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In view of the fact that the traditional genetic algorithm easily falls into local optimum in the late iterations, an improved chaos
genetic algorithm employed chaos theory and genetic algorithm is presented to optimize the low side-lobe for T-shaped MIMO
radar antenna array. The novel two-dimension Cat chaotic map has been put forward to produce its initial population, improving
the diversity of individuals. The improved Tent map is presented for groups of individuals of a generation with chaos disturbance.
Improved chaotic genetic algorithm optimization model is established. The algorithm presented in this paper not only improved
the search precision, but also avoids effectively the problem of local convergence and prematurity. For MIMO radar, the improved
chaos genetic algorithm proposed in this paper obtains lower side-lobe level through optimizing the exciting current amplitude.
Simulation results show that the algorithm is feasible and effective. Its performance is superior to the traditional genetic algorithm.

1. Introduction

With the development of the MIMO communication tech-
nology, people put forward the concept of MIMO radar.
MIMO radar antenna array pattern synthesis and optimiza-
tion directly affect the performance of the whole radar system
and performance. Low side-lobe optimization of antenna
array is a typical multidimensional nonlinear optimization
problem. In the given antenna array shape, number, and
spacing of the premise, how to choose the feeding current
amplitude and phase appropriately to minimize the peak
side-lobe level is an important subject in the antenna array
integrated.

In recent years, some intelligent optimization algorithm is
more andmore widely used in the antenna array pattern syn-
thesis, such as neural network, quasi-Newton method, con-
jugate gradient method, simulated annealing, immune algo-
rithm, and genetic algorithm, [1–8]. In addition, the method
ofWoodward, Dolph-Chebyshev polynomial method, Taylor
method, Schelkunoff polynomial method, and so forth [9–
11], only for uniform linear array and the same direction
and spacing of the rectangular array, can realize low side-
lobe pattern, but their application is quite limited. In [12–
17], the genetic algorithm with its excellent global search

ability has been successfully widely applied in sparse antenna
array, reducing the maximum side-lobe level and controlling
array element position, phase, and amplitude of exciting
current antenna array pattern synthesis. In [18–21], the GA
was customized for adjusting the weight coefficients and the
antenna positions simultaneously. But it can fall into local
optimum easily.

Chaos initial value sensitivity, ergodicity, and regularity
can be used for the optimization problem. It cannot only
search efficiently but also avoid falling into local optimum.
In recent years, many scholars put chaotic systems into the
genetic algorithmand the optimization ability of genetic algo-
rithm was improved greatly. In [22], the genetic algorithm
using Logistic model to generate chaos sequence as initial
population or add to the chaos in the mutation random
disturbance, the algorithm performance is improved, but
there are the big search for the blind area and the slow
convergence speed. In [23], the probability density of chaotic
sequence produced by Logistic mapping is in obedience to
Chebyshev distribution which is seriously affect the global
search ability and efficiency.

This paper puts forward the improved chaos genetic
algorithm for T-shaped MIMO radar antenna array which
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has 𝑀 transmitting elements and 𝑁 receiving elements to
optimize the feeding current amplitude (see Figure 4). Novel
two-dimension Cat chaotic mapping has been proposed.
We improve the Tent map and present the improved chaos
genetic algorithm to reduce the side-lobe level of antenna
array. The novel algorithm effectively solves the design
problems of MIMO radar antenna pattern synthesis in low
side-lobe level. The simulation results verify the effectiveness
of the algorithm.The improved chaotic genetic algorithm has
a good application prospect to solve the problem of antenna
array.

2. Analysis for T-Shaped MIMO Radar
Antenna Array Pattern

Consider a MIMO radar antenna array, which consists of 𝑀

transmitting antenna and 𝑁 receiving antenna evenly placed
into T-shaped array (see as Figure 1).

The array element position, respectively, is described as
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MIMO radar antenna pattern [24] can be equivalent to
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where 𝑘 = 2𝜋/𝜆 and the coordinates of the 𝑖th transmitting
and receiving array element can be written as (𝑟

𝑇𝑖𝑥
, 𝑟
𝑇𝑖𝑦

) and
(𝑟
𝑅𝑖𝑥

, 𝑟
𝑅𝑖𝑦

). The normalized current amplitudes are 𝐼
𝑇𝑚

and
𝐼
𝑅𝑛
, where 𝑢 = sin 𝜃 cos𝜑, V = sin 𝜃 sin𝜑, 𝜃 and 𝜑 denote

the angle between the direction of array antenna far-field
radiation plane wave and the normal direction of the array,
and ⊗ denotes Kronecker product. We suppose that element
spacing is 𝑑

𝑥
= 𝑑
𝑦
. Equation (2) can be described as
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3. Improved Chaos Genetic Algorithm

3.1. Improved Tent Map. Tent map is a piecewise linear one-
dimensional mapping. The mathematical expression can be
written as

𝑥
𝑛+1

= 𝛼 − 1 − 𝛼
󵄨󵄨󵄨󵄨𝑥𝑛

󵄨󵄨󵄨󵄨 , 𝛼 ∈ [1, 2] . (4)

When 𝛼 = 2, Tent map is known as the center Tent map.
The expression of Tent map is defined by (5), whose variant
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Figure 1: Distribution of T-shaped MIMO radar antenna array.

through Bernoulli shift transformation is shown by (6) [25].
Consider
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Notice that (6) can be compressed into one represen-
tation; that is, 𝑥

𝑘+1
= (2𝑥

𝑘
)mod1. We deployed random

equation to improve Tent map. The chaos expression can be
written as

𝑥
𝑘+1

= (2 ∗ 𝑥
𝑘
) mod 1 + 𝜌, 𝜌 ∈ (0, 0.1) . (7)

Under the disturbance of random equation, Tent map can
reachieve into the chaotic state at small cycle point or fixed
point to enhance the ergodicity that can be better able
to achieve global chaos optimization. Improved Tent map
chaotic state distribution is shown as Figure 2.

3.2. The Cat Map. Two-dimensional Cat map [26], which is
well-performing uniformity traversal, not easy to fall into the
pulmonary circulation and fixed point, is introduced to chaos
genetic algorithm. Two-dimensional Catmapping equation is
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That can be written as matrix form

[
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where 𝑥 mod 1 = 𝑥 − [𝑥], 𝐶 = [
1 1

1 2
]. “Mod” represents

modulus after division. The two Lyapunov indexes of Cat
mapping are

𝐿
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2
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2
) < 0. (10)
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Figure 2: The chaos state of improved Tent mapping.
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Figure 3: Two kinds of iterative distribution of mapping.

Thus the Cat map has the characteristics of chaotic. Figure 3
presents iterative distribution of improved Tent and Cat
mapping.

We can see the Tent map and the Cat map are well
distributed from Figure 3. The chaotic sequence is affected
by the computer finite word length and accuracy. It can fall
into a cycle quickly and converge after iteration. So the two
chaotic sequences are suitable to generate initial population
for genetic algorithm.

3.3. T-Shaped MIMO Radar Antenna Array Pattern Opti-
mization Based on the Improved Chaotic Genetic Algorithm.
This paper proposed used the Cat map to generate initial
population and joined the chaotic disturbance using the
improved Tent map. Chaos disturbance should be employed
to individual of a generation, which is equal to conducting
chaotic mutation to gene to reduce the evolving algebra
of genetic algorithm. This can increase the diversity of the

population and is likely to produce better gene sequences.
It can not only improve search accuracy and speed, but
also avoids effectively the problem of local convergence and
prematurity of genetic algorithm.

We suppose corresponding relations between algorithm
and antenna array parameters. Consider a MIMO radar
antenna array consisting of 𝑀 transmitting antenna elements
symmetrically distributed in 𝑋 axis and 𝑁 receiving antenna
elements symmetrically distributed in 𝑌 axis. The array
element spacing, respectively, is 𝑑

𝑥
, 𝑑
𝑦
. The variables to be

optimized 𝐼
𝑡
, 𝐼
𝑟
are exciting current amplitude of transceiver

array elements. Minimize the side-lobe level of T-shaped
MIMO radar antenna as the optimization goal to achieve
optimal array element excitation current amplitude.

Step 1 (generate initial population and encode). The initial
population ⃗𝐼(0) is generated randomly using (7) with 𝑖 = 0.
The chromosome 𝐼 = [𝐼

𝑡
, 𝐼
𝑟
] = [𝐼

1
, 𝐼
2
, . . . 𝐼
𝑀

, 𝐼
𝑀+1

, 𝐼
𝑀+2

,

. . . 𝐼
𝑀+𝑁

] is made up together using real encoding, which
is employed to the transmitting and receiving arrays of
MIMO radar antenna. 𝑃 denotes the size of each population.
𝑝
𝑐
denotes the crossover probability and 𝑝

𝑚
denotes the

mutation probability.

Step 2 (calculate the fitness value). Fitness function is used
to measure each chromosome whether or not it can be
better inheritance to the next generation. In order to reduce
the side-lobe level of antenna array, we choose the fitness
function as follows:

𝑓 = 0.5𝑓
1
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2
,

𝑓
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2
]
−1/2

,

(11)

where BW is the main-lobe beam-width after optimization
and BW

𝑤
is the expected main-lobe beam-width. 𝑓

2
rep-

resents the root-mean-square deviation of the maximum
relative side-lobe level and the preset value −30 dB. 𝑝 is the
sampling points in side-lobe area. Calculate the fitness value
of every individual in the population. The larger the fitness
value, the easier the inheritance to the next generation. The
ideal optimal value of the fitness function 𝑓 is 1.

Step 3 (judgment). Determine whether it is in line with
the termination condition. If they meet the termination
condition, computer could end the algorithm. Then, the
system could findout the best individual from the population.
Then jump to Step 4.

Step 4 (selection). According to the fitness value of each
individual, we adopt the roulette method to select some
excellent individuals from the 𝑖th generation of ⃗𝐼(𝑖) to ⃗𝐼(𝑖 + 1)

and generate new individuals instead of those which are not
chosen.

Step 5 (crossing). The individuals of ⃗𝐼(𝑖) match in pairs
randomly. And then they replace the parent individuals with
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Figure 4: Flow chart for CGA processing.

crossover probability 𝑝
𝑐
to restructure and generate new

individuals.

Step 6 (mutation). Each individual in ⃗𝐼(𝑖) changes one
or some genes with mutation probability 𝑝

𝑚
and selected

effective coding randomly instead of redundant code.

Step 7 (individuals whose fitness value is in the top 10%
of mutated population ⃗𝐼(𝑖) do not do chaotic disturbance).
But they will participate in the next genetic manipulation.
Another 90% of the individuals do chaos disturbance. Using
the iterative formula (7), we can calculate the chaotic vector
𝐼
𝑖

󸀠(𝑘) after 𝑘 iterations, where 𝑘 is used to identify the number
of iterations in chaotic sequence.

Step 8. Screen vectors after chaotic disturbance and calculate
the new fitness value 𝑓

󸀠.

Step 9. Judge the convergence of the fitness value of popu-
lation ⃗𝐼(𝑖). If the computational result is convergent or the

iteration number is equal to the designedmaximum iteration
number, the algorithmwill be terminated and output the best
solution; else, jump to Step 4.

4. Simulated Results and Discussion

For a T-shaped MIMO radar antenna array with 𝑑 = 1.2𝜆,
𝑀 = 𝑁 = 10, we request the main-lobe point at 𝜃 = 0

∘

and the feed phase of each transmitting and receiving array
is 0. We optimize array element excitation current amplitude
of transceiver antenna using the improved chaos genetic
algorithm in this paper. Under the condition of expected
main-lobe beam-width, we can get side-lobe level as low as
possible.We set parameters𝑃 = 100,𝑝

𝑐
= 0.8, and𝑝

𝑚
= 0.05.

Iteration step is 100. The expected main lobe beam-width is
10
∘. Figure 5 presents the normalized pattern of antenna array

before and after optimization using algorithm in this paper
(CGA) and the traditional genetic algorithm (GA). The two
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Table 1: Simulation results of the algorithms.

Algorithm Average of SLL (dB) Average fitness Best case of SLL (dB) Worst case of SLL (dB)
GA −33.7 0.84 −39.6 −30.7

CGA −41.5 0.97 −50.8 −38.2
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Figure 5: The normalized pattern used improved chaotic genetic
algorithm and the traditional genetic algorithm.

algorithms can satisfy the main-lobe beam-width with 10
∘.

The maximum relative side-lobe level is −33 dB and the first
side-lobe level is −50 dB using GA. The maximum relative
side-lobe level is −43 dB and the first side-lobe level is −55 dB
using CGA, which is much better than the corresponding
values using GA. Figure 6 shows the convergence curves of
objective function of the two algorithms.

In order to analyze the optimization effect for the side-
lobe levels (SLL) by the algorithms, 50 simulations have
been done by GA and CGA, respectively. The results of the
simulations are listed in Table 1. From Table 1, we can see
that the CGA result of the average of SLL (−41.5 dB) is lower
than that of GA (−33.7 dB). So the algorithm in this paper is
superior to the traditional genetic algorithm.

5. Conclusion

In this paper, a new improved chaos genetic algorithm is
presented and applied to synthesize T-shaped MIMO radar
array antenna pattern by controlling array element excitation
current amplitudes. An improved Tent map and a novel two-
dimension Cat chaotic mapping have been put forward. We
present the improved chaos genetic algorithm to reduce the
maximum relative side-lobe level of antenna array. The novel
algorithm effectively solves the design problems of MIMO
radar antenna pattern synthesis in low side-lobe level. The
simulation results verify the feasibility and effectiveness of the
algorithm and make comparison with the traditional genetic
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Figure 6: The convergence curves of objective function.

algorithm. From the simulation results we can see that the
algorithm in this paper is superior to the traditional genetic
algorithm. The improved chaotic genetic algorithm has a
good application prospect to solve the problem of antenna
array.
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