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An analytical method is presented which makes it possible to derive exact explicit expressions for the time-harmonic surface fields
excited by a small circular loop antenna placed on the top surface of plane layered earth. The developed procedure leads to casting
the complete integral representations for the EM field components into forms suitable for application of Cauchy’s integral formula.
As a result, the surface fields are expressed as sums of Hankel functions. Numerical simulations are performed to show the validity
and accuracy of the proposed solution.

1. Introduction

The need to evaluate the electromagnetic fields radiated by
horizontal loop antennas located in close proximity to layered
media arises in a variety of applications of scientific interest,
especially in the areas of electromagnetics [1–9], close-to-
the-surface radio communication [10, 11], and geophysical
prospecting [11–13]. An excellent illustration of such appli-
cations is electromagnetic induction sounding technique
[12, 14, 15], which allows acquiring information about the
subsurface structure of a terrestrial area. The technique
consists of two steps. At first, the fields generated by a current-
carrying circular loop antenna lying on the surface of the
medium to be explored are measured at a discrete set of
frequencies. Next, the presence of shallow buried objects,
or the geometrical and EM properties of the structure, is
deduced by interpreting the recorded experimental data
through matching with the theoretical response curves asso-
ciated with standard homogeneous or layered earth models
[12, 14, 15]. It is easily understood how, for correct data
interpretation, high accuracy is required when computing
such theoretical response curves.

This paper will focus on the problem of an electrically
small circular loop antenna (vertical magnetic dipole) lying
on the surface of 𝑁-layer plane stratified earth. To date,

the fields of a loop source in the presence of a layered
ground are not known in closed form, and evaluation of
their complete integral representations has been revealed to
be challenging from both analytical and numerical points of
view. When available, analytical solutions either pertain to
simple earth models, like the single-layer configuration [16],
or follow from introducing simplifying assumptions. Exam-
ples of approximate solutions are the explicit series-form
expressions that result from applying standard asymptotic
techniques, such as the method of steepest descent (saddle-
point method) [11, 12, 17–19]. The obtained formulas are easy
to use but are valid under the restrictive assumption that the
source-receiver distance is electrically large, that is, in the
far-field region of the antenna. Similar considerations can
be made with regard to the low-frequency or quasi-static
expressions for the fields [7, 12, 13, 20], which are accurate,
subject to the condition that the displacement currents are
negligible in both the layered material medium and the air
space above it.

On the other hand, numerical computation of the field
integrals through standard numerical approaches, like Gaus-
sian quadrature, is often made difficult and impractical by
the oscillating behavior of the integrands and the slow
convergence of their envelope, especially when both source
and field points lie at the air-medium interface [1, 12, 21].
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Figure 1: Sketch of a vertical magnetic dipole on a multilayer
ground.

In an attempt to overcome these drawbacks, some papers
document extensive usage of the digital linear filter technique
in place of the Gaussian quadrature approach [22, 23].
Unfortunately, it has been recently shown [9, 24, 25] that
any digital filter is designed and optimized for a specific
known integral transform (the so-called test function) and
may lead to uncertain results when applied to the calculation
of different integrals.

The aim of this work is to derive exact explicit expressions
for the fields excited by the loop source at the air-medium
interface. The theoretical development is organized as fol-
lows. First, the Sommerfeld Integrals describing the fields are
split into two terms, that is, the residue contributions from the
poles of the integrands and the branch-cut integrals due to the
propagation constants in free space and in the bottom layer
of the stratified medium. Next, such propagation constants
are extracted from the integrands of the branch-cut integrals
and replaced with the sums of partial fractions generated by
Newton’s iterative method [26, 27]. This makes it possible
to apply Cauchy’s integral formula and obtain explicit series
representations for the branch-cut integrals. As a result, the
Sommerfeld Integrals are converted into infinite sum of
Hankel functions. The advantage of the presented approach
resides in the fact that the sequence of the sums of partial
fractions that are used in place of each propagation constant
is convergent, as Newton’s method exhibits quadratic rate of
convergence if applied to the computation of a square root
[26]. This implies that the derived series representations for
the fields are exact.

2. Theory

Consider a vertical magnetic dipole of moment 𝑚𝑒𝑗𝜔𝑡 lying
on the surface of a flat 𝑁-layer lossy medium, as shown in
Figure 1. Due to symmetry about the axis of the dipole, a
cylindrical coordinate system (𝑟, 𝜑, 𝑧) is suitably introduced.
Thedielectric permittivity and electric conductivity of the 𝑛th
layer are denoted by 𝜖𝑛 and𝜎𝑛, respectively, while themedium

is assumed to have themagnetic permeability of free space 𝜇0.
The time-harmonic EM field components generated by the
dipole in the air space (the zeroth layer, 𝑧 < 0)may be derived
from an electric vector potential which has only 𝑧 component
𝐹. If the time factor 𝑒𝑗𝜔𝑡 is assumed, it reads

𝐸𝜑 =
𝜕𝐹

𝜕𝜌
,
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1

𝑗𝜔𝜇0

𝜕
2
𝐹

𝜕𝜌𝜕𝑧
,
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1

𝑗𝜔𝜇0

(
𝜕
2

𝜕𝜌2
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𝜕
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)𝐹,

(1)

where 𝐹 = 𝐹𝑑 + 𝐹𝑟, with
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𝜆
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0 (𝜆𝜌) 𝑑𝜆, (3)

respectively, being the direct and reflected potentials. In (2)
and (3),𝐻(1)0 (⋅) is the zeroth-orderHankel function of the first
kind, while

𝑅
TE
=
𝑌0 − 𝑌̂1

𝑌0 + 𝑌̂1

(4)

is the plane wave reflection coefficient at 𝑧 = 𝑧0 = 0, with
𝑌0 and 𝑌̂1 being the intrinsic admittance of free space and the
surface admittance at 𝑧0. The intrinsic admittance of the 𝑛th
layer is given by

𝑌𝑛 =
𝑢𝑛

𝑗𝜔𝜇𝑛

, (5)

with

𝑢𝑛 = √𝜆
2 − 𝑘2𝑛, Re [𝑢𝑛] > 0, (6)

𝑘
2
𝑛 = 𝜔
2
𝜇𝑛𝜖𝑛 − 𝑗𝜔𝜇𝑛𝜎𝑛, (7)

while, for 𝑁 layers, the surface admittance at 𝑧 = 𝑧𝑛−1 is
obtained through the recurrence relation

𝑌̂𝑛 = 𝑌𝑛

𝑌̂𝑛+1 + 𝑌𝑛 tanh [𝑢𝑛 (𝑧𝑛 − 𝑧𝑛−1)]
𝑌𝑛 + 𝑌̂𝑛+1 tanh [𝑢𝑛 (𝑧𝑛 − 𝑧𝑛−1)]

,

𝑛 = 𝑁 − 1, . . . , 1,

(8)

with

𝑌̂𝑁 = 𝑌𝑁. (9)

The reflected field may be split into two parts, that is, the
ideal reflected field (the field of a negative image) and a
contribution due to the imperfect conductivity of the earth.
Use of the identity

𝑅
TE
= −1 +

2𝑌0

𝑌0 + 𝑌̂1

(10)
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Figure 2: Deformed integration contour for the Sommerfeld Inte-
grals.

in (3) allows concluding that the direct and image fields
exactly cancel out at all points in the air space. Hence, the
total potential reads

𝐹 =
𝑗𝜔𝜇0𝑚

4𝜋
∫

∞

∞𝑒𝑗𝜋

𝑌0𝑒
𝑢0𝑧

𝑌0 + 𝑌̂1

𝜆

𝑢0

𝐻
(1)
0 (𝜆𝜌) 𝑑𝜆

=
𝑗𝜔𝜇0𝑚

4𝜋
∫

∞

∞𝑒𝑗𝜋

𝑒
𝑢0𝑧

𝑢0 + 𝑗𝜔𝜇0𝑌̂1

𝐻
(1)
0 (𝜆𝜌) 𝜆𝑑𝜆.

(11)

The fraction under the integral sign has a number of pole
singularities, plus the branch point singularities at 𝜆 = ±𝑘0
and 𝜆 = ±𝑘𝑁. It is interesting to note that the points
𝜆 = ±𝑘1, 𝜆 = ±𝑘2, . . . , 𝜆 = ±𝑘𝑁−1 are not branch points
of the integrand, as the fraction term is an even function
of 𝑢1, 𝑢2, . . . , 𝑢𝑁−1. We now deform the integration path to
the upper infinite semicircle 𝐶 centered at the origin of the
complex 𝜆-plane, leaving out all the singularities located in
the first and second quadrants, as indicated in Figure 2. The
result of the deformation is a new integration path constituted
by𝐶, the two lines wrapped around the branch cuts, that is, Γ0
and Γ𝑁, and a number of infinitesimal circles around the poles
of the integrand. It is not difficult to prove that the infinite
semicircle does not contribute to the integral. In fact, for large
values of |𝜆|, the Hankel function may be replaced with its
asymptotic form [28]

𝐻
(1)
0 (𝜆𝜌) ≅ √

2

𝑗𝜋𝜆𝜌
𝑒
𝑗𝜆𝜌
, (12)

and the integrand in (11) becomes suitable for application of
Jordan’s Lemma [29], which states the following upper bound:
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. (13)

Since, in the air space, factor 𝑒𝑢0𝑧 decays exponentially with
increasing |𝜆|, the right-hand side of (13) must vanish, and
so does the integral along 𝐶. As a consequence, 𝐹 may be
expressed as

𝐹 =
𝑗𝜔𝜇0𝑚

4𝜋
∫
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𝑒
𝑢0𝑧
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𝐻
(1)
0 (𝜆𝜌) 𝜆𝑑𝜆, (14)

where Γ is the contour consisting of Γ0, Γ𝑁, and the
infinitesimal circles. It should be observed that the branch-
cut integrals along Γ0 and Γ𝑁 describe the above-surface
groundwave and the lateral-wave field, respectively, while the
integrals around the poles are trapped-surface-wave terms
[17].

The scope of this work is to exactly evaluate the field
components at the air-ground interface. To this goal, we
substitute (14) into (1) and take the limit as 𝑧 → 0

−. It yields
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𝑗𝜔𝜇0𝑚
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, (15)

𝐻𝜌 =
𝑚

4𝜋

𝜕𝑆1

𝜕𝜌
, (16)

𝐻𝑧 = −
𝑚

4𝜋
(
𝜕
2

𝜕𝜌2
+
1

𝜌

𝜕

𝜕𝜌
) 𝑆0, (17)

with
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Quantity 𝑆ℎ may be rewritten as

𝑆ℎ = 𝑆
(0)

ℎ
+ 𝑆
(𝑁)

ℎ
+ 𝑆
(𝑝)

ℎ
, (19)

where

𝑆
(𝑛)

ℎ
= ∫
Γ𝑛
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(1)
0 (𝜆𝜌) 𝜆𝑑𝜆, 𝑛 = 0,𝑁, (20)

is the integral along Γ𝑛, while 𝑆
(𝑝)

ℎ
is the contribution from

the residues of the integrand at the poles of 𝑓ℎ. The explicit
expression for 𝑆(𝑝)

ℎ
follows from applying Cauchy’s theorem

[29]. It yields

𝑆
(𝑝)

ℎ
= 2𝜋𝑗∑

𝑖

R𝑖 [𝑓ℎ (𝜆)𝐻
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= 2𝜋𝑗∑

𝑖

𝐻
(1)
0 (𝜆𝑖𝜌) 𝜆𝑖
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𝜆=𝜆𝑖

,

(21)

where R𝑖[⋅] denotes the residue at the generic pole 𝜆𝑖 (𝑖 =
1, 2, . . .). On the other hand, to evaluate 𝑆(0)

ℎ
and 𝑆(𝑁)

ℎ
, it

is convenient to extract the square root terms 𝑢0 and 𝑢𝑁
from 𝑓ℎ. This task may be accomplished through letting
𝑓ℎ(𝜆) = 𝜙ℎ(𝑢0, 𝑢𝑁) and then applying the branch-cut
extraction procedure:

𝜙ℎ = 𝜙
(𝑒𝑒)

ℎ
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ℎ
𝑢𝑁 + 𝜙
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ℎ
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ℎ
𝑢0𝑢𝑁, (22)
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where
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𝜙
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𝜙
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ℎ ) , (26)

with

𝜙
±±
ℎ = 𝜙ℎ (±𝑢0, ±𝑢𝑁) . (27)

It is straightforward to verify that functions 𝜙(𝑒𝑒)
ℎ

, 𝜙(𝑒𝑜)
ℎ

, 𝜙(𝑜𝑒)
ℎ

,
and𝜙(𝑜𝑜)
ℎ

are even in both𝑢0 and𝑢𝑁 and, hence, do not exhibit
branch cuts. Next, we use Newton’s method to convert 𝑢0 and
𝑢𝑁 into rational functions, so as to replace the branch cuts
running from 𝜆 = −𝑘0 and 𝜆 = −𝑘𝑁 with a set of pole
singularities.This will make it possible to exactly evaluate the
integrals through contour integration. According to Newton’s
method, the principal square root of the complex number 𝑢2𝑛
(i.e., the principal root of the equation 𝜉2 − 𝑢2𝑛 = 0) may be
obtained by taking the limit of the sequence

𝑢̃
(𝑙)
𝑛 =

1

2
[𝑢̃
(𝑙−1)
𝑛 +

𝑢
2
𝑛

𝑢̃
(𝑙−1)
𝑛

] , 𝑢̃
(0)
𝑛 = 𝑢

2
𝑛, (28)

as 𝑙 → ∞. Recursively applying (28) provides the explicit
form of 𝑢̃(𝑙)𝑛 ; namely,

𝑢̃
(𝑙)
𝑛 =

2
−𝑙
𝑃𝑙 (𝑢
2
𝑛)

∏
𝑙−1
𝑖=1𝑃𝑖 (𝑢

2
𝑛)

, (29)

with

𝑃𝑖 (𝑞) =

2𝑖−1

∑

𝑘=0

(
2
𝑖

2𝑘

) 𝑞
𝑘
. (30)

Thus, substitution of (29) for 𝑢𝑛’s in (22) makes 𝜙ℎ become a
meromorphic function of 𝜆, whose poles coincide with those
of 𝑢̃(𝑙)0 and 𝑢̃(𝑙)𝑁 . The poles of 𝑢̃(𝑙)𝑛 (𝑛 = 0,𝑁) with positive
imaginary part,𝑀𝑙 = 2

𝑙−1
− 1 in number, are given by

𝜆
(𝑙)
𝑚𝑛 = −

√𝑝
(𝑙)
𝑚 + 𝑘

2
𝑛,

(31)

with 𝑝(𝑙)𝑚 (𝑚 = 1, 2, . . . ,𝑀𝑙) being the generic root of the
equation

𝑙−1

∏

𝑖=1

𝑃𝑖 (𝑞) = 0. (32)

Notice that 2𝑖−1 zeros of 𝑃𝑖(𝑞) are negative real numbers, and
this implies that poles (31) are positioned on the suppressed
branch lines, which are described by the equation

𝜆
2
− 𝑘
2
𝑛 = 𝛼𝑛, 𝑛 = 0,𝑁, (33)
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Figure 3: Final integration contour for the Sommerfeld Integrals.

with𝛼𝑛 being a negative real parameter. As shown in Figure 3,
substitution (29) has the effect of turning the branch-cut
integrals 𝑆(0)

ℎ
and 𝑆(𝑁)

ℎ
into contour integrals around poles

(31). It reads

𝑆
(𝑛)

ℎ
=

𝑀𝑙

∑

𝑚=1

Φ
(𝑚𝑛)

ℎ
, 𝑛 = 0,𝑁, (34)

where

Φ
(𝑚0)

ℎ
= ∮
Γ𝑚0

[𝜙
(𝑜𝑒)

ℎ
𝑢̃0 + 𝜙

(𝑜𝑜)

ℎ
𝑢̃0𝑢̃𝑁]𝐻

(1)
0 (𝜆𝜌) 𝜆𝑑𝜆,

Φ
(𝑚𝑁)

ℎ
= ∮
Γ𝑚𝑁

[𝜙
(𝑒𝑜)

ℎ
𝑢̃𝑁 + 𝜙

(𝑜𝑜)

ℎ
𝑢̃0𝑢̃𝑁]𝐻

(1)
0 (𝜆𝜌) 𝜆𝑑𝜆,

(35)

with Γ𝑚𝑛 (𝑛 = 0,𝑁) being the infinitesimal circle around 𝜆𝑚𝑛,
and where the superscript 𝑙 has been omitted for notational
simplicity. It should be observed that 𝜆𝑚𝑛 is not a pole of 𝜙

(𝑒𝑒)

ℎ
and, hence, it results as

∮
Γ𝑚𝑛

𝜙
(𝑒𝑒)

ℎ
𝐻
(1)
0 (𝜆𝜌) 𝜆𝑑𝜆 = 0. (36)

Substituting (29) for 𝑢̃0 and 𝑢̃𝑁 in (35) provides the expres-
sions

Φ
(𝑚0)

ℎ

= {[𝜙
(𝑜𝑒)

ℎ
+ 𝜙
(𝑜𝑜)

ℎ
𝑢𝑁]𝐻

(1)
0 (𝜆𝜌) 𝜆}𝜆=𝜆𝑚0

∮
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Φ
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ℎ

= {[𝜙
(𝑒𝑜)

ℎ
+ 𝜙
(𝑜𝑜)

ℎ
𝑢0]𝐻

(1)
0 (𝜆𝜌) 𝜆}𝜆=𝜆𝑚𝑁

∮
Γ𝑚𝑁

𝑢̃𝑁𝑑𝜆,

(37)

where we have taken account of the fact that, far from the
relevant poles, quantities 𝑢̃0 and 𝑢̃𝑁may be confused with 𝑢0
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and 𝑢𝑁, respectively. Since from (6), (29), and (31) it follows
that

lim
𝜆→𝜆𝑚𝑛

𝑢̃𝑛 = 2
−𝑙
𝑃𝑙 (𝑝𝑚) 𝑅𝑚 lim

𝜆→𝜆𝑚𝑛

1

𝑢2𝑛 − 𝑝𝑚

= 2
−𝑙
𝑃𝑙 (𝑝𝑚) 𝑅𝑚 lim

𝜆→𝜆𝑚𝑛

1

𝜆2 − 𝜆2𝑚𝑛

,

(38)

with

𝑅𝑚 =

𝑀𝑙

∏

𝑚󸀠=1
𝑚󸀠 ̸=𝑚

[𝑝𝑚 − 𝑝𝑚󸀠]
−1
, (39)

applying Cauchy’s integral formula [29] provides

∮
Γ𝑚𝑛

𝑢̃𝑛𝑑𝜆 = 2
−𝑙
𝑃𝑙 (𝑝𝑚) 𝑅𝑚∮

Γ𝑚𝑛

1

𝜆2 − 𝜆2𝑚𝑛

𝑑𝜆

=
𝜋𝑗𝑃𝑙 (𝑝𝑚) 𝑅𝑚

2𝑙𝜆𝑚𝑛

.

(40)

Thus, (37) are turned into

Φ
(𝑚0)

ℎ
=
𝜋𝑗𝑃𝑙 (𝑝𝑚) 𝑅𝑚Vℎ (𝜆𝑚0)𝐻

(1)
0 (𝜆𝑚0𝜌)

2𝑙
, (41)

Φ
(𝑚𝑁)

ℎ
=
𝜋𝑗𝑃𝑙 (𝑝𝑚) 𝑅𝑚Vℎ (𝜆𝑚𝑁)𝐻

(1)
0 (𝜆𝑚𝑁𝜌)

2𝑙
, (42)

with

Vℎ (𝜆) =

{{{{{

{{{{{

{

𝜙
(𝑜𝑒)

ℎ
+ 𝜙
(𝑜𝑜)

ℎ
𝑢𝑁, 𝜆 = 𝜆𝑚0,

𝜙
(𝑒𝑜)

ℎ
+ 𝜙
(𝑜𝑜)

ℎ
𝑢0, 𝜆 = 𝜆𝑚𝑁,

0, elsewhere.

(43)

Combining (41) and (42) with (34) finally yields the expres-
sion

𝑆
(0)

ℎ
+ 𝑆
(𝑁)

ℎ
=
𝜋𝑗

2𝑙

𝑀𝑙

∑

𝑚=1

𝑃𝑙 (𝑝𝑚) 𝑅𝑚 [Vℎ (𝜆𝑚0)𝐻
(1)
0 (𝜆𝑚0𝜌)

+ Vℎ (𝜆𝑚𝑁)𝐻
(1)
0 (𝜆𝑚𝑁𝜌)] ,

(44)

where one can clearly distinguish the above-surface ground
wave, associated with 𝜆𝑚0 terms, and the lateral wave,
constituted by 𝜆𝑚𝑁 terms, the latter traveling in the𝑁th layer
of the medium along its upper boundary.

Substitution of (44) into (19), in conjunction with (21),
provides explicit expressions, in series form, for integrals 𝑆0
and 𝑆1 appearing in (15)–(17).

3. Validation of the Formulation

To test the validity of the developed theory, formulas (15)–(17)
and (19), (21), and (44) are applied to the computation of the
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Figure 4: Amplitude-frequency spectrum of 𝐻𝜌, computed at 𝜌 =
20m from the source point.

magnitude of the magnetic field components generated on
the top surface of a homogeneousmedium at distance 𝜌 from
a unit-moment vertical magnetic dipole. In the considered
case𝑁 = 1, and functions 𝑓ℎ(𝜆), which reduce to

𝑓ℎ (𝜆) =
𝑢
ℎ
0

𝑢0 + 𝑢1

, (45)

do not exhibit poles. This implies that terms (21) do not
contribute to the integrals.Thus, applying (24)–(26) provides

𝜙
(𝑒𝑜)
0 = 𝜙

(𝑜𝑜)
1 = −𝜙

(𝑜𝑒)
0 =

1

𝑘
2
0 − 𝑘
2
1

,

𝜙
(𝑒𝑜)
1 = 𝜙

(𝑜𝑒)
1 = 𝜙

(𝑜𝑜)
0 = 0,

(46)

and integrals (19) assume the form

𝑆0 =
𝜋𝑗

2𝑙 (𝑘
2
0 − 𝑘
2
1)

𝑀𝑙

∑

𝑚=1

𝑃𝑙 (𝑝𝑚) 𝑅𝑚 [𝐻
(1)
0 (𝜆𝑚𝑛𝜌)]

𝑛=1

𝑛=0
,

𝑆1 =
𝜋𝑗

2𝑙 (𝑘
2
0 − 𝑘
2
1)

𝑀𝑙

∑

𝑚=1

𝑃𝑙 (𝑝𝑚) 𝑅𝑚 [(−1)
𝑛

⋅ √𝑝𝑚 + (−1)
𝑛
(𝑘
2
0 − 𝑘
2
1)𝐻
(1)
0 (𝜆𝑚𝑛𝜌)]

𝑛=0

𝑛=1
.

(47)

The numerical results that arise from using (16) and (17),
in combination with (47), are depicted in Figures 4–7 and
denoted by lines. Such results are compared with those
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Figure 5: Amplitude-frequency spectrum of 𝐻𝑧, computed at 𝜌 =
20m from the source point.

provided by the previously published exact expressions for𝐻𝜌
and𝐻𝑧; namely [16],

𝐻𝜌 =
𝑚

𝜋𝜌
[
𝛼
2
+ 𝛽
2

2
𝐾1 (𝛼𝜌) 𝐼1 (𝛽𝜌)

− 𝛼𝛽𝐾2 (𝛼𝜌) 𝐼2 (𝛽𝜌)] ,

𝐻𝑧 =
𝑄1 − 𝑄0

2𝜋 (𝑘
2
0 − 𝑘
2
1)
,

(48)

where 𝐼𝑛(⋅) and 𝐾𝑛(⋅) are the 𝑛th-order modified Bessel
functions of the first and second kind, respectively, and

𝛼 =
1

2
𝑗 (𝑘1 + 𝑘0) ,

𝛽 =
1

2
𝑗 (𝑘1 − 𝑘0) ,

(49)

with

𝑄𝑛 = (−𝑗𝑘
3
𝑛𝜌
3
− 4𝑘
2
𝑛𝜌
2
+ 9𝑗𝑘𝑛𝜌 + 9)

𝑒
−𝑗𝑘𝑛𝜌

𝜌5
. (50)

Figures 4 and 5 present amplitude-frequency spectra of
𝐻𝜌- and𝐻𝑧-fields generated at 𝜌 = 20m, obtained assuming
𝜎1 = 1mS/m and 𝜖1 = 10𝜖0. Each figure illustrates the
behavior of the sequence of spectra generated by the proposed
solution as the number of iterations of Newton’s method (𝑙) is
increased.As is seen, the sequences converge, and the number
of iterations required to achieve perfect agreement with the
exact data, denoted by points, is 10 for 𝐻𝜌-component and
5 for 𝐻𝑧-component. This means that the sums 𝑆1 and 𝑆0 in
(47) must be made up of 𝑀10 = 2

9
− 1 = 511 terms and

𝑀5 = 2
4
− 1 = 15 terms, respectively.
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Figure 6: Profiles of |𝐻𝜌| against the radial distance from the source
point.
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Figure 7: Profiles of |𝐻𝑧| against the radial distance from the source
point.

It should be observed that the dominant contributions to
the sums in (47) come from the residues at the poles located
in the portions of the branch cuts which are closer to the
real axis, since the magnitude of 𝐻(1)0 (𝜆𝜌) is significantly
larger at them. In particular, the ground-wave poles (𝜆𝑚0’s)
that lie on the negative real 𝜆-axis contribute most to 𝑆0
and 𝑆1. For fixed 𝑙, the number of such poles diminishes as
frequency is decreased, and this happens because the branch
point −𝑘0 gets closer to the origin of the complex plane. The
consequence of this phenomenon is that, at low frequencies,
the number of dominant residues may not be sufficient to
achieve accurate results. This is the reason why, as illustrated
in Figure 4, accurate evaluation of 𝐻𝜌 requires 15 terms if
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frequency is higher than 10MHz and at least 511 terms when
frequency is lower than 100 kHz.

Notice that the onset of oscillations in the frequency
spectra is expected, since, when entering the far zone, the
total field results from the superposition of two waves, which
propagate with wavenumbers 𝑘0 and 𝑘1 and decay with
distance 𝜌 from the source point. Physically, this means
that oscillatory interference patterns arise in both space and
frequency domains. In the space domain, the period of
the oscillations is 2𝜋/(𝑘1 − 𝑘0), with 𝑘1 approaching a real
quantity since, at high frequencies, the displacement currents
predominate over the conduction currents. In the frequency
domain, the patterns oscillate with period

Λ =
1

𝜌√𝜇0𝜖0 (√𝜖𝑟1
− 1)

, (51)

which, for 𝜌 = 20m and 𝜖𝑟1 = 10, is equal to

Λ =
3 ⋅ 10
8

20 (√10 − 1)

≅ 6.94MHz. (52)

It may be numerically verified that 6.94 is just the peak-to-
peak spacing of the far-zone asymptotic trend of each solid-
line curve in Figures 4 and 5.

Finally, Figures 6 and 7 show profiles of the amplitudes
of 𝐻𝜌 and 𝐻𝑧 against the source-receiver distance 𝜌. The
calculations have been performed assuming that the loop
antenna is positioned on the samemedium as in the previous
examples and that it operates at 10MHz. The plotted curves
demonstrate that even when taken as functions of 𝜌, the
sequences of partial sums in (47) are convergent and give
rise to accurate results after only 8 (𝐻𝜌-field) and 9 (𝐻𝑧-field)
iterations of Newton’s method.

4. Conclusion

This paper has presented exact series representations for the
surface fields excited by a small circular loop antenna placed
on the top surface of plane stratified earth. The derived
expressions result from a rigorous analytical procedure,
which allows casting the complete integral representations for
the EM field components into forms suitable for application
of Cauchy’s integral formula. Numerical results are presented
to show the validity and accuracy of the proposed formula-
tion.
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