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Widely distributed radar network architectures can provide significant performance improvement for target detection and
localization. For a fixed radar network, the achievable target detection performance may go beyond a predetermined threshold
with full transmitted power allocation, which is extremely vulnerable in modern electronic warfare. In this paper, we study the
problem of low probability of intercept (LPI) design for radar network and propose two novel LPI optimization schemes based on
information-theoretic criteria. For a predefined threshold of target detection, Schleher intercept factor is minimized by optimizing
transmission power allocation among netted radars in the network. Due to the lack of analytical closed-form expression for receiver
operation characteristics (ROC), we employ two information-theoretic criteria, namely, Bhattacharyya distance and J-divergence
as the metrics for target detection performance. The resulting nonconvex and nonlinear LPI optimization problems associated
with different information-theoretic criteria are cast under a unified framework, and the nonlinear programming based genetic
algorithm (NPGA) is used to tackle the optimization problems in the framework. Numerical simulations demonstrate that our
proposed LPI strategies are effective in enhancing the LPI performance for radar network.

1. Introduction

Radar network architecture, which is often called as dis-
tributed multiple-input multiple-output (MIMO) radar, has
been recently put forward and is becoming an inevitable
trend for future radar system design [1–3]. The perfor-
mance of radar network heavily depends on optimal power
allocation and transmission waveform design, so enhanced
improvements on target detection and information extrac-
tion would be realized by spatial and signal diversities.

Currently, system design for target detection and infor-
mation extraction performance improvement has been a
long-term research topic in the distributed radar network
literature. In [4], Fishler et al. propose the distributedMIMO
radar concept and analyze the target detection performance
for distributed MIMO radar. Yang and Blum in [5] study
the target identification and classification for MIMO radar
employing mutual information (MI) and the minimum
mean-square error (MMSE) criteria. The authors in [6]

investigate the problem of code design to improve the detec-
tion performance of multistatic radar in the presence of clut-
ter. Niu et al. propose localization and tracking approaches
for noncoherent MIMO radar, which provides significant
performance enhancement over traditional phased array
radar [7].

Power allocation problem in radar network architecture
has been attracting contentiously growing attention, and
someof the noteworthy publications include [8–14].Thework
of [8] investigates the scheduling and power allocation prob-
lem in cognitive radar network for multiple-target tracking,
in which an optimization criterion is proposed to find a
suitable subset of antennas and optimal transmitted power
allocation. Godrich et al. in [9–11] address the power alloca-
tion strategies for target localization in distributed multiple-
radar configurations and propose some performance driven
resource allocation schemes. In [12], the authors investi-
gate target threatening level based optimal power allocation
for LPI radar network, where two effective algorithms are
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proposed to enhance the LPI performance for radar network.
Furthermore, in [13, 14], several optimal power allocation
algorithms for distributed MIMO radars with heterogeneous
propagation losses are presented to enhance target detection
and information extraction performance. However, up to
now, the low probability of intercept (LPI) optimization for
radar network architecture is still an open problem, which is
playing an increasingly important role in modern electronic
warfare [1, 15–18].Therefore, it is an urgent task to investigate
the LPI optimization problem in radar network.

This paper will extend the results in [6] and propose two
novel LPI optimization algorithms based on information-
theoretic criteria for radar network architecture. Our pur-
pose is to minimize Schleher intercept factor by optimizing
transmission power allocation among netted radars for a
predefined threshold of target detection. Due to the lack
of analytical closed-form expression for receiver operation
characteristics (ROC), we employ two information-theoretic
criteria including Bhattacharyya distance and J-divergence
as the metrics for target detection performance. As demon-
strated later, the proposed algorithms can provide significant
LPI performance improvement for radar network. To the
best of the authors’ knowledge, no literature discussing
the information-theoretic criteria based LPI optimization
for radar network architecture was conducted prior to this
work.

The remainder of this paper is organized as follows.
Section 2 provides the radar network system model and
binary hypothesis test. We first derive Schleher intercept
factor for radar network in Section 3 and formulate the
problems of information-theoretic criteria based LPI opti-
mization, where the resulting nonconvex and nonlinear LPI
optimization problems associatedwith different information-
theoretic criteria are cast under a unified framework and
solved through the nonlinear programming based genetic
algorithm (NPGA). Numerical examples are provided in
Section 4. Finally, conclusion remarks are drawn in Section 5.

2. System Model and the Optimal Detector

2.1. Radar Network SNR Equation. We consider a radar
network architecture with 𝑁

𝑡
transmitters and 𝑁

𝑟
receivers,

which can be broken down into𝑁
𝑡
×𝑁
𝑟
transmitter-receiver

pairs each with a bistatic component contributing to the
entirety of the radar network signal-to-noise ratio (SNR) [1].
Depicted in Figure 1 is an example of 4 × 4 radar network.
All the radars have acquired and are tracking the target
with their directional antenna beams. The netted radars
𝑅𝑎𝑑𝑎𝑟1, 𝑅𝑎𝑑𝑎𝑟2, 𝑅𝑎𝑑𝑎𝑟3, and 𝑅𝑎𝑑𝑎𝑟4 transmit orthogonal
waveforms (as solid lines) but receive and process all these
echoes that are reflected from the target (as dotted lines) and
send the estimates to one of the radars in the network for data
fusion with data link.

For the radar network here, orthogonal polyphase codes
are employed in the system, which have a large main lobe-
to-side lobe ratio. These codes have a more complicated
signal structuremaking it more difficult to be intercepted and
detected by a hostile intercept receiver.

Target

Data link

Radar1

Radar4

Radar3

Radar2

Figure 1: Example of an LPI radar network.

It is also supposed that the network system has a common
precise knowledge of space and time.The radar network SNR
can be calculated by summing up the SNR of each transmit-
receive pair as [1] follows:

SNRnet =

𝑁
𝑡

∑

𝑖=1

𝑁
𝑟

∑

𝑗=1

𝑃
𝑡𝑖
𝐺
𝑡𝑖
𝐺
𝑟𝑗
𝜎
𝑡𝑖𝑗
𝜆
2

𝑖

(4𝜋)
3
𝑘𝑇
𝑜𝑖𝑗
𝐵
𝑟𝑖
𝐹
𝑟𝑗
𝑅
2

𝑡𝑖
𝑅
2

𝑟𝑗
𝐿
𝑖𝑗

, (1)

where the 𝑃
𝑡𝑖
is the 𝑖th transmitter power, 𝐺

𝑡𝑖
is the 𝑖th

transmitting antenna gain, 𝐺
𝑟𝑗
is the 𝑗th receiving antenna

gain, 𝜎
𝑡𝑖𝑗

is the radar cross-section (RCS) of the target for
the 𝑖th transmitter and 𝑗th receiver, 𝜆

𝑖
is the 𝑖th transmitted

wavelength, 𝑘 is Boltzmann’s constant, 𝑇
𝑜𝑖𝑗

is the receiving
system noise temperature at the 𝑗th receiver, 𝐵

𝑟𝑖
is the

bandwidth of the matched filter for the 𝑖th transmitted
waveform, 𝐹

𝑟𝑗
is the noise factor for the 𝑗th receiver, 𝐿

𝑖𝑗
is

the system loss between the 𝑖th transmitter and 𝑗th receiver,
𝑅
𝑡𝑖
is the distance from the 𝑖th transmitter to the target, and

𝑅
𝑟𝑗
is the distance from the target to the 𝑗th receiver.

2.2. Radar Network Signal Model. According to the discus-
sions in [14], the path gain contains the target reflection
coefficient 𝑔

𝑖𝑗
and the propagation loss factor 𝑝

𝑖𝑗
. Based on

the central limit theorem, 𝑔
𝑖𝑗
∼ CN(0, 𝑅

𝑔
), where 𝑔

𝑖𝑗
denotes

the target reflection gain between radar 𝑖 and radar 𝑗. The
propagation loss factor 𝑝

𝑖𝑗
is a function of radar antenna gain

and waveform propagation distance, which is expressed as
follows:

𝑝
𝑖𝑗
=

√𝐺𝑡𝑖𝐺𝑟𝑗

𝑅
𝑡𝑖
𝑅
𝑟𝑗

. (2)

It is supposed that the transmitted waveform of the 𝑖th
netted radar is √𝑃

𝑡𝑖
𝑥
𝑖
(𝑡), and then the collected signals at

the 𝑗th receiver from a single point target can be written as
follows:

𝑦
𝑗
(𝑡) =

𝑁
𝑡

∑

𝑖=1

𝑝
𝑖𝑗
𝑔
𝑖𝑗
√𝑃
𝑡𝑖
𝑥
𝑖
(𝑡 − 𝜏
𝑖𝑗
) + 𝑛
𝑗
(𝑡) , (3)
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where ∫ |𝑥
𝑗
(𝑡)|
2
𝑑𝑡 = 1, 𝜏

𝑖𝑗
represents the time delay, 𝑛

𝑗
(𝑡)

denotes the noise at receiver 𝑗, and the Doppler effect is
negligible. At the 𝑗th receiver, the received signal is matched
filtered by time response 𝑥∗

𝑘
(−𝑡), and the output signal can be

expressed as follows:

𝑦
𝑗𝑘
(𝑡) = ∫𝑦

𝑗
(𝑡) ⋅ 𝑥

∗

𝑘
(𝜏 − 𝑡) 𝑑𝜏

= 𝑝
𝑗𝑘
𝑔
𝑗𝑘
√𝑃
𝑡𝑘
∫𝑥
𝑘
(𝜏 − 𝜏

𝑘𝑗
) ⋅ 𝑥
∗

𝑘
(𝜏 − 𝑡) 𝑑𝜏 + 𝑛

𝑗𝑘
(𝑡) ,

(4)

where 𝑛
𝑗𝑘
(𝑡) = ∫ 𝑛

𝑗
(𝜏)⋅𝑥
∗

𝑘
(𝜏−𝑡)𝑑𝜏 and∫𝑥

𝑗
(𝜏)⋅𝑥
∗

𝑘
(𝜏+𝑡)𝑑𝜏 = 0

for 𝑘 ̸= 𝑗.
The discrete time signal for the 𝑗th receiver can be

rewritten as follows:

𝑟
𝑗𝑘
≜ 𝑦
𝑗𝑘
(𝜏
𝑗𝑘
) = 𝑝
𝑗𝑘
𝑔
𝑗𝑘
√𝑃
𝑡𝑘
+ 𝜃
𝑗𝑘
, (5)

where 𝑟
𝑘𝑗
is the output of the matched filter at the receiver

𝑗 sampled at 𝜏
𝑗𝑘
, 𝜃
𝑗𝑘

= 𝑛
𝑗𝑘
(𝜏
𝑗𝑘
), and 𝜃

𝑗𝑘
∼ CN(0, 𝑅

𝜃
). As

mentioned before, we assume that all the netted radars have
acquired and are tracking the target with their directional
radar beams, and they transmit orthogonal waveforms while
receiving and processing all these echoes that are reflected
from the target. In this way, we can obtain 𝜏

𝑗𝑘
.

2.3. Binary Hypothesis Test. With all the received signals, the
target detection for radar network system leads to a binary
hypothesis testing problem:

𝐻
0
: 𝑟
𝑖𝑗
= 𝜃
𝑖𝑗

𝐻
1
: 𝑟
𝑖𝑗
= 𝑝
𝑖𝑗
𝑔
𝑖𝑗
√𝑃
𝑡𝑖
+ 𝜃
𝑖𝑗
,

(6)

where 1 ≤ 𝑖 ≤ 𝑁
𝑡
, 1 ≤ 𝑗 ≤ 𝑁

𝑟
. The likelihood ratio test can be

formulated as follows:

𝐻
0
: 𝑇 ≜

𝑀

∏

𝑖=1

𝑁

∏

𝑗=1

𝑓 (𝑟
𝑖𝑗
| 𝐻
1
)

𝑓 (𝑟
𝑖𝑗
| 𝐻
0
)

< 𝛿,

𝐻
1
: 𝑇 ≜

𝑀

∏

𝑖=1

𝑁

∏

𝑗=1

𝑓 (𝑟
𝑖𝑗
| 𝐻
1
)

𝑓 (𝑟
𝑖𝑗
| 𝐻
0
)

> 𝛿.

(7)

As introduced in [14], the underlying detection problem can
be equivalently rewritten as follows:

𝐻
0
: 𝑟
𝑖𝑗
∼ CN (0, 𝑅

𝜃
) ,

𝐻
1
: 𝑟
𝑖𝑗
∼ CN (0, 𝑅

𝜃
+ 𝑃
𝑡𝑖
𝑅
𝑔
𝑝
2

𝑖𝑗
) .

(8)

Then, we have the optimal detector as follows:

𝐻
0
: 𝑇 ≜

𝑁
𝑡

∑

𝑖=1

𝑁
𝑟

∑

𝑗=1


𝑟
𝑖𝑗



2 2𝑃
𝑡𝑖
𝑝
2

𝑖𝑗

𝑅
𝜃
+ 𝑃
𝑡𝑖
𝑅
𝑔
𝑝
2

𝑖𝑗

< 𝛿,

𝐻
1
: 𝑇 ≜

𝑁
𝑡

∑

𝑖=1

𝑁
𝑟

∑

𝑗=1


𝑟
𝑖𝑗



2 2𝑃
𝑡𝑖
𝑝
2

𝑖𝑗

𝑅
𝜃
+ 𝑃
𝑡𝑖
𝑅
𝑔
𝑝
2

𝑖𝑗

> 𝛿,

(9)

where 𝛿 denotes the detection threshold.

3. Problem Formulation

In this section, we aim to obtain the optimal LPI performance
for radar network architecture by judiciously designing the
transmission power allocation among netted radars in the
network. We first derive Schleher intercept factor for radar
network system and then formulate the LPI optimization
problems based on information-theoretic criteria. For a
predefined threshold of target detection, Schleher intercept
factor is minimized by optimizing transmission power allo-
cation among netted radars. It is indicated in [6] that the
analytical closed-form expression for ROC does not exist.
As such, we resort to information-theoretic criteria, namely,
Bhattacharyya distance and J-divergence. In what follows,
the corresponding LPI optimization problems associated
with different information-theoretic criteria are cast under a
unified framework and can be solved conveniently through
NPGA.

3.1. Schleher Intercept Factor for Radar Network. For radar
network, it is supposed that all signals can be separately
distinguished at every netted radar node. Assuming that
every transmitter-receiver combination in the network can
be the same and 𝑅

2

net ≜ 𝑅
𝑡𝑖
⋅ 𝑅
𝑟𝑗
, in which case the radar

network SNR equation (1) can be rewritten as follows (see
Appendix A):

SNRnet = 𝐾rad𝑁𝑟
𝑃
𝑡

𝑅4net
, (10)

where

𝐾rad =
𝐺
𝑡
𝐺
𝑟
𝜎
𝑡
𝜆
2

(4𝜋)
3
𝑘𝑇
𝑜
𝐵
𝑟
𝐹
𝑟
𝐿
, (11)

𝑃
𝑡
is the total transmitting power of radar network system.
Note that, when 𝑁

𝑡
= 𝑁
𝑟

= 1, we can obtain the
monostatic case

SNRmon = 𝐾rad
𝑃
𝑡

𝑅4mon
, (12)

where 𝑅mon is the distance between the monostatic radar and
the target, while, for intercept receiver, the SNR equation is

SNRint = 𝐾int
𝑃
𝑡

𝑅
2

int
, (13)
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Figure 2: The geometry of radar, target, and interceptor.

where

𝐾int =
𝐺
𝑡
𝐺
𝑖
𝜆
2

(4𝜋)
2
𝑘𝑇
𝑜
𝐵
𝑖
𝐹
𝑖
𝐿
𝑖

, (14)

SNRint is the SNR at the interceptor signal processor input,𝐺
𝑡

is the gain of the radar’s transmitting antenna in the direction
of the intercept receiver, 𝐺

𝑖
is the gain of the intercept

receiver’s antenna, 𝐹
𝑖
is the interceptor noise factor, 𝐵

𝑖
is the

bandwidth of the interceptor, 𝑅int is the range from radar
network to the intercept receiver, and 𝐿

𝑖
refers to the losses

from the radar antenna to the receiver. For simplicity, we
assume that the intercept receiver is carried by the target.
As such, the interceptor detects the radar emission from the
main lobe; that is, 𝐺

𝑡
= 𝐺
𝑡
.

Herein, Schleher intercept factor is employed to evaluate
LPI performance for radar network. The definition of Schle-
her intercept factor can be calculated as follows:

𝛼 =
𝑅int
𝑅rad

, (15)

where 𝑅rad is the detection range of radar and 𝑅int is the
intercept range of intercept receiver, as illustrated in Figure 2.

Based on the definition of Schleher intercept factor, if
𝛼 > 1, radar can be detected by the interceptor, while if
𝛼 ≤ 1, radar can detect the target and the interceptor cannot
detect the radar. Therefore, radar can meet LPI performance
when 𝛼 ≤ 1. Moreover, minimization of Schleher intercept
factor leads to better LPI performance for radar network
architecture.

With the derivation of Schleher intercept factor in
Appendix B, it can be observed that, for a predefined target
detection performance, the closer the distance between radar
system and target is, the less power the radar system needs to
transmit on guarantee of target detection performance. For
simplicity, the maximum intercept factor 𝛼max

mon is normalized
to be 1 when the monostatic radar transmits the maximal
power 𝑃max

tot , and SNRnet = SNRmon. Therefore, when the
transmission power is 𝑃

𝑡
, the intercept factor for radar

network system can be simplified as follows:

𝛼net =
𝛼mon

𝑁
1/4

𝑟

= (
𝑃
𝑡

𝑃
max
tot ⋅ 𝑁

𝑟

)

1/4

, (16)

where 𝛼mon is the Schleher intercept factor for monostatic
radar. From (16), one can see that Schleher intercept factor
𝛼net is reduced with the increase of the number of radar
receivers𝑁

𝑟
and the decrease of the total transmission power

𝑃
𝑡
in the network system.

3.2. Information-Theoretic Criteria Based LPI Optimization

3.2.1. Bhattacharyya Distance Based LPI Optimization
Scheme. It is introduced in [6] that Bhattacharyya distance
𝐵(𝑝
0
, 𝑝
1
) measures the distance between two probability

density functions (pdf) 𝑝
0

and 𝑝
1
. The Bhattacharyya

distance provides an upper bound on the probability of false
alarm 𝑃fa and at the same time yields a lower bound on the
probability of detection 𝑃

𝑑
.

Consider two multivariate Gaussian distributions 𝑃
0
and

𝑃
1
, 𝑃
0
∼ CN(0, 𝜎

0
), and 𝑃

1
∼ CN(0, 𝜎

1
); the Bhattacharyya

distance 𝐵(𝑃
0
, 𝑃
1
) can be obtained as [6]

𝐵 (𝑃
0
, 𝑃
1
) = log

{{

{{

{

det [0.5 (𝜎
0
+ 𝜎
1
)]

√det (𝜎
0
) det (𝜎

1
)

}}

}}

}

. (17)

Let 𝐵[𝑓(𝑟 | 𝐻
0
), 𝑓(𝑟 | 𝐻

1
)] represent Bhattacharyya distance

between 𝐻
0
and 𝐻

1
, where 𝑓(𝑟 | 𝐻

0
) and 𝑓(𝑟 | 𝐻

1
) are

the pdfs of r under hypotheses 𝐻
0
and 𝐻

1
. For the binary

hypothesis testing problem, we have that

𝐵net ≜ 𝐵 [𝑓 (𝑟 | 𝐻
0
) , 𝑓 (𝑟 | 𝐻

1
)]

=

𝑁
𝑡

∑

𝑖=1

𝑁
𝑟

∑

𝑗=1

log(
1 + 0.5𝜁

𝑖𝑗

√1 + 𝜁𝑖𝑗

)

=

𝑁
𝑡

∑

𝑖=1

𝑁
𝑟

∑

𝑗=1

log[[

[

1 + 𝑃
𝑡𝑖
𝑅
𝑔
𝑝
2

𝑖𝑗
(2𝑅
𝜃
)
−1

√1 + 𝑃
𝑡𝑖
𝑅
𝑔
𝑝
2

𝑖𝑗
(𝑅
𝜃
)
−1

]
]

]

=

𝑁
𝑡

∑

𝑖=1

𝑁
𝑟

∑

𝑗=1

log
[
[
[

[

1 + 𝑃
𝑡𝑖
𝑅
𝑔
𝐺
𝑡𝑖
𝐺
𝑟𝑗
(2𝑅
𝜃
𝑅
2

𝑡𝑖
𝑅
2

𝑟𝑗
)
−1

√1 + 𝑃
𝑡𝑖
𝑅
𝑔
𝐺
𝑡𝑖
𝐺
𝑟𝑗
(𝑅
𝜃
𝑅
2

𝑡𝑖
𝑅
2

𝑟𝑗
)
−1

]
]
]

]

.

(18)

Based on the discussion in [6], maximization of the Bhat-
tacharyya distance minimizes the upper bound on 𝑃fa while
it maximizes the lower bound on 𝑃

𝑑
. As expressed in (18),

the Bhattacharyya distance derived here can be applied to
evaluate the target detection performance of radar network
as a function of different parameters, such as the transmitting
power of each netted radar and the number of netted radars
in the network. Intuitively, the greater the Bhattacharyya dis-
tance between the two distributions of the binary hypothesis
testing problem, the better the capability of radar network
system to detect the target, which would make the net-
work system more vulnerable in modern electronic warfare.
Therefore, the Bhattacharyya distance can provide guidance
to the problem of LPI optimization for radar network
architecture.

Here, we focus on the LPI optimization problem for
radar network architecture, where Schleher intercept factor
is minimized by optimizing transmission power allocation
among netted radars in the network for a predetermined
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Bhattacharyya distance threshold, such that the LPI perfor-
mance is met on the guarantee of target detection perfor-
mance. Eventually, the underlying LPI optimization problem
can be formulated as follows:

min
⇀Pt

𝛼net,

s.t.: 𝐵net ≥ 𝐵
th
,

𝑁
𝑡

∑

𝑖=1

𝑃
𝑡𝑖
≤ 𝑃

max
tot ,

0 ≤ 𝑃
𝑡𝑖
≤ 𝑃

max
𝑡𝑖

(∀𝑖) ,

(19)

where ⇀Pt = [𝑃
𝑡1
, 𝑃
𝑡2
, . . . , 𝑃

𝑡𝑁
𝑡

]
𝑇 is the transmitting power of

radar network, 𝐵th is the Bhattacharyya distance threshold
for target detection, 𝑃max

tot is the maximum total transmission
power of radar network, and 𝑃max

𝑡𝑖
(for all 𝑖) is the maximum

transmission power of the corresponding netted radar node.

3.2.2. J-Divergence Based LPI Optimization Scheme. The J-
divergence 𝐽(𝑝

0
, 𝑝
1
) is anothermetric tomeasure the distance

between two pdfs 𝑝
0
and 𝑝

1
. It is defined as follows:

𝐽 (𝑝
0
, 𝑝
1
) ≜ 𝐷 (𝑝

0
‖ 𝑝
1
) + 𝐷 (𝑝

1
‖ 𝑝
0
) , (20)

where 𝐷(⋅) is the Kullback-Leibler divergence. It is shown in
[19] that, for any fixed value of 𝑃fa,

𝐷[𝑓 (𝑟 | 𝐻
0
) ‖ 𝑓 (𝑟 | 𝐻

1
)] = lim
𝑁→∞

[−
1

𝑁
log (1 − 𝑃

𝑑
)]

(21)

and, for any fixed value of 𝑃
𝑑
, we can obtain

𝐷[𝑓 (𝑟 | 𝐻
1
) ‖ 𝑓 (𝑟 | 𝐻

0
)] = lim
𝑁→∞

[−
1

𝑁
log (𝑃fa)] . (22)

From (21) and (22), we can observe that for any fixed 𝑃fa the
maximization of Kullback-Leibler divergence 𝐷[𝑓(𝑟 | 𝐻

0
) ‖

𝑓(𝑟 | 𝐻
1
)] results in an asymptotic maximization of 𝑃

𝑑
,

while for any fixed 𝑃
𝑑
the maximization of Kullback-Leibler

divergence𝐷[𝑓(𝑟 | 𝐻
1
) ‖ 𝑓(𝑟 | 𝐻

0
)] results in an asymptotic

minimization of 𝑃fa.
With the derivation in [6], we have that

𝐽net ≜ 𝐽 [𝑓 (𝑟 | 𝐻
0
) , 𝑓 (𝑟 | 𝐻

1
)]

=

𝑁
𝑡

∑

𝑖=1

𝑁
𝑟

∑

𝑗=1

𝜁
2

𝑖𝑗

1 + 𝜁
𝑖𝑗

=

𝑁
𝑡

∑

𝑖=1

𝑁
𝑟

∑

𝑗=1

[𝑃
𝑡𝑖
𝑅
𝑔
𝑝
2

𝑖𝑗
(𝑅
𝜃
)
−1

]
2

1 + 𝑃
𝑡𝑖
𝑅
𝑔
𝑝
2

𝑖𝑗
(𝑅
𝜃
)
−1

=

𝑁
𝑡

∑

𝑖=1

𝑁
𝑟

∑

𝑗=1

[𝑃
𝑡𝑖
𝑅
𝑔
𝐺
𝑡𝑖
𝐺
𝑟𝑗
(𝑅
𝜃
𝑅
2

𝑡𝑖
𝑅
2

𝑟𝑗
)
−1

]

2

1 + 𝑃
𝑡𝑖
𝑅
𝑔
𝐺
𝑡𝑖
𝐺
𝑟𝑗
(𝑅
𝜃
𝑅
2

𝑡𝑖
𝑅
2

𝑟𝑗
)
−1
.

(23)

Consequently, the corresponding LPI optimization prob-
lem can be expressed as follows:

min
⇀
𝑃
𝑡

𝛼net,

s.t.: 𝐽net ≥ 𝐽
th
,

𝑁
𝑡

∑

𝑖=1

𝑃
𝑡𝑖
≤ 𝑃

max
tot ,

0 ≤ 𝑃
𝑡𝑖
≤ 𝑃

max
𝑡𝑖

(∀𝑖) ,

(24)

where 𝐽th is the J-divergence threshold for target detection.

3.3. The Unified Framework Based on NPGA. In this subsec-
tion, we cast the LPI optimization problems based on various
information-theoretic criteria investigated earlier under a
unified optimization framework. Furthermore, we formulate
the following general form of the optimization problems in
(19) and (24):

min
⇀
𝑃
𝑡

𝛼net,

s.t.: 𝛾net ≥ 𝛾
th
,

𝑁
𝑡

∑

𝑖=1

𝑃
𝑡𝑖
≤ 𝑃

max
tot ,

0 ≤ 𝑃
𝑡𝑖
≤ 𝑃

max
𝑡𝑖

(∀𝑖) ,

(25)

where 𝛾net ∈ {𝐵net, 𝐽net} and 𝛾
th is the corresponding threshold

for target detection.
In this paper, we utilize the nonlinear programming based

genetic algorithm (NPGA) to seek the optimal solutions to
the resulting nonconvex, nonlinear, and constrained problem
(25).The NPGA has a good performance on the convergence
speed, and it improves the searching performance of ordinary
genetic algorithm.

The NPGA procedure is illustrated in Figure 3, where
the population initialization module is utilized to initialize
the population according to the resulting problem, while the
calculating fitness value module is to calculate the fitness
values of individuals in the population. Selection, crossover,
and mutation are employed to seek the optimal solution,
where 𝑁 is a constant. If the evolution is 𝑁’s multiples, we
can use NP approach to accelerate the convergence speed.

So far, we have completed the derivation of Schle-
her intercept factor for radar network architecture and
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Figure 3: Flow diagram of NPGA procedure.
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Figure 4: Bhattacharyya distance versus Schleher intercept factor
for different radar network architectures.

the information-theoretic criteria based LPI optimization
schemes. In what follows, some numerical simulations are
provided to confirm the effectiveness of our presented LPI
optimization algorithms for radar network architecture.

4. Numerical Simulations

In this section, we provide several numerical simulations to
examine the performance of the proposed LPI optimization
algorithms as (19) and (24). Throughout this section, we
assume that 𝑃max

tot = ∑
𝑁
𝑡

𝑖=1
𝑃
𝑡𝑖
= 24KW, 𝐺

𝑡
= 𝐺
𝑟
= 30 dB,

𝑅
𝜃
= 10
−10, and 𝑅

𝑔
= 1. The SNR is set to be 13 dB. The

traditional monostatic radar can detect the target whose RCS
is 0.05m2 in the distance 𝑅

𝑅MAX = 106.1 km by transmitting
the maximum power 𝑃max

tot = 24KW, where the intercept
factor is normalized to be 1 for simplicity.

4.1. LPI Performance Analysis. Figures 4 and 6 show the
Bhattacharyya distance and logarithmic J-divergence ver-
sus Schleher intercept factor for different radar network
architectures, respectively, which are conducted 10

6 Monte
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Figure 5: Bhattacharyya distance versus Schleher intercept factor
for different target scattering intensity with𝑁

𝑡
= 𝑁
𝑟
= 4.

Carlo trials. We can observe in Figures 4 and 6 that as
Schleher intercept factor increases from 𝛼net = 0 to 𝛼net =
2 the achievable Bhattacharyya distance and logarithmic J-
divergence are increased. This is due to the fact that as the
intercept factor increases more transmission power would
be allocated, which makes the achievable Bhattacharyya dis-
tance and logarithmic J-divergence increase correspondingly
as theoretically proved in (18) and (23). Furthermore, it can
be seen from Figures 4 and 6 that, with the same target detec-
tion threshold, Schleher intercept factor can be significantly
reduced as the number of transmitters and receivers in the
network system increases. Therefore, increasing the number
of netted radars can effectively improve the LPI performance
for radar network.This confirms the LPI benefits of the radar
network architecture with more netted radars.

As shown in Figures 5 and 7, we illustrate the Bhat-
tacharyya distance and logarithmic J-divergence versus
Schleher intercept factor for different target scattering inten-
sity with 𝑁

𝑡
= 𝑁
𝑟
= 4, respectively. It is depicted that

as the target scattering intensity increases from 𝑅
𝑔

= 1

to 𝑅
𝑔

= 10 the achievable Bhattacharyya distance and
logarithmic J-divergence are significantly increased. This is
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because the radar network system can detect the target with
large scattering intensity easily with high 𝑃

𝑑
and low 𝑃fa.

4.2. Target Tracking with LPI Optimization. In this subsec-
tion, we consider a 4 × 4 radar network system (𝑁

𝑡
=

𝑁
𝑟
= 4) in the simulation, and it is widely deployed in

modern battlefield. The target detection threshold 𝛾
th can

be calculated in the condition that the transmission power
of each radar is 6KW in the distance 150 km between the
radar network and the target, which is the minimum value of
the basic performance requirement for target detection. As
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Figure 8: The radar network system configuration in two dimen-
sions.
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mentioned before, it is supposed that the intercept receiver
is carried by the target. It is depicted in Figure 8 that the
netted radars in the network are spatially distributed in the
surveillance area at the initial time 𝑡 = 0.

We track a single target by utilizing particle filtering (PF)
method, where 5000 particles are used to estimate the target
state. Figure 9 shows one realization of the target trajectory
for 50 s, and the tracking interval is chosen to be 1 s. With
the radar network configuration in Figure 8 and the target
tracking scenario in Figure 9, we can obtain the distances
changing curve between the netted radars and the target in
the tracking process as depicted in Figure 10. Without loss of
generality, we set𝑅𝑎𝑑𝑎𝑟1 as the distributed data fusion center
and capitalize the weighted average approach to obtain the
estimated target state.
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To obtain the optimal transmission power allocation of
radar network, we utilize NPGA to solve (19) and (24). Let
the population size be 100, let the crossover probability be
0.6, and let the mutation probability be 0.01. The population
evolves 10 generations. Figure 11 shows the transmitting
power of netted radars utilizing Bhattacharyya distance based
LPI optimization in the tracking process, while Figure 12
depicts the J-divergence based case. Before 𝑡 = 36 s, netted
radars 2, 3, and 4 are selected to track the target, which are
the ones closest to the target, while netted radar 1 is selected
instead of radar 2 after 𝑡 = 36 s, which is because netted radars
1, 2, and 3 have the best channel conditions in the network.
From Figures 11 and 12, we can see that the transmission
power allocation is determined by the locations of single
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Figure 12: The transmitting power of netted radars utilizing J-
divergence based LPI optimization in the tracking process.
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Figure 13: The normalized Schleher intercept factor comparison in
the tracking process.

target relative to the netted radars and their propagation
losses. To be specific, in the LPI optimization process, more
transmitting power is allocated to the radar nodes that are
located closer to the target; this is due to the fact that they
suffer less propagation losses.

Figure 13 demonstrates the advantage of our proposed
optimization problems based on information-theoretic cri-
teria. The traditional monostatic radar transmits 24KW
constantly, while the ordinary radar network has a constant
sum of transmitted power 24KW and each radar node
transmits uniform power. One can see that Schleher intercept
factor for radar network employing the information-theoretic
criteria based LPI optimization strategies is strictly smaller
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than that of traditional monostatic radar and ordinary radar
network across the whole region, which further shows the
LPI enhancement by exploiting our presented LPI optimiza-
tion schemes in radar network to defend against passive
intercept receiver. Moreover, it can be seen in Figure 13 that,
in terms of the same system constraints and fundamen-
tal quantity, Bhattacharyya distance based LPI optimiza-
tion is asymptotically equivalent to the J-divergence based
case.

4.3. Discussion. According to Figures 4–13, we can deduce
the following conclusions for radar network architecture.

(1) From Figures 4 to 7, we can observe that as the
predefined threshold of target detection increases
more transmission power would be allocated for
radar network to meet the detection performance,
while the intercept factor is increased subsequently,
which is vulnerable in electronic warfare. In other
words, there exists a tradeoff between LPI and target
detection performance in radar network system, and
the LPI performance would be sacrificed with target
detection consideration.

(2) In the numerical simulations, we observe that the
proposed optimization schemes (19) and (24) can
be employed to enhance the LPI performance for
radar network. Based on the netted radars’ spatial
distributionwith respect to the target, we can improve
the LPI performance by optimizing transmission
power allocation among netted radars. As indicated
in Figures 11 and 12, netted radars with better channel
conditions are favorable over others. In addition,
it can be observed that exploiting our proposed
algorithms can effectively improve the LPI perfor-
mance of radar network to defend against intercept
receiver, and Bhattacharyya distance based LPI opti-
mization algorithm is asymptotically equivalent to
the J-divergence based case under the same system
constraints and fundamental quantity.

5. Conclusions

In this paper, we investigated the problem of LPI design
in radar network architecture, where two LPI optimization
schemes based on information-theoretic criteria have been
proposed. The NPGA was employed to tackle the highly
nonconvex and nonlinear optimization problems. Simula-
tions have demonstrated that our proposed strategies are
effective and valuable to improve the LPI performance for
radar network, and it is indicated that these two optimization
problems are asymptotically equivalent to each other under
the same system constraints. Note that only single target was
considered in this paper. Nevertheless, it is convenient to be
extended to multiple targets scenario, and the conclusions
obtained in this study suggest that similar LPI benefits would
be obtained for the multiple targets case. Future work will
look into the adaptive threshold design of target detection
performance in radar network architectures.

Appendices

A.

Assume that every transmitter-receiver combination in the
network can be the same and 𝑅2net ≜ 𝑅

𝑡𝑖
⋅ 𝑅
𝑟𝑗
, where the radar

network SNR (1) can be written as follows:

SNRnet = 𝐾rad

𝑁
𝑡

∑

𝑖=1

𝑁
𝑟

∑

𝑗=1

𝑃
𝑡𝑖

𝑅4net
, (A.1)

where

𝐾rad =
𝐺
𝑡
𝐺
𝑟
𝜎
𝑡
𝜆
2

(4𝜋)
3
𝑘𝑇
𝑜
𝐵
𝑟
𝐹
𝑟
𝐿
. (A.2)

Assume that the sum of the effective radiated power (ERP)
from all the radars in the network is equivalent to that of
monostatic radar; that is,

ERP =

𝑁
𝑡

∑

𝑖=1

𝑃
𝑡𝑖
𝐺
𝑡𝑖
= 𝑃
𝑡
𝐺
𝑡
, (A.3)

where 𝑃
𝑡
and 𝐺

𝑡
are the transmitting power and transmitting

antenna gain of the monostatic radar, respectively. For 𝐺
𝑡𝑖
=

𝐺
𝑡
(for all 𝑖), we can rewrite (A.1) as follows:

SNRnet = 𝐾rad𝑁𝑡
𝑃
𝑡

𝑅4net
. (A.4)

B.

According to (15), we can derive the intercept factor for radar
network as

𝛼net =
𝑅int
𝑅net

= (
𝑃
𝑡
⋅ 𝐾
2

int ⋅ SNRnet

𝐾rad ⋅ 𝑁𝑟 ⋅ SNR2int
)

1/4

(B.1)

and the intercept factor for conventional monostatic radar as

𝛼mon =
𝑅int
𝑅mon

= (
𝑃
𝑡
⋅ 𝐾
2

int ⋅ SNRmon

𝐾rad ⋅ SNR2int
)

1/4

. (B.2)

When SNRnet = SNRmon, we can readily obtain the
relationship between the intercept factors for radar network
𝛼net and for the monostatic case 𝛼mon:

𝛼net =
𝛼mon

𝑁
1/4

𝑟

. (B.3)

Furthermore, for monostatic radar, we can assume that

SNRmon = 𝐾rad
𝑃
𝑡

𝑅4mon
= 𝐾rad

𝑃
max
tot

𝑅
4

𝑅MAX
, (B.4)

where 𝑃max
tot is the maximal power of the monostatic rada-

r and 𝑅
𝑅MAX is the corresponding maximal detection range.

Then, we can obtain

𝑅mon
𝑅
𝑅MAX

= (
𝑃
𝑡

𝑃
max
tot

)

1/4

. (B.5)
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Similarly, for intercept receiver, we have the following:

SNRint = 𝐾int
𝑃
𝑡

𝑅
2

int
= 𝐾int

𝑃
max
tot

𝑅
2

𝐼𝑀𝐴𝑋

, (B.6)

𝑅int
𝑅
𝐼MAX

= (
𝑃
𝑡

𝑃
max
tot

)

1/2

, (B.7)

where 𝑅
𝐼MAX is the intercept range when the transmitting

power of radar is 𝑃max
tot .

Using (15), (B.5), and (B.7), we can obtain the following
expression:

𝛼mon
𝛼max
mon

=
𝑅int/𝑅mon

𝑅
𝐼MAX/𝑅𝑅MAX

= (
𝑃
𝑡

𝑃
max
tot

)

1/4

, (B.8)

where 𝛼max
mon is Schleher intercept factor corresponding to the

maximal transmitting power 𝑃max
tot .
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