve this
issue, the compressive sampling CS technique is used for the
acquisition of sparse signals at rates significantly lower than
the Nyquist rate. Signal reconstruction is no more based on
old reconstruction techniques but will be a solution to an
optimization problem. Several schemes were suggested in the
literature for the reconstruction of the signal, by using wavelet
transforms [97], the autocorrelation of the signal [108], or
advanced algorithms for sparse approximation methods [104,
109]. It is shown that such methods could preserve the
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adaptive response of the algorithm by offering a relatively
small processing time.

Sparse approximation consists of finding a signal or a
vector with sparseness property; that is, it has a small number
of nonzero elements that satisfies (approximately) a system of
equations. For example, consider a linear system of equations
y = Ax, where A is an n — by — M matrix with n < M. Since
A is overcomplete (n < M), this problem does not have a
unique solution. Among all the possible solutions, if the true
one is known a priori to be sparse then it happens that the
sparsest, that is, the solution x, containing as many as possible
zero components and satisfying y = Ax;, is close to the true
solution. Reducing the problem complexity to n instead of M
increases the adaptation time of the reconstruction algorithm
and thus provides better processing time.

4. Machine Learning in Cognitive Radios

Cognitive radios (CRs) are considered as intelligent radio
devices that use the methodology of understanding-by-
building to learn and adapt to their radio frequency (RF)
environment [1]. Several CR architectures have been pro-
posed over the past years in order to achieve dynamic
spectrum access (DSA) [1-3]. However, as initially proposed
by [4], the concept of CRs goes beyond DSA applications and
aims to improve the quality of information (Qol) of wireless
users [5]. This functionality requires an intelligent radio that
is aware of its RF environment and is able to autonomously
adapt to the variations in the wireless medium [9].
Cognitive radios are assumed to use spectrum sensing
techniques to identify the RF activities in their surrounding
environment [6]. Based on their observations, CRs apply
their reasoning abilities to modify their behavior and adapt
to particular situations. This is achieved through a reasoning
engine which executes actions based on certain rules and
strategies [27]. Similar reasoning engines could be identified
in conventional radios that behave according to a set of
hard-coded rules [27]. For example, according to the IEEE
802.11 specifications, such hard-coded rules determine the
switching of a radio device among different modulation
schemes depending on the signal-to-noise ratio (SNR) [27].
Hard-coded policies are completely specified by the system
designer and may result in the desired performance as
long as the operating conditions do not deviate from the
original assumed model. However, in situations where the
RF environment changes due to unexpected agents or factors
(e.g., jammers, interferers, extreme fading conditions, etc.),
the hard-coded rules may not lead to optimal performance,
making them inefficient in this case. Cognitive radios, how-
ever, can overcome this limitation by updating their own
sets of policies and rules based on past experience [27].
For example, if a CR is subject to jamming or significant
interference on a certain channel, it could come up with
new actions to switch to a new frequency band, instead of
simply modifying its modulation scheme, in contrast with
the IEEE 802.11 case. Hence, based on its learning ability, a
CR can update or augment its set of rules and policies based
on its own experience, which may lead to a more reliable
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FIGURE 14: Block diagram of Wavelet transform-based technique.

communication performance [9, 27]. This makes the learning
ability a fundamental building block in any CR to achieve
autonomous intelligent behavior [9, 27-29].

Machine learning techniques are gaining more impor-
tance in the current and future wireless networks due to the
increase in system complexity and the heterogeneous nature
of the wireless medium [29, 110-117]. In particular, significant
research efforts are being focused on developing link aggrega-
tion techniques using multiple radio access networks (RANs)
[111]. For example, the authors in [111] have demonstrated
a CR system that is able to access a heterogeneous RAN
aggregation system including HSDPA, Wi-Max, and W-
CDMA systems. In order to ensure efficient system operation,
the system parameters need to be optimized to maximize the
overall performance. However, due to the dynamic nature
of the wireless network and the large number of system
parameters, the operating parameters cannot be optimized
manually, but require intelligent algorithms that are able to
autonomously adjust the system parameters, leading to opti-
mal performance. In [111], the support vector regressor (SVR-
)-based learning algorithm has been proposed for parameter
optimization. This algorithm requires a set of training data
to estimate the system model. Other learning approaches
may be considered in the future to optimize various system
parameters under different operating environments [111].
In this paper, however, we focus on unsupervised learning
methods to ensure autonomous CR operation, as we will
discuss next.

5. The Cognitive Engine

Cognitive radios extend software-defined radios (SDRs) by
adding a cognitive engine (CE) to the radio platform [27].
According to [27], a CE can be composed of three main
components: (1) a knowledge base, (2) a reasoning engine,
and (3) a learning engine, as illustrated in Figure 15 [27].
The reasoning engine executes the actions and policies that
are stored in the knowledge base, while the learning engine
updates these policies based on past experience [9, 27]. By
applying learning algorithms, the learning engine can trans-
form the observed data into knowledge, thus allowing the
CR to be aware of certain characteristics of its environment
(4, 29].

The machine learning literature is rich with learning
algorithms that can be used in various contexts [29, 110-117].
These learning algorithms can be categorized under either
supervised or unsupervised methods. In supervised learning,
a set of labeled training data is available for the learning
agent to specify whether a certain action is correct or wrong
[29, 118]. In unsupervised learning, however, the learning
agent is supposed to identify the correct and wrong actions
based on its own experience and interactions with the envi-
ronment [118]. This makes unsupervised learning algorithms

Reasoning
engine
Learning
engine

Cognitive engine

Knowledge base

FIGURE 15: The cognitive engine (CE).

more appealing for CR applications, compared to supervised
learning, since they lead to autonomous cognitive behavior in
the absence of instructors [9]. Hence, unsupervised learning
has been the focus of recent autonomous CRs formulations
(7,9, 119-123].

Several unsupervised learning algorithms have been pro-
posed for CRs to perform either feature classification or
decision-making [29]. Classification algorithms can be used
to infer hidden information about a set of noisy data. They
allow, for example, inferring both number and types of
wireless systems that are active in a certain environment [120,
124]. In addition, classification algorithms were also proposed
for modulation classification based on Bayesian networks, as
in [125]. On the other hand, decision-making algorithms can
be used to update or modify the policies and rules that are
stored in the knowledge base of a CR. Thus, the learning
process may result in a new set of actions, allowing the CR
to adapt to completely new RF environments [27].

In the followings, we present several unsupervised classi-
fication algorithms that have been proposed for autonomous
signal classification in CRs. We also present a reinforcement
learning (RL) algorithm that has been proposed to perform
decision-making in CR networks.

5.1. Unsupervised Classification Algorithms. Classification
algorithms have been proposed for CRs to extract knowledge
from noisy data [120, 121, 124]. As we have mentioned above,
the classification algorithms based on machine learning tech-
niques can be divided into two main categories: upervised
and unsupervised classifiers [29, 120]. Supervised classifiers
require an “instructor” that specifies whether a certain
classification decision is “correct” or not. These supervised
classifiers require a set of labeled training data (or expert-
annotated data [120]) that specify the correct classes (or
clusters). Supervised classifiers can be applied in certain con-
ditions when prior knowledge (e.g., labeled data) is available
to the learning agent. However, in situations where no such
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prior information is available, unsupervised classifiers can be
used instead. Unsupervised classifiers do not require labeled
data and process the detected data to determine the class or
cluster of each data element. Hence, unsupervised classifiers
can be considered more suitable for autonomous CRs when
operating in unknown RF environments [9, 124].

In the followings, we present three examples of unsu-
pervised classifiers that have been proposed for CRs: (1) the
K-means, (2)X-means, and (3) Dirichlet process mixture
model (DPMM) classifiers. We give a brief description of each
algorithm and show their different applications in CRs.

5.1.1. The K-Means Classifier. The K-means algorithm has
been proposed for robust signal classification in CRs [120].
It is considered as an unsupervised classifier since it does
not require labeled training data [29, 120]. However, the K-
means algorithm requires prior knowledge about the number

of clusters K, making it a unsupervised parametric classifier.

Given a set of N feature points {yi}f\_jl, the K-means

algorithm classifies these data points into K clusters, where
K is determined a priori. The algorithm starts with a set
of K arbitrary centroids {c;,...,cx}, defining the centers
of K initial clusters. Each feature point y; is then selected
sequentially and assigned to the closest centroid (in terms
of Euclidean distance). Once a feature point is assigned to a
particular cluster, the corresponding centroid is updated and
computed as the mean of the feature points belonging to that
cluster. Eventually, the means converge to the clusters centers
[120].

In CR applications, the K-means algorithm was applied
to classify different types of RF signals based on their spectral
or modulation characteristics. For example, in [120], the
K-means were allowed to classify primary and secondary
signals transmitting within the TV band. The authors in
[120] demonstrated the robustness of this classifier against
fluctuations in the signal parameters, such as the signal-
to-noise ratio (SNR). In general, such fluctuations lead to
larger variance in the extracted features, which may cause

=0, with prob. g;

0 1{0,}, p¥io- - ¥w

~ f(6;1y;) with prob. g

5.1.3. The DPMM Classifier. The DPMM classifier has been
proposed for unsupervised signal classification in CRs [29,
121, 124]. It is considered a Bayesian nonparametric unsuper-
vised classifier in the sense of allowing the number of clusters
(or classes) to increase with the data size [29, 121, 124]. This
model allows classifying a set of feature vectors {y;} ", into K
clusters, where K is to be estimated from the data (in contrast
with the K-means which require prior knowledge about K).
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poor classification performance. Nevertheless, the K-means
algorithm was shown to be robust against such variations
and achieved good performance in classifying both 8-level
vestigial sideband (8VSB) modulated signals (primary TV
transmission) and BPSK modulated signals (cognitive sec-
ondary transmission) [120].

The K-means algorithm is characterized by its low com-
plexity and fast convergence. However, it requires accurate
knowledge about the number of signal classes, which may
not be practical in many cases [9, 120, 124]. For example, in
many CR applications, it may be required to classify signals
belonging to an unknown number of systems, which requires
nonparametric approaches, as we will describe next [9, 119,
120].

5.1.2. The X-Means Classifier. The X-means algorithm has
been proposed as an extension of the K-means algorithm,
allowing the classifier to estimate the number of clusters from
the data itself [126]. The X-means algorithm is formulated as
an iterative K-means algorithm which computes the optimal
number of clusters that maximizes either the Bayesian infor-
mation criterion (BIC) or Akaike information criterion (AIC)
[126]. In contrast with the K-means, the X-means algorithm
assumes an unknown number of clusters, making it suitable
for nonparametric classification.

This algorithmic approach was successful in detecting
primary user emulation (PUE) attacks in CR applications,
as discussed in [120]. In this case, the signal detector can
first estimate the number of clusters X and then obtain
the different classification regions for each cluster, similar
to the K-means algorithm. Both K-means and X-means
algorithms can be implemented at low complexity. However,
they are suitable only for spherical Gaussian mixture models
[124]. In CRs, however, feature vectors can be extracted
from complex observation models which are not necessarily
Gaussian [124]. This situation can thus be addressed using
the DPMM classifier which assumes an arbitrary distribution
of the observation model but requires higher computational
complexity, compared to both X-means and K-means algo-
rithms, as we will discuss next [124]:
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The DPMM is based on the Chinese restaurant process
(CRP) which models the feature vectors as customers joining
specific tables [127]. The CRP has been previously proposed
for both feature classification and decision-making [124, 128].
In particular, [128] proposed a strategic game model based
on the CRP, which is referred to as the Chinese restaurant
game. This framework has been applied for channel access
in CR networks [128]. In this paper, on the other hand,
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we will present the CRP as an underlying framework for
nonparametric signal classification in CRs, as in [124]. This
model is formulated based on the DPMM, as discussed next.

The DPMM assumes that the feature vectors are drawn
from a mixture model such that [29, 124, 127]

G ~ DP(ay, Gy)
0,1G~G (3)

yi l 6 ~ fe,- (vi)>

where G is a realization of the Dirichlet process DP(«,, G,)
with parameters «, > 0 and a prior distribution G, [29, 124,
127]. The nonparametric nature of the DPMM stems from the
support distribution G which is drawn from a nonparametric
set of distributions according to the Dirichlet process. The
realization G ~ DP(«,, G,) is discrete and defined over an
infinite set, thus allowing for infinitely many clusters. Based
on this model, a feature vector y; is assumed to be drawn
froma distribution fy (y;), where 6; is drawn from G [29, 124].
According to this formulation, a cluster is defined as a set of
feature vectors y;’s having identical parameters 6;’s. Thus, we
define the clusters parameters ¢ s to denote the unique values
of 0;’s [29, 124, 127].

By assuming the above DPMM framework, the prob-
lem of feature classification can be formulated following a
Bayesian approach which estimates the parameters 9;’s for a
set of feature vectors {y;}\,, assuming a nonparametric prior
G ~ DP(wy, Gy) for 0;s [129, 130]. The optimal parameters 0;’s
can thus be estimated based on the maximum a posteriori
probability (MAP) criterion, which finds the parameters
0,’s maximizing the posterior distribution of f(0,,...,0y |
Yi>--->¥N) [124, 129]. However, this posterior distribution
cannot be obtained in closed form under the above DPMM
construction. Thus, stochastic simulation approaches have
been proposed to estimate 6;’s by using the Gibbs sampling
method [124,129]. By following the Gibbs sampling approach,
the DPMM-based classifier can be obtained by sampling 6;’s
from the posterior distribution 0; | {0,};,;,yy,...,yy in (2)
(29,124, 127,129, 130].

This classification algorithm has been used for signal
classification in CRs to determine the number of wireless
systems in a certain RF environment [121, 124]. It was shown
to accurately estimate the number of existing wireless systems
without any prior information about the environment. How-
ever, this algorithm requires extensive computational efforts
since it relies on an iterative Gibbs sampling process.

5.2. Reinforcement Learning Algorithms. In addition to its
ability of classifying wireless signals, a CR is assumed to
use machine learning techniques for decision-making [4, 9,
27, 29, 131-133]. This includes the ability to develop and
adapt new strategies allowing us to maximize certain perfor-
mance measures. In particular, the RL algorithms have been
proposed to achieve such unsupervised decision-making in
CRs [7, 29, 122, 123, 133-135]. The concept of RL is based
on learning from experience by trial and error [29, 118].
After executing a certain action, the learning agent receives
a certain reward showing how good it is to take a particular
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action in a certain environment state [29, 118, 122]. As a
result, the learning agent (the CR, in this case) will select
certain actions that lead to the highest rewards in a particular
state. The corresponding action selection method is based on
an exploration-exploitation strategy that selects the highest
reward action with a higher probability, compared to the
other available actions [118]. This can be usually implemented
using the e-greedy approach which selects a greedy action
with a probability 1 — € and a random action with small
probability €, thus allowing us to avoid local optima [7, 118].

The Q-learning algorithm is one of the RL algorithms that
has been proposed for CR applications [7, 118, 122]. Under a
Markov decision process (MDP) framework, the Q-learning
can lead to optimal policy, yet without knowledge of the state
transition probabilities [136, 137]. An MDP is characterized
by the following elements [7, 29, 122, 133, 137]:

(i) a finite set & of states for the agent (i.e., secondary
user);

(ii) a finite set of of actions that are available to the agent;

(iii) a nonnegative function pt(s' | s,a) denoting the
probability that the system is in state s’ at time epoch
t + 1, when the decision-maker chooses action a € &
in state s € & at time ¢;

(iv) a real-valued function rf/IDP(s, a) defined for state s €

& and action a € ¢ to denote the value at time t of
the reward received in period ¢ [137].

At each time epoch t, the agent observes the current state
s and chooses an action a. The objective is to find the optimal
policy 7 that maximizes the expected discounted return [118]:

R(t) = Zykrﬂkﬂ (St+k’ at+k) > (4)
k=0

where s, and g, are, respectively, the state and action at time
teZ.

The optimal policy of the MDP can be based on the Q-
function (or action-value function) which determines how
good it is to take a particular action a in a given state s.
Formally, the Q-function is defined as the value of taking
action a in state s under a policy 7 [118]:

Q" (s,a)=E,{R(t)|s, =s,a =a}. (5)

This function can be computed using an iterative proce-
dure as follows [7, 29, 122, 133, 136]:

Q(spa) — (1-0)Q(spa)
(6)

ta [rt+1 (St’ at) + ymaaxQ (St+1’ a)] .

The RL algorithm can be represented in the block diagram
of Figure 16 in which the learning agent receives the state
observation o, and the reward function r, at each instant
t [29, 118]. It then updates its Q-function at the learning
stage and selects an appropriate action a,. Under the MDP
assumption, the Q-learning can guarantee convergence of the
Q-function to its optimal value [136]. Thus, the optimal policy
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FIGURE 16: The RL cycle.

7t can be obtained in function of the Q-function such that
[29, 118]

argmaxQ(s,a), withPr=1-¢
a*(s)=‘| B Qe ?)

~U (), with Pr = ¢,
where U(&/) is the discrete uniform probability distribution
over the set of actions o/ and a*(s) is the optimal action
selected in state s and corresponding to the optimal policy
T

The Q-learning algorithm has been proposed for two
main CR applications:

(1) aggregate interference control [8, 122];

(2) spectrum sensing policy [7, 123].

In aggregate interference control, the Q-learning was
proposed to optimize the power transmission of secondary
CRs in a WRAN IEEE 802.22 CR network (CRN) [122]. The
objective is to maintain the aggregated interference caused by
the secondary networks to the DTV network below a certain
threshold. In this scenario, the CRs constitute a distributed
network and each radio tries to determine how much power
it can transmit so that the aggregated interference on the
primary receivers does not exceed a certain threshold level
[122]. Simulation results have shown that the Q-learning
algorithm can successfully control the aggregate interference
in a WRAN scenario [122].

On the other hand, the Q-learning algorithm has been
proposed for opportunistic spectrum access (OSA) appli-
cations to coordinate the actions of CRs in a distributed
CRN [7]. Given a set of CRs, the Q-learning can determine
the channel that should be sensed by each CR at each
time instant in order to maximize the average utilization
of idle primary channels while limiting collision among
secondary cognitive users [7]. The Q-learning algorithm was
shown to achieve near-optimal performance in such OSA
applications [7]. However, it cannot guarantee optimal policy
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for the decentralized partially observable decision-making
problem, which is considered one of the most challenging
problems for MDPs, in general [137, 138]. However, given the
limited amount of information, the Q-learning algorithm can
be considered as one of the most effective low-complexity
approaches for distributed partially observable decision-
making scenarios [7, 122, 133].

6. Conclusion

This paper presented a review of three major front-end CR
elements: the RF part, spectrum sensing, and machine learn-
ing. For the RF part, three types of antennas were presented:
UWB antennas, used for spectrum sensing, frequency-
reconfigurable/tunable antennas for communicating over
white spaces (also for sequential channel sensing), and UWB
antennas with reconfigurable band notches for overlay UWB
CR. Also for the RF part, it was shown that the main design
challenges are those pertaining to the ADCs/DACs, dynamic
range, LNAs, filters, mixers, and synthesizers. Sophisticated
spectrum sensing algorithms that overcome the challenges
resulting from the adaptive behavior of CR transceivers need
to be developed to relax RF designs and provide accurate
decisions. A CE executes actions based on certain rules
and policies that are learnt from past experience. With
the growing complexity of the current wireless networks,
more sophisticated learning algorithms should be developed,
taking into account the heterogeneous structure of existing
and future communication networks.
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