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Down-looking MIMO array SAR can reconstruct 3D images of the observed area in the inferior of the platform of the SAR
and has wide application prospects. In this paper, a new strategy based on Bayesian compressive sensing theory is proposed for
down-looking MIMO array SAR imaging, which transforms the cross-track imaging process of down-looking MIMO array SAR
into the problem of sparse signal reconstruction from noisy measurements. Due to account for additive noise encountered in the
measurement process, high quality image can be achieved. Simulation results indicate that the proposedmethod can provide better
resolution and lower sidelobes compared to the conventional method.

1. Introduction

Traditional synthetic aperture radar (SAR) is a microwave
sensor which can reconstruct two-dimensional (2D) images
of the observed area with weather independence and all-day
operation capabilities [1, 2]. However, traditional 2D SAR
works in side-looking mode and often meets with shading
and lay over effects in urban and mountain areas. Compared
with 2D SAR, 3D SAR has distinct advantage in estimation of
forest height, 3D digital maps, complex terrain mapping, and
so on.Multibaseline SAR tomography is an advanced 3D SAR
imaging mode, which forms an additional synthetic aperture
in the height direction. Therefore, it has resolving capability
along this dimension. Unfortunately, for the current SAR
tomography, it is almost impossible to avoid an uneven track
distribution in repeat-pass data acquisition, which is just the
main reason for the strong ambiguity in height [3, 4].

Down-looking array SAR is an innovative imaging
mode, which obtains range resolution by pulse compres-
sion, azimuth resolution by virtual aperture synthesis with
platform movement, and cross-track resolution by a linear
array antenna [5–7]. Down-looking array SAR can overcome
restrictions of shading and lay over effects in side-looking
SAR and also avoid the height ambiguity problem in SAR

tomography caused by the uneven track distribution. How-
ever, in order to avoid the grating lobe effect in the cross-track
direction, a large number of antenna elements are required,
which increase the cost and complexity of the equipment.
Therefore, multiple-input-multiple-output (MIMO) antenna
array is often used in down-looking array SAR, which can
reduce the number of real antenna elements largely for a given
size of antenna array [8–10]. The common methods used for
down-looking MIMO array SAR imaging are usually based
on matched filter, which often suffer from low resolution and
high sidelobe interference in the images [7, 8]. Moreover, the
cross-track resolution is limited by the length of linear array.
Hence, high resolution imaging algorithms are desired.

In recent years, Bayesian compressive sensing (BCS) has
caused widespread concern, showing significant advantages
to sparse signal reconstruction [11]. BCS methods provide
certain improvements compared with norm-based CS meth-
ods in low noise level, by exploiting the sparseness prior
distribution of the image scene. In addition, the Bayesian
framework takes into account the additive noise encountered
when implementing compressed sampling. Therefore, some
BCS based methods for SAR applications have been con-
cerned about recently [12, 13]. As the 3D illuminated scene
contains only a very small strong scattering centers compared
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Figure 1: Geometry of down-looking MIMO array SAR.

with the total space cells, representing strong spatial sparsity
in high frequency radar application, we propose a new 3D
imaging algorithm for down-lookingMIMOarray SARbased
on BCS.

The rest of the paper is organized as follows. Section 2
presents the geometry and principle of down-lookingMIMO
array SAR system. In Section 3, a new 3D imaging algorithm
for down-looking MIMO array SAR is described in detail.
The performance of the method is investigated in Section 4.
Finally, Section 5 gives a brief conclusion.

2. Down-Looking MIMO Array SAR

2.1. Geometrical Model. The geometry of down-looking
MIMO array SAR is shown in Figure 1. 𝑥, 𝑦, and 𝑟 denote the
azimuth, cross-track, and slant range direction, respectively.
The radar platform flies along the 𝑥-axis corresponding to
azimuth direction, with velocity V at height 𝐻. The thinned
linear antenna array, which contains𝑀 transmitting antenna
elements and 𝑁 receiving antenna elements, is mounted in
the cross-track direction along the wings. The transmitting
antenna elements are located at the tips with the distance 𝑑,
the receiving antenna elements are centered at the𝑦-axis with
spacing 𝑀𝑑/2, and the distance between the transmitting
and receiving antenna elements is 𝑑/2. The thinned linear
antenna array works in the time division mode. Each time,
only one transmitting antenna element transmits signal and
all the receiving antenna elements receive echo simultane-
ously. The transmitting antenna elements work sequentially
and an aperture synthesis period is acquired until all the
transmitting antenna elements have worked once. According
to the principle of equivalent phase center, the thinned linear
array formed by the above positions and work mode is equal
to a fully distributed virtual uniform linear array [5, 10]. The
virtual antenna array is composed of 𝑀𝑁 virtual elements
and works in self-transmitting and receiving mode. That is
to say, each virtual antenna element transmits and receives
signal by itself. These virtual antenna elements are uniform
distributed along the wings and centered at the 𝑦-axis. Each
virtual antenna element is located at the mean position of a
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Figure 2: Transmitting and receiving order of down-lookingMIMO
array SAR.

real single transmitting element and a real single receiving
element, and the distance between individual virtual antenna
elements is 𝑑/2. Figure 2 shows the transmitting and the
receiving order of each antenna element for a down-looking
MIMO array SAR.

2.2. Equivalent Phase Error Compensation. Consider the data
acquisition shown in Figure 1. At the slow time 𝑡

𝑚
, the

position of the 𝑖th transmitting antenna element is given by
(𝑥, 𝑦
𝑇𝑖
, 𝐻), where 𝑥 = V𝑡

𝑚
is the azimuth position, and 𝑦

𝑇𝑖

is the cross-track position of the 𝑖th transmitting antenna
element. The position of the 𝑗th receiving antenna element
is given by (𝑥, 𝑦

𝑅𝑗
, 𝐻), where 𝑦

𝑅𝑗
is the cross-track position

of the 𝑗th receiving antenna element. For a point scatterer
𝑃 positioned at (𝑥

𝑝
, 𝑦
𝑝
, 𝑧
𝑝
), the transmitting and receiving

paths 𝑅
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Then the complete travelling path of the wave from the 𝑖th
transmitting antenna element to point scatterer 𝑃 to the 𝑗th
receiving antenna element is given by

𝑅
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From (2) we can get that the complete travelling path contains
two square roots, which will lead to complex computation for
the following imaging process. According to the principle of
equivalent phase center, the above complete travelling path
can be equal to the dual echo paths from the virtual antenna
element located at 𝑦 = (𝑦

𝑇𝑖
+ 𝑦
𝑅𝑗
)/2 to point scatterer 𝑃 [5].

And the equivalent echo path can be written as
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(4)

Then, the phase difference between the virtual antenna
element and the reality antenna element is given by
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(5)

When the scatterers are located at the far field, the
phase difference Δ𝜑 is approximate to zero. Otherwise, the
phase compensation should be implemented before the image
processing. From (5) it can be seen that the compensated
phase varies with 𝑅

𝑝
; in practice we use the center of view

field as reference point to compensate the whole view field.
Furthermore, the down-lookingMIMO array SAR works

in the time division mode and the virtual antenna elements
obtained from different pulse repetition period are not in a
straight line with the movement of the platform. Therefore,
in order to obtain a fully distributed virtual uniform linear
array, the motion compensation should be implemented.The
compensated phase caused by the overtake or lag phases
owing to the position difference of the antenna elements is
given by
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𝑙 = 1, 2, . . . , 𝐿; 𝑘 = 1, 2, . . . ,𝑀,

(6)

where 𝐿 is the azimuth sample number and Δ𝑥
𝑘
is the move

spacing between the 𝑘th and the first transmitting antenna
element in the azimuth direction. V is the velocity of the
platform and PRF is the pulse repetition frequency.

After the process above, the collected data of down-
looking MIMO array SAR can be regarded as received by the
fully distributed virtual linear array.

3. Three-Dimensional Imaging Algorithm for
Down-Looking MIMO Array SAR

Based on the principle of equivalent phase center, the thinned
linear array formed by the time division mode can be
equal to a virtual linear array, and each virtual antenna
element transmits and receives signal by itself. The linear
frequency modulated pulse signal transmitted by the 𝑚th
virtual antenna element is given by

𝑠 (�̂�) = rect( �̂�
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𝑟
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where �̂� denotes the fast time, 𝑇
𝑟
denotes the pulse width, 𝑓

𝑐

is the carrier frequency, 𝛾 is the chirp rate, and rect(⋅) is the
unit rectangular function.

For an arbitrary point scatterer positioned at
𝑃(𝑥
𝑝
, 𝑦
𝑝
, 𝑧
𝑝
), the echo signal received by the 𝑚th virtual

antenna element can be expressed as
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where 𝜏 denotes the azimuth time, 𝜏
𝑝

= 𝑥
𝑝
/V is the azimuth

time of the point scatterer 𝑃, 𝑐 is the light velocity, 𝑇
𝑎

is the observing duration, 𝜆 is the wavelength, and 𝑅 is
the instantaneous distance between the 𝑚th virtual antenna
element and the point scatterer
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where 𝑅
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and 𝑦

𝑚
is the cross-track

position of the 𝑚th virtual antenna element.

3.1. Range Compression. Transform the signal expressed in
(8) into the range frequency domain
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where 𝑓
𝑟
is range frequency.
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The matched filter function for the range compression is
given by

𝐻
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After the range compression, the received signal can be
written as
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3.2. Azimuth Compression. From (9) and (12) we get that the
distance between the antenna element and the scatterer varies
with the azimuth position of the radar platform, which leads
to the coupling of the envelope in the range-azimuth plane.
Therefore, the range migration in the azimuth direction
should be removed first before the azimuth compression.
And the correction function for the range migration can be
derived from (9)
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Transform the signal expressed in (12) to the range
frequency domain and correct the range migration using
𝐻
2
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, 𝜏).Then, after the range inverse Fourier transform, the

signal becomes

𝑠
3
(�̂�, 𝜏, 𝑦

𝑚
) = rect(

𝜏 − 𝜏
𝑝

𝑇
𝑎

) sinc [𝑇
𝑟
𝛾 (�̂� −

2𝑅
𝑐

𝑐

)]

× exp(−𝑗

4𝜋𝑅
𝑝

𝜆

) ⋅ exp[

[

−𝑗

2𝜋V2(𝜏 − 𝜏
𝑝
)

2

𝜆𝑅
𝑝

]

]

× exp[−𝑗

2𝜋 (𝑦
2

𝑚
− 2𝑦
𝑚
𝑦
𝑝
)

𝜆𝑅
𝑝

] ,

(14)
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An azimuth Fourier transform is then performed on each
range gate to transform the data into the range time-azimuth
frequency domain, and the signal becomes
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the azimuth matched filter function 𝐻
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Then, we get the azimuth compressed signal by performing
inverse Fourier transform in the azimuth direction
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3.3. Cross-Track Compression. From (17) it can be seen that
the distance between the antenna element and the scatterer
also varies with the cross-track position of the antenna
element. Therefore, the range migration in the cross-track
direction should be removed before the cross-track compres-
sion. And the amount of the range migration to be corrected
can be given by (9)
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Transform the signal expressed in (17) into the range
frequency domain, and correct the range migration in the
range frequency domain. Then the signal becomes

𝑠
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The first phase term in (19) represents a quadratic distortion,
which can be compensated by
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In high frequency radar application, the interest scene
can be modeled by a limited number of strong scattering
centers reflecting impinging electromagnetic waves isotrop-
ically to all receivers, representing strong spatial sparsity [14].
Therefore, the cross-track imaging process of down-looking
MIMO array SAR can be transformed into the problem of
sparse signal reconstruction from noisy measurements. After
the 2D imaging process in the range and azimuth directions,
the signal in the range-azimuth cell corresponding to (�̂� =

2𝑅
𝑝
/𝑐, 𝜏 = 𝜏

𝑝
) by neglecting the constant phase term of (19)

can be written as
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where 𝜎
𝑝
(�̂�, 𝜏) and 𝑓

𝑝
= 2𝑦

𝑝
/𝜆𝑅
𝑝
denote the backward

scattering coefficient and the frequency of the 𝑝th point
scatterer, respectively.

For numerical analysis, (21) can be described by discrete
system model
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𝑇 is the
signal vector corresponding to the 𝑀𝑁 virtual antenna
elements, 𝜎 = [𝜎
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𝑇is the complex-
valued scatter coefficient vector in the cross-track direction,
and the matrixΦ can be constructed as
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(24)

where (⋅)
𝑇 represents the transpose operation.

In the more realistic case some noise is added on the
measurements

s = Φ𝜎 + n (25)

with n a complex Gaussian vector with zero mean and power
𝜎
2

𝑛
.
Then, the Bayesian compressive sensing method is

employed to estimate the 𝜎. From the aspect of denoising,
Laplace distribution is often used as the sparseness prior [15].
Hence, the probability distribution function of 𝜎 can be given
by

𝑝 (𝜎 | 𝜎
𝛿
) =

𝑃

∏

𝑖=1

𝑝 (𝜎
𝑖
| 𝜎
𝛿
)

=

𝑃

∏

𝑖=1

1

√2𝜎
𝛿

exp(−

√2𝜎
𝑖

𝜎
𝛿

) ,

(26)

where 𝜎
𝛿
is the scale parameter of the Laplace distribution.

And the probability density function of Gaussian noise n
is given by

𝑝 (n | 𝜎
2

𝑛
) = (

1

2𝜋𝜎
2

𝑛

)

𝑀𝑁

exp(−

‖n‖2
2

2𝜎
2

𝑛

) , (27)

where ‖ ⋅ ‖
2

2
denotes the 𝑙

2
norm.

Therefore, the likelihood function of the received data s is

𝑝 (s | 𝜎, 𝜎
2

𝑛
) = (

1

2𝜋𝜎
2

𝑛

)

𝑀𝑁

exp{−

‖s −Φ𝜎‖
2

2

2𝜎
2

𝑛

} . (28)

Based on Bayesian theory, the maximum a posteriori
(MAP) estimator is used to estimate 𝜎 as

�̂� = argmax [𝑝 (𝜎 | s)]

= argmax [𝑝 (s | 𝜎, 𝜎
2

𝑛
) ⋅ 𝑝 (𝜎 | 𝜎

𝛿
)] .

(29)

Apparently, the MAP solution of 𝜎 can be estimated by
maximizing the log posterior of 𝜎 as

�̂� = arg max 𝐽 (𝜎)

= argmax [ln𝑝 (s | 𝜎, 𝜎
2

𝑛
) + ln𝑝 (𝜎 | 𝜎

𝛿
)]

= argmax[−

1

2𝜎
2

𝑛

‖s −Φ𝜎‖
2

2
−

√2

𝜎
𝛿

𝑃

∑

𝑖=1

𝜎
𝑖
]

= argmin [‖s −Φ𝜎‖
2

2
+ 𝜇‖𝜎‖

1
] ,

(30)

where 𝜇 = 2√2𝜎
2

𝑛
/𝜎
𝛿
.

Then, the quasi-Newton iterative method with Hessian
update scheme is used to solve the optimization problem [16].
The gradient of the objective function 𝐽(𝜎)with respect to 𝜎
is given by

∇𝐽 (𝜎) = �̃� (𝜎)𝜎 − 2Φ
𝐻s, (31)

where

�̃� (𝜎) = 2Φ
𝐻

Φ + 𝜇Λ (𝜎) ,

Λ (𝜎) = diag {(




(𝜎)
𝑖






2

+ 𝜀)

−1/2

} .

(32)

Here �̃�(𝜎) is used as an approximation to the Hessian,
and 𝜎 can be obtained from the following quasi-Newton
iteration:

�̂�
(𝑛+1)

= �̂�
(𝑛)

− 𝛾[�̃� (�̂�
(𝑛)

)]

−1

∇𝐽 (�̂�
(𝑛)

) , (33)

where 𝛾 is the step size. After substituting (31) into (33), we
obtain the following iterative algorithm:

�̃� (�̂�
(𝑛)

) �̂�
(𝑛+1)

= (1 − 𝛾) �̃� (�̂�
(𝑛)

) �̂�
(𝑛)

+ 2𝛾Φ
𝐻s. (34)

The iteration is stopped when ‖�̂�
(𝑛+1)

− �̂�
(𝑛)

‖

2

2
< 𝜁, where 𝜁 is

a small positive constant.
Then, the 3D image of down-looking MIMO array SAR

can be obtained until all the range-azimuth cells have been
processed using the same procedure.

In conclusion, the 3D imaging processing flow of the
proposed method for down-looking MIMO array SAR can
be shown in Figure 3.

3.4. Estimation of the Parameters 𝜎2
𝑛
and 𝜎
𝛿
. It is clear that the

imaging performance of the proposed method is related to
the correct selection of the noise level 𝜎2

𝑛
.Therefore, the noise

level must be estimated accurately. Because the noise always
distributes evenly and there are many range cells containing
noise only in down-looking SAR imaging, the noise level
estimation is available by setting an energy-based threshold
to select the noise cells [17]. The threshold is given by

thres = 𝐸
𝑚

+ [

𝑃𝑄

∑

𝑖=1

(𝐸
𝑖
− 𝐸
𝑚
)
2

𝑃𝑄

]

1/2

, (35)
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Figure 3: The flowchart of proposed method for down-looking MIMO array SAR imaging.

where 𝐸
𝑖
is the energy of the 𝑖th range cell and 𝐸

𝑚
denotes

the mean energy of all range cells. If the energy of a range cell
is below the threshold, this range cell is selected as noise cell.
Then, the energy of all the selected cells can be used as the
noise level 𝜎2

𝑛
.

In addition, the maximum likelihood estimate method
is used to choose the objective statistical parameter 𝜎

𝛿
.

According to (26), the log-likelihood function for the Laplace
distribution can be written as

ℓ (𝜎
𝛿
| 𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑃
) = −𝑃 ln√2𝜎

𝛿
−

𝑃

∑

𝑖=1

√2𝜎
𝑖

𝜎
𝛿

. (36)

Maximizing the log likelihood function (36) with respect to
𝜎
𝛿
produces the following equation:

�̂�
𝛿
=

1

𝑃

𝑃

∑

𝑖=1

√2𝜎
𝑖
. (37)

From (37) it is clear that we can average the estimates of
all pixel values to obtain the estimation of the statistical
parameter 𝜎

𝛿
.

Table 1: Parameters used for simulation.

Parameter Value
Carrier frequency 37.5 GHz
Pulse bandwidth 300MHz
Pulse repetition frequency 1024Hz
Chirp duration 1.0 𝜇s
Radar height 500m
Radar velocity 50m/s
Number of transmitting antenna elements 4
Number of receiving antenna elements 32
Azimuth resolution 0.4m
Range resolution 0.5m
Cross-track resolution 0.4m

4. Simulation Results

In this section, point target simulation is carried out to verify
the validity of the proposed imaging algorithm. The main
parameters used for simulation are listed in Table 1.

Suppose that there are five point targets located at the
scene with the azimuth-range-cross track values equal to (0,
485, 0), (8, 495, 20), (8, 495, −20), (−8, 495, 20), and (−8,
495, −20), respectively. The distributions of the five point
targets are shown in Figure 4(a). After raw data generation
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Figure 4: Real spatial position and final 3D image.

400
440

480
520

560
0

10
20
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Range (m)

Cross-track (m)

N
or

m
al

iz
ed

 am
pl

itu
de

440
480

520
560

0
10

0

(m)

Cross-track
−10

−20

(a) Selected range-cross track section

5 15
25

0
510

0

0.2

0.4

0.6

0.8

1

Cross-track (m)Azimuth (m)

N
or

m
al

iz
ed

 

5 150
50

)Azi −5 −5
−10 −25 −15

am
pl

itu
de

(b) Selected azimuth-cross track section

400
450

500
5500

10
0

0.5

1

Range (m)
Azimuth (m)

450
500

5500im
−10

N
or

m
al

iz
ed

 
am

pl
itu

de

(c) Selected azimuth-range section

Figure 5: 2D image of selected sections.

and 3D imaging processing by using the proposed algorithm,
the surfaces of the final 3D image are plotted at −20 dB in
Figure 4(b). As expected, the image is reconstructed in 3D
space, and the whole space structure is very consistent with
the real situation in Figure 4(a). Figure 5 shows three selected
sections of the final 3D image of down-looking MIMO array
SAR. Figure 5(a) shows the 2D image of the selected range-
cross track section corresponding to azimuth position 8m.
Figure 5(b) shows the 2D image of the selected azimuth-
cross track section corresponding to range position 495m.

Figure 5(c) shows the 2D image of the selected azimuth-
range section corresponding to cross-track position −20m.
The below imaging results show that the point scatterers are
well focused in three directions, confirming the validity of the
proposed algorithm.

In order to analyze the performance of the proposed
method, the imaging result obtained by Fourier transform
is given for comparison. Supposed that there are two targets
located at the azimuth-range-cross track unit of (8, 0.18, 495)
and (8, −0.18, 495). Figure 6(a) shows the range-cross track



8 International Journal of Antennas and Propagation

490

495

500

012

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 am
pl

itu
de

Cross-track (m)
−1

Range (m
)

(a) Imaging result obtained by Fourier transform

490

495

500

0
12

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 am
pl

itu
de

Cross-track (m)
−1

Range (m
)

(b) Imaging result obtained by proposed method

Figure 6: Comparison of the range-cross track imaging results of down-looking MIMO array SAR.
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Figure 7: Comparison of the cross-track distribution obtained by Fourier transform and the proposed method.

reconstruction result obtained by Fourier transform, and
Figure 6(b) shows the range-cross track reconstruction result
obtained by the proposedmethod.As the cross-track distance
of the two targets is 0.36m, which is less than the cross-track
resolution of 0.4m, the two targets can not be distinguished
in the image obtained by Fourier based method. However,
the proposed method can improve the spatial resolution and
distinguish the two targets clearly.

In the following experiment, we take into account two
targets located at the same azimuth and range positions and
with the cross-track values equal to −2m and 2m, respec-
tively. Moreover, additional Gaussian distributed complex
noise is added to generate measurements with SNR of 5 dB.
Figures 7(a) and 7(b) show the cross-track distribution of the
two targets obtained by Fourier transform and the proposed
method, respectively. By comparing the imaging results, it can
be seen that the proposedmethod ismore robust to noise and

it recovers target image together with suppressing the noise
components.

5. Conclusions

Down-looking MIMO array SAR can reconstruct 3D images
of the observed area and overcome restrictions of shading
and lay over effects in side-looking SAR. Therefore, down-
looking MIMO array SAR has challenging potential for 3D
digital maps, complex terrain mapping, and so on. However,
the cross-track resolution of down-lookingMIMO array SAR
is limited by the length of linear array. In this paper, a novel
3D imaging strategy is proposed for down-looking MIMO
array SAR. Exploiting the spatial sparsity of the interest
scene, we transform the cross-track imaging process of down-
looking MIMO array SAR into the problem of sparse signal
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reconstruction fromnoisymeasurements. Raw data of down-
lookingMIMOarray SAR inKa-band is simulated and the 3D
image is achieved. The results of the simulated data confirm
the effectiveness of the proposed method.
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