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Many inverse scattering problems concern the detection and localisation of point-like scatterers which are sparsely enclosed within
a prescribed investigation domain.Therefore, it looks like a good option to tackle the problem by applying reconstruction methods
that are properly tailored for such a type of scatterers or that naturally enforce sparsity in the reconstructions. Accordingly, in this
paper we compare the time reversal-MUSIC and the compressed sensing. The study develops through numerical examples and
focuses on the role of noise in data and mutual coupling between the scatterers.

1. Introduction

The problem of detecting and localising point-like scatterers
(i.e., small in terms of wavelength) is a classical inverse
scattering problem which is relevant in a number of radar
imaging applications. For instance, in GPR imaging it can
occur in concrete pillar diagnostics in order to detect and
localise the embedded rebar. This application is of high
relevance in diagnostic operations not only to assess the
structural stability of concrete structures [1, 2] but also to
inspect them after disaster events (e.g., earthquakes) [3].
Another very important field of application concerns early
breast cancer detection where the tumour actually can be
considered to be a small scatterer [4].

In order to address the imaging problem for such a kind
of scatterers, different methods can be taken from literature.
Among them we mention the migration algorithms [5], the
distributional approach [6], the time reversal [7], and the
MUSIC [8]. In particular, the latter three methods have been
properly conceived for point-like scatterers. More recently,
further methods based on the compressed sensing theory
have been exploited as well [2]. These methods basically
enforce sparsity in the reconstructions and therefore appear
suitable to deal with point-like scatterers, which represent a
sparse scattering scene.

In this paper, we focus on the time reversal-MUSIC
(TRM) and the compressed sensing (CS) approach [9] in

order to get a comparison between a method that takes
into account the scatterers’ features (TRM) and one which is
founded on a sparse optimisation paradigm (CS) [2].

In the framework of radar imaging applications, CS
approach is addressed in [10]. The comparison between CS
andMUSIC algorithm is shown, for example, inDOAestima-
tion [11–13], using multiple-input multiple-output (MIMO)
radar in [14]. The hybrid method, called compressive-
MUSIC, is introduced in [15] where the Multiple Measure-
ment Vector (MMV) problem is addressed.

The electromagnetic scattering is modelled in terms
of a nonlinear operator because of the mutual scattering
occurring between the scatterers. Accordingly, tackling the
inversion through the CS approach entails dealing with a
nonlinear inverse scattering problem [9] which is fraught
with reliability drawbacks (due to the false solutions) and
burdenedwith computational complexity.Therefore, in order
to avoid the drawbacks affecting optimisation algorithms
implementing nonlinear inversions, here we choose to model
the scattering phenomenon by a linear model whilst the CS
approach is used. In particular, the linearmodel is established
as follows. First, mutual scattering among different scatterers
is neglected.Then, assuming that the scatterers’ sizes are small
as compared to the probing wavelength, they are represented
by delta distributions just supported over the scatterers’
centres. This is the so-called distributional model introduced
in [6].Of course, the corresponding reconstruction algorithm
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Figure 1: Measurement configuration.

(being linear) offers relevant advantages in terms of the
computational effectiveness and reliability (no local minima
occur) but the role of the neglectedmutual scatteringmust be
studied.

As to the TRM algorithm, it works by projecting the
so-called steering vector on the “noise subspace.” Now,
the point is that such a noise subspace is not affected by
mutual scattering. Therefore, TRM does not require a linear
approximation for the scattering.

The analysis is developed for a 2D scalar scattering
configuration. In particular, for the sake of simplicity, a
homogeneous background medium is considered. Layered
background can be easily addressed provided to exploit the
pertinent Green function.The considered scenario, however,
captures well the most important features against which we
intend to compare the two methods. In particular, we are
mainly interested in comparing TRM and CS against mutual
scattering and noise. To this end, an ensemble of numerical
experiments will be presented.

The plan of the paper is the following. In Sections 2
and 3, the TRM and CS inversion algorithms are briefly
recalled along with the pertinent scatteringmodels. Section 4
is devoted to the presentation of the numerical examples.
Conclusions end the paper.

2. TR-MUSIC

We refer to a scalar 2D geometry (invariance occurs along
the 𝑧-axis) depicted in Figure 1. An ensemble of cylindrical
scatterers, with cross sections much lower than the relevant
wavelength, is probed by uniformfilamentary current sources
(directed along 𝑧 as well) whereas the scattered field is
collected all around the scene. The point targets are located
at positions 𝑟

𝑚
, 𝑚 = 1, . . . , 𝑀, within a background

medium characterised by an outgoing scalar Green function
𝐺(𝑟, 𝑟



, 𝑓), 𝑓 denoting the temporal frequency. 𝑁 source
points, taken uniformly at 𝑟

𝑠𝑖
, 𝑖 = 1, . . . , 𝑁, over a circle Ω

enclosing the scattering scene (𝑁 > 𝑀) and 𝑁 observation
points at 𝑟

𝑜𝑗
with 𝑗 = 1, . . . , 𝑁 are considered. We assume

that transmitting and receiving positions coincide. However,

for each transmitting antenna the scattered field is collected
over all the receiving antennas so that amultistatic/multiview
configuration is addressed. The collected scattered fields are
arranged to form the so-called 𝑁 × 𝑁 multistatic data matrix
(MDM) 𝐾 whose 𝑛th column represents the scattered field
vector when the 𝑛th source is firing. Accordingly,

𝐸
𝑆

= 𝐾 𝐽, (1)

where 𝐸
𝑆
represents the scattered field collected over all 𝑟

𝑜𝑖

and 𝐽 is the column vector of the exciting currents.
The multistatic data matrix can be factorised as follows:

𝐾 = 𝐺 𝐻
−1

𝐺
𝑇

. (2)

(⋅)
𝑇 represents the transpose operator, 𝐺 is the 𝑁 × 𝑀

propagator matrix from the scatterers to the observation
points whose 𝑚th column is 𝑔

𝑚

= [𝐺(𝑟
𝑜1

, 𝑟
𝑚

), 𝐺(𝑟
𝑜2

, 𝑟
𝑚

), . . . ,

𝐺(𝑟
𝑜𝑁

, 𝑟
𝑚

)]
𝑇, and 𝐻

−1 is the matrix that takes into account
interactions between the scatterers.

The matrix 𝐻
−1 can be expressed as

𝐻
−1

= 𝜏 (𝐼 − 𝐺
𝑖

𝜏)

−1

, (3)

where 𝜏 is 𝑀 × 𝑀 diagonal matrix accounting for the objects
scattering coefficients and 𝐺

𝑖

is an 𝑀 × 𝑀 matrix, with zero
diagonal entries, which takes into account the propagation
paths between the different objects.

TheTRMalgorithm is based on the singular value decom-
position (SVD) of 𝐾 which consists of those vectors that
verify 𝐾 V

𝑖
= 𝜎
𝑖
𝑢
𝑖
: V
𝑖
and 𝑢

𝑖
are the 𝑖th left and right singular

vectors, respectively, and 𝜎
𝑖
is the corresponding 𝑖th singular

value. The rank of 𝐾 is 𝑀 and, accordingly, 𝐾 possess 𝑀 sin-
gular values, {𝜎

𝑖
}, 𝑖 = 1, . . . , 𝑀, different from zero.Moreover,

the corresponding right singular functions, {𝑢
𝑖
}, 𝑖 = 1, . . . , 𝑀,

span the range of 𝐾; that is, R(𝐾) = span{𝑢
1
, . . . , 𝑢

𝑀
}.

Hence, the dimension of the range of 𝐾 is equal to number
of scatterers 𝑀. The “noise” subspace is spanned by the right
singular functions corresponding to singular values equal
to zero; that is, N(𝐾) = span{𝑢

𝑀+1
, . . . , 𝑢

𝑁
}. Clearly, it is

orthogonal to R(𝐾) so that 𝐶
𝑁

= R(𝐾) ⊕ N(𝐾). At the
same time, the range of 𝐾 is spanned by the columns of 𝐺

(R(𝐾) = span{𝑔
1

, . . . , 𝑔
𝑀

}), so that any 𝑔
𝑚

is orthogonal to
N(𝐾). Accordingly, the positions of the point-like scattering
objects can be detected by defining the following functional
(pseudospectrum) as 𝑟

𝑘
ranges within the investigated area𝐷

[16] at prescribed discrete points:

𝑃 (𝑟
𝑘
) =

1

∑
𝜎𝑖=0






𝑢
𝐻

𝑖
𝑔 (𝑟
𝑘
) /






𝑔 (𝑟
𝑘
)













2
, (4)

where (⋅)
𝐻 is the Hermitian operator. The objects positions

are then identified where the pseudospectrum reaches its
maxima.

As is well known, in presence of noise, it is difficult to
determine the exact number of targets and hence the noise
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subspace. This is because signal and noise singular values are
nomore very well separated (under ideal cases, noise singular
values are theoretically equal to zero). A wrong estimation
of the noise subspace leads to a detriment of the achievable
performance. In order to cope with this problem, the number
of targets (or equivalently, the number of signal singular
values) is identified by exploiting the “Akaike Information
Criterion” (AIC) [17]. AIC basically measures the relative
cross entropy between the signal and noise singular values so
that the number of signal singular values is identified by the
minimum of such a measure.

3. Compressive Sensing

In order to present the CS approach, as we mentioned in
the Introduction, a linear model for the scattering is first
established. To this end, first multiple scattering between the
scatterers is neglected. Accordingly, the scattered field reads
as

𝐸
𝑆

(𝑟
𝑜
, 𝑟
𝑠
) =

𝑀

∑

𝑚=1

𝜏
𝑚

𝐺 (𝑟
𝑜
, 𝑟
𝑚

) 𝐺 (𝑟
𝑠
, 𝑟
𝑚

) , (5)

where 𝜏
𝑚

is the scattering coefficient of the 𝑚th object.
However, the obtainedmodel is not yet linear as the unknown
positions appear embodied within the Green functions. On
introducing the distributional unknown representation, that
is, 𝛾(𝑟) = ∑

𝑀

𝑚=1
𝜏
𝑚

𝛿(𝑟 − 𝑟
𝑚

) (which is the reflectivity function
of the overall scenario), it yields

𝐸
𝑆

(𝑟
𝑜
, 𝑟
𝑠
) = ∬

𝐷

𝐺 (𝑟
𝑜
, 𝑟) 𝐺 (𝑟

𝑠
, 𝑟) 𝛾 (𝑟) 𝑑𝑟, (6)

where now the unknown cylinders’ positions 𝑟
𝑚
are repre-

sented as the support of 𝛿(⋅) distributions. Inverting (6) for 𝛾

is actually a linear inverse problem.
The discretised counterpart of (6) is given by

𝐸
𝑆

= 𝐴 𝛾, (7)

where 𝐴 is the matrix that represents the discretised linear
operator in (6) whose elements 𝐴

𝑗𝑖
are {𝐺(𝑟

𝑜𝑗
, 𝑟
𝑘
)𝐺(𝑟
𝑠𝑖
, 𝑟
𝑘
)}

and 𝛾 = {𝛾(𝑟
𝑘
)}. Assuming that the investigation domain 𝐷 is

pixelated in 𝐿 points, thematrix𝐴 actually is a linear operator
acting between 𝐶

𝐿 and 𝐶
𝑁
2

.
At this juncture, it is interesting to note that different ways

data are exploited by the two algorithms. Indeed, while the CS
exploits all the scattered field data (that actually ∈ 𝐶

𝑁
2

), the
TRM works within 𝐶

𝑁 as the different views of illumination
are basically used to restore the rank of 𝐾.

In order to invert (7), we consider a constrained optimi-
sation method that exploits the a priori information about
the sparse nature of the solution (i.e., a solution that contains
the least number of nonzero elements) as a regularising tool.
More in detail, the general regularisation problem can be cast
as

𝛾 = argmin 




𝛾





𝑞

+ 𝛼






𝐴 𝛾 − 𝐸

𝑆





𝑝

(8)

with 𝛼 being the regularisation parameter.
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Figure 2: Source/observation positions.

According to the CS approach, optimisation in (8) for
𝑞 = 1, 𝑝 = 2 is inherently convex and can be easily
implemented by fast algorithms [9, 18] by addressing the
equivalent problem

min 




𝛾





1

subject to 




𝐴 𝛾 − 𝐸

𝑆





2

< 𝜂.

(9)

This procedure is known as the basis pursuit denois-
ing (BPDN) problem. Analogously, it is possible to follow
the LASSO (least absolute shrinkage and selection operator)
approach [19]

min 




𝐴 𝛾 − 𝐸

𝑆





2

subject to 




𝛾





1

< 𝜌.

(10)

Note that the sparseness of the reconstructed image is
strictly controlled by the parameters 𝜂 and 𝜌. For example,
the lower the parameter 𝜌 the sparser the reconstruction, and
vice versa.Therefore, the choice of 𝜌 is a crucial question that
strongly affects reconstruction quality.

It is worth remarking that while in TRM the crucial point
to address before imaging was the selection of the signal
subspace dimension, the counterpart for CS is the choice
of the regularisation parameters 𝜂 or 𝜌 (depending on the
adopted minimisation strategy). To cope with this problem,
an 𝐿-curve method is used [20].

4. Numerical Results

The goal of this section is to compare the achievable per-
formance by the two approaches at hand. To this end,
a single frequency multistatic/multiview configuration is
considered with the scattered field data collected over 𝑁 =

20 sources/observation positions deployed uniformly over a
circle of radius 𝑅 = 𝜆 (𝜆 being the wavelength) enclosing
the scattering scene, as shown in Figure 2. Metallic point-
like objects are considered as scatterers, which mimics, for
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Figure 3: Singular value behaviour: (a) in absence of noise on data, (b) in presence of noise on data.

example, metallic rebar embedded in a masonry structure.
Moreover, as the antennas are very close to the pillar, for
the sake of simplicity, the air-pillar interface is neglected
and a homogeneous background medium with 𝜖

𝑟
= 9 (i.e.,

resembling the one of concrete) is considered.
For each test case, we report the pseudospectrum 𝑃(𝑟

𝑘
)

(4) and the reflectivity 𝛾(𝑟
𝑘
) (8) functions, respectively.

4.1. Setting TRM and CS. As we have anticipated in the
previous sections, both the TRM and CS require defining
some parameters (or a strategy to select them) before the
imaging stage can be actually run. In particular, for TRM
the noise subspace needs to be identified whereas for CS
the regularisation parameter (𝜂 or 𝜌) should be fixed. As to
the TRM, we have chosen to adopt the Akaike Criterion to
select the most relevant singular values; instead, an L-curve
approach is chosen to fix the regularisation parameter in the
CS inversions.

In this first set of numerical experiments, we just check
the appropriateness of such choices. To this end, a scattering
scenario consisting of𝑀 = 5 targets located at (−0.5𝜆, −0.5𝜆),
(−0.5𝜆, 0.5𝜆), (0.5𝜆, 0.5𝜆), (0.5𝜆, −0.5𝜆), and (0𝜆, 0𝜆) is con-
sidered. Data are corrupted by an additive white Gaussian
noise with a signal-to-noise ratio (SNR) equal to 20 dB.

Figures 3–6 refer to TRM. As expected (see Figure 3(a)),
in absence of noise the singular values experience an abrupt
decay which allows clearly discerning between the signal
and the noise singular values. Actually, five scatterers can be
clearly understood. When noise corrupts data (Figure 3(b))
the mentioned abrupt transition is very much smoothed so
as to make it difficult to identify the noise subspace. In this
case, for example, the visual inspection of the singular value
behaviour can suggest thresholding the singular values at 𝑛 =

4. This would lead to a detriment of the achievable resolution
as is shown in Figure 4 where the target located at (0, 0) is
missed at all.

We now switch to considering the AIC. The behaviour of
AIC is shown in Figure 5. As can be seen, theminimum is got
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Figure 4: TRM choosing the threshold singular values at 𝑛 = 4.

at 𝑛 = 5, which is in correspondence with the actual number
of scatterers. In this case, having succeeded in identifying
the noise subspace, the corresponding reconstruction allows
detecting and locating all the scatterers in the scene (see
Figure 6).

Let us now turn to considering the CS. As said above, the
L-curve criterion is used to determine the optimum value of
𝜂 and 𝜌. In Figures 7(a) and 8 the curves (‖𝐴𝛾 − 𝐸

𝑆
‖
2
, ‖𝛾‖
1
) in

log-log scale are plotted as 𝜂 and 𝜌 vary within [0.05, 3] and
[0.3, 20] with a step of 0.05, respectively. In both cases, those
curves are L shaped and hence can be used to select the reg-
ularisation parameter. However, the BPDN criterion allows
exploring a wider range of the L-curve with a narrower range
of 𝜂 (cf. Figures 7(a) and 8). For this reason, in the following
section, in order to decrease the computational cost, BPDN
criterion is preferred. The rest of Figure 7 shows how the
choice of the regularisation parameters is crucial. Actually,
three reconstructions corresponding to three different values
of 𝜂 (reported in Figure 7(a)) are shown. These figures allow
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appreciating the effectiveness of the strategy for choosing the
regularisation parameter.

Reconstruction results reported in Figures 6 and 7 also
show that both methods are effective in locating point-
like scatterers when the targets are well resolved by the
configuration, that is, when the distance from the target is
larger than 𝜆/4.

4.2. Reconstruction Results. Equippedwith the criteria for the
selection of the noise subspace for TRM and the regulari-
sation parameter for CS, we now turn to addressing some
reconstruction examples in order to more deeply compare
the methods. We are particularly interested in scattering
configurations where the targets are closely located to each
other as for well-resolved scatterers we have already shown
that both methods work well.

First of all, a glimpse of two-point resolution is given
as this is often used to characterise the performance of an
imaging method. So two targets are considered to be located
along the 𝑥-axis and at a distance of 𝜆/2 and 𝜆/5, the latter
being below the classical diffraction limits. Furthermore, data

are corrupted by additive zero mean white Gaussian noise
so as to have a SNR = 15 dB and SNR = 20 dB. Finally,
both linear (LD) and nonlinear (i.e., accounting multiple
scattering between the targets) data (NLD) are exploited.The
corresponding reconstructions are shown in Figures 9 and 10.

As can be seen from Figure 9, TRM succeeds in locat-
ing both scatterers in all the considered cases. Also the
effect of noise is clear since it entails a smoothing of the
pseudospectrum when the SNR lowers. Note also that TRM
reconstructions have been obtained by employing NLD.
Reconstructions with LD are very much the same and have
been omitted. Accordingly, it can be concluded that TRM is
not affected by multiple scattering but only by the noise.

Figure 10 reports the reconstructions obtained by CS. In
this case, both LD and NLD are considered. From such a fig-
ure, first, how sparse optimisation works can be appreciated
as most of the reconstructions are set to zero. Moreover, it
can be deduced that CS reconstructions are not too much
affected by the level of noise. This is clear by comparing lines
of different colours that refer to the same case (i.e., the same
distance between the scatterers and the same kind of data, LD
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Figure 7: (a) L-curve using BPDN criterion, (b) reconstruction with 𝜂 = 0.1, (c) reconstruction with 𝜂 = 1, and (d) reconstruction with
𝜂 = 3.
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Figure 10: Analysing two-point resolution for CS. Cut view along the 𝑥-axis of the normalised CS reconstruction.

or NLD). Instead, reconstructions are very much affected by
the mutual scattering (cf. dotted and solid lines). Of course,
this is particularly true as the scatterers are more closely
located (because multiple scattering becomes more relevant):
in this case the two scatterers are not discerned. Therefore,
it can be concluded that CS is more sensitive to model error
than noise (note that this is just the opposite as for TRM) and
the achievable two-point resolution is worse than the one that
TRM allows obtaining.

Let us now pass to consider the case of more scatterers
which on average are locatedmore far apart than the previous

case (forwhichwe already know thatCS fails). Scattering con-
figurations consisting of three and four scatterers are consid-
ered. The three targets are located at (0.4𝜆, 0𝜆), (0.6𝜆, 0.2𝜆),
and (0.8𝜆, 0𝜆).The four-scatterer layout is obtained by adding
a further target at (0.6𝜆, −0.2𝜆).

The reconstructions obtained by TRM are reported in
Figure 11. As can be seen, in the case of three scatterers TRM
works in locating the scatterers even though (as expected)
when the SNR lowers (for the case at hand the SNR reduces
from 20 dB to 10 dB) the pseudospectrum smoothes so
that its peaks have a lower dynamic as compared to the
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Figure 11: Normalised TRM reconstructions for three scatterers ((a) and (b)) and four scatterers ((c) and (d)). NL noisy data have been
exploited with SNR = 20 dB for (a) and (c) and SNR = 10 dB for (b) and (d). Actual scatterers’ positions are denoted by the black circle.

reconstruction noise pedestal. Note that the degradation of
the achievable performance due to the noise is the same as
shown in the previous figures where it can be more clearly
appreciated. When the number of scatterers increases to four
TRM fails to resolve the scatterers’ locations even for SNR =

20 dB. This outcome is perfectly consistent with the results
shown in [21]. Indeed, in such a paper it was shown that, for a
2D problem, TRM works as long as the number of scatterers
enclosed within a circle of radius 𝑅 does not exceed 4𝜋𝑅/𝜆,
the latter being the so-called number of degrees of freedom
(NDF) of the radiation operator defined on such a circle.
Basically, the NDF corresponds to the maximum signal space
dimension in the case of noisy data. Therefore, if the number
of scatterers is higher than the NDF even a small amount of
noise leads TRM to fail. This is what happened while passing
from three to four scatterers. Actually, this example has been
selected because it allows clearly highlighting TRM faults.
Furthermore, it suggests inspection if CS can work better.
The reconstructions obtained by CS are reported in Figure 12.
As can be appreciated, in the case of linear data, CS works
fairly well. Instead, when NLD are exploited CS does not
work. Indeed, while for the three scatterers a delocalisation
occurs for the case of four scatterers one of the scatterers
is completely missed and a spurious target appears. Once
again it can be concluded that while TRM performance

is mainly limited by noise, CS instead is strongly affected
by multiple scattering. Accordingly, in order to improve
TRM performance a denoising scheme can be run before
imaging. Instead, mutual scattering cannot be in general
filtered out. As a limit case we consider noiseless NLD. In
this circumstance, TRMworks perfectly whereas CS outcome
does not significantly change (see Figure 13).

5. Conclusions

In this paper the problem of detecting point-like targets has
been addressed. The TRM and the CS approaches have been
compared for a scalar 2D geometry where the scatterers were
embedded within a homogeneous host medium. The study
has been developed through some numerical results.

The outcome of the study is the following:

(i) for well-resolved scatterers both the methods are
effective;

(ii) for closely located scatterers the TRM performance is
limited by the available SNR whereas CS is strongly
affected by multiple scattering between the targets;

(iii) if the SNR is relatively high TRM works also for
closely located scatterers and outperforms CS;
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Figure 12: Normalised CS reconstructions for three scatterers ((a) and (b)) and four scatterers ((c) and (d)) with SNR = 20 dB for all panels.
In (a) and (c) LD have been exploited whereas NLD have been used in (b) and (d). Actual scatterers’ positions are denoted by the black circle.
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Figure 13: Comparing TRM (a) and CS (b) normalised reconstructions with noiseless NLD.

(iv) TRM is faster than CS. This is because CS relies on
two nested iterative procedures, one to build the L-
curve and one, for each regularisation parameter, to
solve the constrained optimisation problem. More in

detail, by using a standard laptop PC, the examples
presented in the paper required a fraction of second
for TRM while CS runs at best in 5 minutes and at
worst in 14 minutes.
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