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A slot-microstrip-covered and waveguide-cavity-backed monopulse antenna array is proposed for high-resolution tracking
applications at Ka-band. The monopulse antenna array is designed with a microstrip with 2 × 32 slots, a waveguide cavity, and
a waveguide monopulse comparator, to make the structure simple, reduce the feeding network loss, and increase the frequency
bandwidth. The 2 × 32 slot-microstrip elements are formed by a metal clad dielectric substrate and slots etched in the metal using
the standard printed circuit board (PCB) process with dimensions of 230mm × 10mm.Theproposedmonopulse antenna array not
only maintains the advantages of the traditional waveguide slot antenna array, but also has the characteristics of wide bandwidth,
high consistence, easy of fabrication, and low cost. From themeasured results, it exhibits goodmonopulse characteristics, including
the following: the maximum gains of sum pattern are greater than 24 dB, the 3 dB beamwidth of sum pattern is about 2.2 degrees,
the sidelobe levels of the sum pattern are less than −18 dB, and the null depths of the difference pattern are less than −25 dB within
the operating bandwidth between 33.65GHz and 34.35GHz for VSWR ≤ 2.

1. Introduction

Millimeter-wave monopulse antenna arrays have received
considerable attention in the radar tracking systems owing
to their ultrahigh resolution [1, 2]. Waveguide slot antenna
arrays [3] or microstrip antenna arrays [4, 5] are commonly
used in traditional monopulse tracking systems. Waveguide
slot antenna arrays possess several unique advantages, such
as low loss, low coupling effect, low cross-polarization, high
radiation efficiency, high polarization purity, high frequency
operation, and high power handling capability, but they
are of narrow bandwidth and high cost and not suitable
for mass production [6–9]. Microstrip antenna arrays have
been widely used in monopulse system, showing benefits
including high integration capability, low cost, and ease of
mass production [4, 5]. However, they have difficulty in
achieving low sidelobe levels and high radiation efficiencies

due to the strong mutual coupling and spurious radiation
among the monopulse comparator, feed network, and radia-
tion elements [10]. Furthermore, the loss in a microstrip line
becomes much more significant due to the high conductor
loss, dielectric loss, and radiation loss in the millimeter
wave and upper bands [11, 12]. To overcome the drawbacks
of the conventional waveguide slot and microstrip antenna
arrays, dielectric-covered slot arrays were investigated by
Montisci et al. [13–16] and Zheng et al. [17], but they did not
tell about the monopulse characteristics. Recently, substrate
integrated waveguide (SIW) technology based monopulse
antenna array is proposed byCheng et al. [18]. Since SIWs can
not only preserve the advantages of conventional rectangular
waveguide but also be implemented with printed circuit
board (PCB) process, the monopulse comparator and the
radiation elements of this array are all integrated on single
dielectric substrate [18].
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Figure 1: Structure of the monopulse antenna array. (a) Exploded view, (b) waveguide monopulse comparator, and (c) prototype.

This work experimentally investigates a Ka-band slot-
microstrip-covered and waveguide-cavity-backed mono-
pulse antenna array composed of a microstrip with 2 ×
32 slots, a waveguide cavity, and a waveguide monopulse
comparator. Experimental results exhibit good monopulse
characteristics in terms of wide bandwidth, maximum gains,
3 dB beamwidths, sidelobe levels, and null depths, which
combines the advantages of the waveguide slot antenna
array and microstrip antenna array while eliminating their
disadvantages.

2. Design, Fabrication, and Test

The structure of the monopulse antenna array is shown in
Figure 1, which consists of a microstrip with 2 × 32 slots, a
waveguide cavity, and a waveguide monopulse comparator.
The copper slot microstrip (0.018mm thick) is fabricated on
a Rogers 5880 dielectric layer (0.254mm thick, 𝜀 = 2.2). Four
subarrays are connected to the four ports of the feed network.
The waveguide monopulse comparator is realized by using a
magic-T to obtain a sum and difference feeding network, as
shown in Figure 1(b). Each subarray was formed by 1 × 16
slot-microstrip elements with a Taylor amplitude distribution

[19]. In this study, the centre distance between two slots
is 𝜆𝑔/2 (6.48mm), where 𝜆𝑔 is the guided wavelength.
The slots are placed at a quarter of the guided wavelength
(𝜆𝑔/4) from the shorted wall. They are 0.6mm in width and
3.2mm in length, and the approximate offset value from
the waveguide centreline is calculated at 34GHz using the
equivalent circuit mode or termed Elliott’s method [20, 21].
Elliott’s method has been successfully used for waveguide slot
antenna arrays [22–28], although it yields the offset value to
be approximately effective only. In order to get more accurate
offset value and fully account for the coupling effect, it is
necessary to optimize the monopulse antenna array by full-
wave simulation. Table 1 lists the final optimized offset values
using both Elliott’s method and FEM based 3D full-wave
simulator Ansys HFSS.

The size of the groove guide in the waveguide cavity
is 2.74mm × 5.48mm. The height of the metal walls is
4mm. The cross-section dimension of the waveguide in this
design is 3.556mm × 7.112mm (WR-28). Four aperture-
coupled slots (with 3.6mm × 0.6mm) are used to excite
the 2 × 32 slot-microstrip elements at the feeding ports
1 and 2 of the monopulse comparator, as shown in Fig-
ure 1. For the monopulse antenna array, loss is unavoidable
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Table 1: Offset value of the subarray slots (16 slot-microstrip elements) from the waveguide centreline, unit in millimeter.

Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Offset 0.29 0.30 0.31 0.33 0.36 0.39 0.43 0.47 0.51 0.55 0.58 0.61 0.64 0.65 0.67 0.67

in the feeding network and dielectric. However, in our
case, the loss is limited by the metal waveguide based
monopulse comparator and very low loss tangent (0.0009)
of Rogers 5880 dielectric layer in our design. Note that this
design may lead to mass production, reduce the cost, and
increase the frequency bandwidth as comparedwith the stan-
dard slotted waveguide technology. The monopulse antenna
array is assembled by brazing the waveguides (including
waveguide cavity and waveguide monopulse comparator)
and using conductive adhesive to adhere the copper slot
microstrip and waveguide cavity together. To avoid weak
electrical contact between PCB and waveguides during the
annealing process, screws are also used to secure stem
attachment between them.

Figure 2 shows the measured VSWR of the sum port
and the difference port. The results show that the measured
bandwidth (VSWR ≤ 2) of the monopulse antenna array is
700MHz (from 33.65GHz to 34.35GHz) for both the sum
port and the difference port. The measured normalized E-
plane sum and difference radiation patterns and H-plane
sum radiation pattern at 34GHz are shown in Figure 3.
The sum pattern exhibits a 2.2-degree 3 dB beamwidth and
−18 dB sidelobe level. The normalized null depth of the
difference pattern is less than −40 dB. Table 2 summarizes
themeasuredmaximum gains and the null depths at different
frequencies. It is seen that themaximum gains of sum pattern
are greater than 24 dBi and the null depths of the difference
pattern are less than −25 dBi within the operating bandwidth
between 33.65GHz and 34.35GHz for VSWR ≤ 2. The radi-
ation efficiency of the Ka-band slot-microstrip-covered and
waveguide-cavity-backed monopulse antenna array is 85.3%
which is significantly higher than that of the microstrip
antenna array.

Such Ka-band slot-microstrip-covered and waveguide-
cavity-backed monopulse antenna array has better per-
formance in bandwidth than that in conventional waveg-
uide slot monopulse antenna arrays, better sidelobe lev-
els and radiation efficiency, and high polarization purity
than those in conventional microstrip monopulse antenna
arrays. For instance, the bandwidth of the conventional
aperture-coupled waveguide slot monopulse is just 1% [11],
while it is greater than 2% for the proposed monopulse
antenna. In addition, the radiation efficiency of the con-
ventional microstrip monopulse antenna array is about
40%, whilst it is greater than 80% for the proposed
monopulse antenna. The first reason is that the slot-
microstrip-covered dielectric above a metal ground can
increase the impedance bandwidth of themonopulse antenna
array. Furthermore, waveguide has lower loss and is more
suitable for high frequency transmission than microstrip
line.
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Figure 2: Measured VSWR.

Table 2: Measured maximum gains and the null depths at different
frequencies.

f (GHz) Maximum gain (dBi) Null depth (dBi)
33.65 25.24 −28.1
33.8 24.79 −37.3
34 24.84 −29.9
34.2 24.51 −26
34.35 24.55 −25.7

3. Conclusion

Ka-band slot-microstrip-covered and waveguide-cavity-
backed monopulse antenna array has been designed and
experimentally investigated in this paper. The measured
results show that the maximum gains are greater than 24 dBi,
the 3 dB beamwidths are about 2.2 degrees, the sidelobe
levels are less than −18 dB, and the null depths are less than
−25 dBi, during the 700MHz operating frequencies. These
results demonstrate that the slot-microstrip-covered and
waveguide-cavity-backed monopulse antenna array has a
broad bandwidth, high consistence, ease of fabrication, and
low cost, and it can be successfully applied tomillimeter-wave
monopulse radar systems.
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Figure 3: Measured normalized (a) E-plane sum and difference radiation patterns and (b) H-plane sum radiation pattern at 34GHz.
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