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A sparse recovery based transmit-receive angle imaging scheme is proposed for bistatic multiple-input multiple-output (MIMO)
radar. The redundancy of the transmit and receive angles in the same range cell is exploited to construct the sparse model.
The imaging is then performed by compressive sensing method with consideration of both the transmit and receive array gain
uncertainties. An additional constraint is imposed on the inverse of the transmit and receive array gain errors matrices to make
the optimization problem of the CS solvable. The image of the targets can be reconstructed using small number of snapshots in the
case of large array gain uncertainties. Simulation results confirm the effectiveness of the proposed scheme.

1. Introduction

Multiple-input multiple-output (MIMO) radar has multiple
transmit channels and multiple receive channels, and the
transmit channels can be separated by waveforms or time or
frequencies or polarizations at each receiver. So, the transmit
aperture can be exploited completely by processing receive
data [1–3]. Most of the advantages of the MIMO radar come
from increasing the number of channels. Two main classes
of MIMO radar have been proposed, with widely separated
antennas [1] and with colocated antennas [2]. The first class
utilizes the different scattering properties of a target from
sufficiently spaced antennas to improve the performance of
the systems. The second class allows the improvement of the
radar performances by coherent processing of the multiple
channels.

Bistatic MIMO radar scheme has been proposed in [3],
where a two-dimensional radar imaging method based on
the Caponmethod is developed. BistaticMIMO radar has the
particular advantage of being able to obtain the target angles
with respect to both the transmit and the receive arrays by
processing the receive data [3–7]. So, the range information of
the target is redundant in this case and the time synchroniza-
tion of the bistatic radar is relaxed. Nevertheless, the errors
of both the transmit array and the receive array will degrade
the performances of these techniques. Many works have been

done to estimate the array errors and correct the transmit
array and receive array simultaneously in bistatic MIMO
radar [8, 9]. However, these methods need large number of
snapshots to estimate the covariance matrix and some well-
calibrated elements.

Compressive sensing (CS) has received considerable
attention recently and has been applied to source localization
by exploiting the spatial sparsity of the sources [10]. The CS
can work even in the case of single snapshot. A CS based
multitarget detection method for bistatic MIMO radar is
presented in [11]. However, the range cell is not considered
in this paper. Furthermore, they assume that there are no
array errors in the systems. In this paper, the redundancy
of the transmit and receive angles in the same range cell is
exploited to construct the sparse model. CS based method is
presented to image transmit-receive angle image in the pres-
ence of unknown array gain errors for bistatic MIMO radar.
The image can be recoveredwell in the case of small snapshots
and large array gain uncertainties.

This paper is organized as follows. The sparse signal
model of bistatic MIMO radar with uncertain array gain is
presented in Section 2. In Section 3, CS based algorithm is
applied to estimate the transmit angle and receive angle of
targets in the presence of array gain errors. The effectiveness
of the method will be confirmed by simulations in Section 4.
Finally, Section 5 concludes the paper.
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2. Sparse Model of Bistatic MIMO Radar

The configuration of the bistatic MIMO radar used in this
paper is illustrated in Figure 1. An 𝑀-transmit/𝑁-receive
(𝑀 T/𝑁 R) antenna configuration is considered, and both
transmitter and receiver are uniform linear array (ULA).
Let the signal transmitted by 𝑀-transmitters at every pulse
period be S ∈ C𝑀×𝐿, where 𝐿 is the number of the codes in
one pulse period. Assume that the target is at angles (𝜃

𝑡
, 𝜃
𝑟
),

where 𝜃
𝑡
is the angle of the target with respect to the transmit

array (i.e., DOD) and 𝜃
𝑟
is the anglewith respect to the receive

array (DOA). 𝜆 denotes the carrier wavelength. In the case of
𝑃 pixels at location (𝜃

𝑡
, 𝜃
𝑟
), the received signal during the 𝑞th

pulse period can be expressed as

Y
𝑞
= A
𝑢𝑟
D
𝑞
A𝑇
𝑢𝑡
S + E
𝑞
, 𝑞 = 1, 2, . . . , 𝑄, (1)

where (⋅)
𝑇 denote transpose operator. A

𝑢𝑟
= Γ

𝑟
A
𝑟

and A
𝑢𝑡

= Γ
𝑡
A
𝑡

are the unknown gain steering
matrices of the receive and transmit array, respectively.
Γ
𝑡
= diag[𝜌

𝑡1
, . . . , 𝜌

𝑡𝑀
] and Γ

𝑟
= diag[𝜌

𝑟1
, . . . , 𝜌

𝑟𝑁
] are the

diagonalmatrices with array gain errors at diagonal elements.
A
𝑟
= [a
𝑟𝑝
]
𝑁×𝑃

andA
𝑡
= [a
𝑡𝑝
]
𝑀×𝑃

are the receive and transmit
steering matrices of 𝑃 targets, respectively, where a

𝑟𝑝
=

[1 𝑒
𝑗(2𝜋/𝜆)𝑑

𝑟
sin 𝜃
𝑟𝑝 𝑒
𝑗(2𝜋/𝜆)2𝑑

𝑟
sin 𝜃
𝑟𝑝 ⋅ ⋅ ⋅ 𝑒

𝑗(2𝜋/𝜆)(𝑁−1)𝑑
𝑟
sin 𝜃
𝑟𝑝]
𝑇

and a
𝑡𝑝

= [1 𝑒
𝑗(2𝜋/𝜆)𝑑

𝑡
sin 𝜃
𝑡𝑝 𝑒
𝑗(2𝜋/𝜆)2𝑑

𝑡
sin 𝜃
𝑡𝑝

⋅ ⋅ ⋅ 𝑒
𝑗(2𝜋/𝜆)(𝑁−1)𝑑

𝑡
sin 𝜃
𝑡𝑝]𝑇. 𝑑

𝑡
and 𝑑

𝑟
are the ideal interelement

space at the transmitter and receiver.D
𝑞
= diag(𝑑

1
, . . . , 𝑑

𝑃
) is

a diagonal matrix composed of target reflection coefficients
for the 𝑞th pulse period. The noise vector E

𝑞
is assumed to

be independent, zero-mean complex Gaussian distribution
with E

𝑞
∼ 𝑁
𝑐
(0, 𝜎
2

𝑛
I
𝑁
).

We divide thewhole area of interest in some discrete set of
angular positions [10]. Let the two-dimensional grid consist
of the dictionary of all potential angular position pairs Ω =

{(𝜃
𝑘
, 𝜃
𝑙
) : (𝑘, 𝑙) ∈ {1, . . . , 𝐺} × {1, . . . , 𝐺}}. Then we construct

the matrices composed of steering vectors corresponding
to each potential source location as its columns: Φ

𝑡
=

[a
𝑡
(𝜃
1
), . . . , a

𝑡
(𝜃
𝐺
)] and Φ

𝑟
= [a
𝑟
(𝜃
1
), . . . , a

𝑟
(𝜃
𝐺
)]. Let X

𝑞
∈

C𝐺×𝐺 be the matrix of reflection coefficients of the targets
at 𝐺2 possible grid point of interest during 𝑞th pulse period.
Assume that the transmit waveforms are orthogonal to each
other; that is, SS𝐻 = I. Then the receive signals in (1) after
being matched by transmit waveforms can be rewritten as

Y
𝑞
= Γ
𝑟
Φ
𝑟
X
𝑞
Φ
𝑇

𝑡
Γ
𝑇

𝑡
+ E
𝑞
, 𝑞 = 1, 2, . . . , 𝑄. (2)

X
𝑞
[𝑘, 𝑙] is nonzero only if there is pixel of the target at

(𝜃
𝑘
, 𝜃
𝑙
). Fortunately, we can recover the image range by range.

It can be observed in Figure 1 that the grid points which are
in the same range cell should be distributed on the surface
of an ellipse with the focuses on receivers and transmitters,
respectively. So, only surface of the ellipse has the pixels of
the target and any other grid points in the Ω are zeros when
we process the data of one range cell. It is clear that X

𝑞
is a

sparse matrix in this case. The pixels in the same range cell
are virtually sparse because of the redundancy of the transmit
and receive angles.This implies that we can recover the scene
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Figure 1: Bistatic MIMO radar configuration.

by sparse recovery method even though the actual scene is
not sparse.

3. CS Based Sparse Imaging with
Array Gain Uncertainties

In this section, we develop the CS based sparse imaging
method in the presence of the array gain uncertainties for
bistatic MIMO radar imaging.

3.1. Problem Formulation. The radar imaging is an inverse
scattering problem. The spatial map of reflectivity can be
reconstructed from measurements of scattered electronic
fields. To transformour problem into the standard framework
of the sparse recovery, we first rewrite (2) as

y
𝑞
= vec (Y

𝑞
) = [(Γ

𝑡
Φ
𝑡
) ⊗ (Γ

𝑟
Φ
𝑟
)] vec (X

𝑞
) + e
𝑞

= (Γ
𝑡
⊗ Γ
𝑟
) (Φ
𝑡
⊗Φ
𝑟
) x
𝑞
+ e
𝑞

= ΓΦx
𝑞
+ e
𝑞
,

(3)

where⊗denoteKroneck product;Γ = Γ
𝑡
⊗Γ
𝑟
andΦ = Φ

𝑡
⊗Φ
𝑟
;

x
𝑞
= vec(X

𝑞
) and e

𝑞
= vec(E

𝑞
).

When 𝑄 pulse periods are transmitted, (3) can be
expressed as follows:

Y = ΓΦX + E, (4)

where Y = [y
1
, . . . , y

𝑄
] and X = [x

1
, . . . , x

𝑄
]. E is the noise

matrix composed by e
𝑞
; that is, E = [𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑄
]. Here,

what we need to do is to recover matrixX from the given data
Y.

CS can be used to efficiently reconstruct a signal with
a sparse representation. For a given observation matrix Y
and a sensing matrix Φ, Y = ΦX. The recovery process is
formulated as an 𝑙

1
-optimization problem; that is,

min ‖X‖1,
s.t. y = ΦX. (5)
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However, the CS method in (5) cannot resolve the the
problem in model (4) directly as there is an additional
unknown array gain error matrix Γ. The optimization prob-
lem will lead to a trivial solution if we add Γ directly in (5)
without further constraint on Γ. Also, the Gaussian noise E
is not considered in the optimization problem in (5), which
will degrade the performance of the recovery. What we are
interested in is to construct an optimization problem that
considers both the array gain uncertainties Γ and the noise E.
We will achieve the imaging recovery of bistatic MIMO radar
with array gain uncertainties by the help of the idea from [12]
later.

3.2. Direct CS Method. The problem of recovering the sparse
X from themeasurement dataY is commonly known as mul-
tiple measurement vector (MMV) problem in CS [13]. Many
sparse recovery methods of this problem have considered
effect of the noise. Considering the effect of the noise, the
MMV problem can be formulated as

(X̂) = arg min(‖X‖1 +
𝜇

2
‖Y −ΦX‖2

𝐹
) , (6)

where 𝜇 is a balance constant related to the noise.
We rewrite model (4) as

Y = ΦX + (Γ − I)ΦX + E, (7)

where (Γ−I)ΦX is the error from the array gain uncertainties
which can be combined with the noise E. So, (7) can be
expressed as

Y = ΦX + Ẽ, (8)

where Ẽ = (Γ − I)ΦX + E. The revised model (8) can be
resolved directly by using the optimization problem of CS in
(6).

As was known to all, CS methods are sensitive to the
noise. So the performance of imaging recovery will degrade
when the noise is large even though (6) considers the noise.
So, this direct CS method can only be used well with small
array gain uncertainties. We will evaluate the performance of
this method in Section 4.

3.3. CS Method with Constraint of the Array Gain Uncertain.
As the method above regards the array gain uncertainties
as noise, the performance will degrade with large array gain
errors. In fact, we can regard both the imagematrixX and the
array gain uncertain Γ as the estimated value. Considering
the CS method, it seems natural to consider the following
optimization problem:

(X̂, Γ) = arg min(‖X‖1 +
𝜇

2
‖Y − ΓΦX‖2

𝐹
) . (9)

However, the optimization problem in (10) will lead a
trivial solution without further constraint on Γ or X [12]. In
order to construct a solvable optimization problem of the CS,
the constraint on trace of Γ should be considered.

Considering the noise reduction, we construct the follow-
ing optimization problem:

(X̂, Γ̂) = arg min(‖X‖1 +
𝜇

2


Γ
−1Y −ΦX

2

𝐹
)

s.t. tr (Γ−1) = 𝑀𝑁,

(10)

where 𝜇 is a balance coefficient which is selected according to
the noise level. The trace of the unknown gain matrix can be
derived as

tr (Γ−1) = tr (Γ−1
𝑡
⊗ Γ
−1

𝑟
) = tr (Γ−1

𝑡
) tr (Γ−1

𝑟
) . (11)

The estimate of X can be obtained by resolving the
optimization problem (11) and image of bistatic MIMO radar
is then reconstructed.

4. Simulation Results

In this section, we evaluate the performance of the proposed
bistatic MIMO radar sparse imaging methods and compare
them with the robust Capon beamforming method (RCB)
[14]. We consider bistatic MIMO radar with 20 transmit
elements and 20 receive elements. Both the transmit and
the receive antennas are uniform linear array with half-
wavelength space between adjacent elements. The radar will
be scanned across a transmit angular region range from 1

∘

to 10
∘ and a receive angular from 1

∘ to 10
∘. We place two

targets in the scene. Assume that two targets are located at
angles [𝜃

𝑡1
, 𝜃
𝑟1
] = [8

∘
, 3
∘
] and [𝜃

𝑡2
, 𝜃
𝑟2
] = [3

∘
, 8
∘
].The number

of snapshots is 20 for the sparse recovery methods and
500 for the RCB. The transmit array and receive array gain
uncertainties are generated by Γ

𝑡
= diag{exp[𝑁(0, 𝜎2

𝑡
)]} and

Γ
𝑟
= diag{exp[𝑁(0, 𝜎2

𝑟
)]}, where 𝜎

𝑡
and 𝜎

𝑟
are the parameter

governing the array gain. 𝑁(0, 𝜎2
𝑡
) denotes the Gaussian

distribution. We select the balance coefficients 𝜇 = 1 in both
the direct CS and the constraint CS methods.

Figure 2 shows the results of the image recovery using
the proposedmethodwith small array gain uncertainties; that
is, 𝜎
𝑡
= 𝜎
𝑟
= 0.1. It can be observed that both the proposed

methods and RCB method can recover the image. The direct
CS and constraint CS obtain almost equal performance and
the performance of RCB is better than the one of proposed
method. However, RCB needs very large amount of samples
to enable the algorithm to work. The results of the image
recovery with large array gain uncertainties are plotted in
Figure 3. It is shown that the recovery performance of con-
straint CS method is better than that of direct CS.The reason
had been discussed in Section 3.2. The performance of both
of the CS methods is better than that of RCB method even
though the RCB method uses 500 samples compared to 20
samples of the CS method. It implies that the direct CS
method is suitable to imaging recovery for bistatic MIMO
radar with large array gain errors in the case of small samples.



4 International Journal of Antennas and Propagation

2 4 6 8 10
1

2

3

4

5

6

7

8

9

10

11

Transmit angle (deg)

Re
ce

iv
e a

ng
le

 (d
eg

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Original image (𝑄 = 20)

Transmit angle (deg)

Re
ce

iv
e a

ng
le

 (d
eg

)

2 4 6 8 10
1

2

3

4

5

6

7

8

9

10

11

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Direcet CS method (𝑄 = 20)

Transmit angle (deg)

Re
ce

iv
e a

ng
le

 (d
eg

)

2 4 6 8 10
1

2

3

4

5

6

7

8

9

10

11

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) CS with array gain uncertain constraint (𝑄 = 20)

Transmit angle (deg)

Re
ce

iv
e a

ng
le

 (d
eg

)

2 4 6 8 10
1

2

3

4

5

6

7

8

9

10

11

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) Robust Capon method (𝑄 = 500)

Figure 2: The performance of the proposed method with small array gain uncertain (𝑀 = 𝑁 = 20, [𝜃
𝑡1
, 𝜃
𝑟1
] = [8

∘
, 3
∘
], [𝜃
𝑡1
, 𝜃
𝑟1
] = [3

∘
, 8
∘
],

𝑄 = 20, SNR = 10 dB, 𝜎
𝑡
= 𝜎
𝑟
= 0.1).

We defined the performance recovery coefficient (RPC)
𝛾 to evaluate the performance of the imaging. The RPC is
defined as

𝛾 =


𝑥


1
𝑥
2


𝑥1

2

𝑥2
2

, (12)

where 𝑥
1
represents the estimated target coefficient and

𝑥
2
represents the true target coefficient. RPC describes

the similarity of the true image and the recovering one.

Figure 4 plots the variation of the RPC of the CS with array
gain uncertain constraint, direct CS, and the RCB method
with array gain errors. It is shown that the performance of
RCB is better than that of the CS with array gain uncertain
constraint and direct CS methods in small array gain error
case. The performance of direct CS is better than that of
CS with array gain uncertain constraint in the case of small
errors. However, the performance of the CS with array gain
uncertain constraint method is stable in all of array errors.
When the array gain errors are large, the performance of
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Figure 3: The performance of the proposed method with large array gain uncertain (𝑀 = 𝑁 = 20, [𝜃
𝑡1
, 𝜃
𝑟1
] = [8

∘
, 3
∘
], [𝜃
𝑡1
, 𝜃
𝑟1
] = [3

∘
, 8
∘
],

𝑄 = 20, SNR = 10 dB, 𝜎
𝑡
= 𝜎
𝑟
= 0.8).

the error constraint CS is the best. The results confirm that
theCSwith array gain uncertain constraintmethod is suitable
to imaging recovery for bistatic MIMO radar with large array
gain errors in the case of small samples.

5. Conclusions

Sparse recovery based transmit-receive angle imaging
scheme is proposed for bistatic MIMO with array gain
uncertainties in this paper. The redundancy of the transmit

and receive angles in the same range cell is exploited to
construct the sparse model. CS based algorithm with
consideration of both transmit and receive array gain errors
is presented for image recovery. Simulation results show that
the transmit-receive angle image can be recovered well in
bistatic MIMO radar with small number of snapshots in the
case of large array gain errors by using sparse recovery based
method. Further works should be done to develop sparse
recovery based imaging method for bistatic MIMO radar
when both array gain and phase errors exist.
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[10] D. Malioutov, M. Çetin, and A. S. Willsky, “A sparse signal
reconstruction perspective for source localization with sensor
arrays,” IEEE Transactions on Signal Processing, vol. 53, no. 8,
pp. 3010–3022, 2005.

[11] M. M. Hyder and K. Mahata, “A joint sparse signal representa-
tion perspective for target detection using bistatic MIMO radar
system,” in Proceedings of the 17th International Conference on
Digital Signal Processing (DSP ’11), pp. 1–5, Corfu, Greece, July
2011.

[12] R. Gribonval, G. Chardon, and L. Daudet, “Blind calibration for
compressed sensing by convex optimization,” in Proceedings of
the IEEE Conference on Acoustic, Speech and Signal Processing
(ICASSP ’12), pp. 2713–2716, Kyoto, Japan, March 2012.

[13] S. F. Cotter, B.D. Rao, K. Engan, andK.Kreutz-Delgado, “Sparse
solutions to linear inverse problemswithmultiplemeasurement
vectors,” IEEE Transactions on Signal Processing, vol. 53, no. 7,
pp. 2477–2488, 2005.

[14] J. Li and P. Stoica, Robust Adaptive Beamforming, John Wiley &
Sons, Hoboken, NJ, USA, 2006.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


