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In this paper we propose a high performance parallel strategy/technique to implement the fast direct solver based on hierarchical
matrices method. Our goal is to directly solve electromagnetic integral equations involving electric-large and geometrical-complex
targets, which are traditionally difficult to be solved by iterative methods. The parallel method of our direct solver features both
OpenMP shared memory programming and MP] message passing for running on a computer cluster. With modifications to the
core direct-solving algorithm of hierarchical LU factorization, the new fast solver is scalable for parallelized implementation despite
of its sequential nature. The numerical experiments demonstrate the accuracy and efficiency of the proposed parallel direct solver

for analyzing electromagnetic scattering problems of complex 3D objects with nearly 4 million unknowns.

1. Introduction

Computational electromagnetics (CEM), which is driven by
the explosive development of computing technology and vast
novel fast algorithms in recent years, has become important
to the modeling, design, and optimization of antenna, radar,
high-frequency electronic device, and electromagnetic meta-
material. Among the three major approaches for CEM, finite-
difference time-domain (FDTD) [1], finite element method
(FEM) [2], and method of moments (MoM) [3], MoM has
gained widely spread reputation for its good accuracy and
built-in boundary conditions. Generally, MoM discretizes the
electromagnetic integral equations (IEs) into linear systems
and solves them via numerical algebraic methods. Although
the original MoM procedure forms a dense system matrix
which is computationally intensive for solving large-scale
problems, a variety of fast algorithms have been introduced to
accelerate MoM via reducing both of its CPU time and mem-
ory cost. Well-known fast algorithms for frequency domain
IEs, such as multilevel fast multipole method (MLFMM) [4-
6], multilevel matrix decomposition algorithm (MLMDA)
[7-9], adaptive integral method (AIM) [10], hierarchical
matrices (%-matrices, #>-matrices) method [11-15], mul-
tiscale compressed block decomposition (MLCBD) [16, 17],

and adaptive cross-approximation (ACA) [18, 19], have rema-
rkably increased the capacity and ability of MoM to analyze
radiation/scattering phenomena for electric-large objects.
Traditionally, iterative solvers are employed and com-
bined with fast algorithms to solve the MoM. Despite of the
availability of many efficient fast algorithms, there are still
some challenges in the iterative solving process for discretized
IEs. One major problem is the slow-convergence issue. Due
to various reasons, such as complex geometrical shapes of the
targets, fine attachments, dense discretization, and/or non-
uniform meshing, the spectrum condition of the impedance
matrix of discretized IEs can be severely deteriorated. There-
fore, the convergence speed of iteration will be slowed down
significantly so that we are not able to obtain an accurate
solution within a reasonable period of time. In order to over-
come this difficulty, preconditioning techniques are usually
employed to accelerate the convergence. There are some
popular preconditioners, including diagonal blocks inverse
[20], incomplete Cholesky factorization [21], incomplete LU
factorization (ILU) [21, 22], and sparse approximate inverse
(SAI) [23], used widely. However, the effectiveness of precon-
ditioning techniques is problem dependent and the converge-
nce still cannot be guaranteed. For some extreme cases pre-
conditioning shows little alleviation to the original problem.



By contrast, direct solving like Gaussian elimination or LU
factorization [24] spends fixed number of operations, whose
impedance/system is only related to the size of impedance/
system matrix, namely, the number of unknowns N, to obtain
the accurate solution of MoM. Although these standard
direct solvers are not favored over iterative solvers because
of their costly computational complexity O(N*), a number
of fast direct solvers (FDS) are introduced recently [14-19,
25], which inherit the merit of direct solving for avoiding
slow-convergence issue, and have significantly reduced the
required CPU time and memory.

So far, there are some existing literatures discussing the
parallelization of direct solvers for electromagnetic integral
equations [26, 27]. It is notable that the implementation of
parallelizing FDS is not trivial. Since the algorithms of major
FDS share a similar recursive factorization procedure in a
multilevel fashion, their implementations are intrinsically
sequential in nature. However, they can be parallelized with
good scalability by elaborate dissection and distribution. In
this paper, we proposed an MPI-OpenMP hybrid parallel
strategy to implement the 7 -matrices based direct solver
with hierarchical LU (9%-LU) factorization [15, 28]. This
parallel direct solver is designed for running on a computer
cluster with multiple computing nodes with multicore pro-
cessors for each node. OpenMP shared memory program-
ming [29] is utilized for the parallelization on multicore
processors for each node, while MPI message passing [30]
is employed for the distribution computing among all the
nodes. The proposed parallel FDS shows good scalability
and parallelization efficiency, and numerical experiments
demonstrate that it can solve electrical-large IE problems
involving nearly 4 million unknowns within dozens of hours.

The rest of this paper is organized as follows. Section 2
reviews the discretized IE we aim to solve and basic MoM
formulas. Section 3 outlines the construction of % -matrices
based IE system, including spatial grouping of basis functions
and the partition of the impedance matrix, as well as the
direct solving procedure of 7 -LU factorization. Section 4
elaborates the parallelizing strategy for the construction
and LU factorization of #-matrices based IE system, with
the discussion of its theoretical parallelization efficiency.
Section 5 gives some results of numerical tests to show the
efficiency, capacity, and accuracy of our solver. Finally, the
summary and conclusions are given in Section 6.

2. Electromagnetic Integral Equation and
Method of Moments

In this section, we give a brief review of surface IEs and
their discretized forms [3] that our parallel FDS deals with.
In the case of 3D electromagnetic field problem, electric field
integral equation (EFIE) is written as

!

-t ikr]J, ds') (r’) . (I - vk—Z) g(r,r') =T-E™ (), (1)

in which k is the wavenumber, 7 is the wave impedance, t is
the unit tangential component on the surface of the object,
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and g(r, r') is the free space Green function. E™(r) is the inci-
dent electric field and J(r') is the excited surface current to be
determined. Correspondingly, the 3D magnetic field integral
equation (MFIE) is written as

%(r) +axP.V. L ds'y (r') X V'g (r, r') =-ax H™ (r),

2)

in which n is the normal component on the surface of
the object, H"“(r) is the incident magnetic field, and PV.
stands for the Cauchy principal value integration. For time
harmonic electromagnetic plane wave, E™ and H" have the
relationship

%E % Einc’ (3)

Hinc _

where k is the unit vector of wave propagating direction. In
order to cancel the internal resonance that occurred in the
solution of individual EFIE or MFIE, the two equations are
usually linearly combined. Specifically, we have the combined
field integral equation (CFIE) written as

CFIE = « - EFIE + (1 — ) 7 - MFIE. (4)

To solve this IE numerically, first we need to mesh the
surfaces of the object with basic patches. For electromagnetic
IEs, triangular and quadrilateral patches are two types of
frequently used patches, which are associated with Rao-
Wilton-Gliso (RWG) basis function [31] and roof-top basis
function [32], respectively. By using these basis functions, the
undetermined J(r) in (1) and (2) can be discretized by the
combination of basis functions f;(r), (i = 1,2,...,N) as

N
J () = ) If, (1), (5)
i=1

in which I; is the unknown coefficients and N is the total
number of unknowns. By using Galerkin test, we can form
the N x N linear systems for (1) and (2) as

ZEFIE = VEFIE

>

(6)
ZMFIE | _ y/MFIE

>

in which the system matrices Z*"™* and ZM*'™* are also called
impedance matrices in IEs context. The entries of the sys-
tem matrices and right-hand side vectors can be calculated
numerically through the following formulas:

Z,, = —iknj J (5.1 [£, ) - £, ()] ds'ds

* % J J-, 9 (l‘, rl) [vs . fm (I') VS' . fn (1‘I>] dS,dS,
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mn

ZMFIE _ % J dst,, (r) - £, (r)
+10- J dst,, (r) x J ds'f, (r') xV'g (r, r'),

m

Vi = J dsf,, (r) - E™ (),

m

VMEE _ J dsf, (r) -0 x H™ (r).
’ @)

Consequently, the discretized CFIE system matrix and exci-
tation vector are

ZCFIE — “ZEFIE + (1 _ (X) 7- ZMFIE

mn mn mn (8)
V;FIE = aVEFE 4 (1~ ) VMFIE,
By solving the linear system
ZCHE [ _ yCHE 9)

we can get the excited surface current J and corresponding
radiation/scattering field.

3. Fast Direct Solver and
Hierarchical LU Factorization

Generally, we can solve the linear system (9) iteratively or
directly. For iterative solvers, the Krylov subspace methods
are frequently used, such as CG, BiCG, GMRES, and QMR
[33]. Because iterative methods often suffer from slow-conv-
ergence issues for complex applications, direct methods have
become popular recently. Several researchers proposed a
variety of FDS [14-19, 25], which aim at avoiding convergence
problems for iterative solvers and utilize similar hierarchical
inverse/factorization procedure and low rank compression
techniques to reduce the computational and storage complex-
ity.

Z-matrices method [11, 12, 15] is a widely known math-
ematical framework for accelerating both finite element
method (FEM) and IE method. In the scenario of electro-
magnetic IE, # -matrices method is regarded as the algebraic
counterpart of MLFMM [4-6]. The most advantage of #-
matrices technique over MLFMM is that it can directly solve
the IE system by utilizing its pure algebraic property. In this
section, we briefly review the primary procedures of IE-based
Z-matrices method and the algorithm of hierarchical LU
factorization which will be parallelized.

In order to implement 7 -matrices method, firstly the
impedance matrix Z“"'F needs to be formed block-wisely and
compressed by low rank decomposition scheme. We subdi-
vide the surface of the object hierarchically and, according to
their interaction types, form the impedance/forward system
matrix in a multilevel pattern. This procedure is very similar
to the setting-up step in MLFMM. By contrast to the octree
structure of MLEMM, the structure in # -matrices is a binary
tree. The subdivision is stopped when the dimension of
smallest subregions covers a few wavelengths. The subblocks

in the impedance matrix representing the far-field/weak int-
eractions are compressed by low rank (LR) decomposition
schemes. Here we use the adaptive cross-approximation
(ACA) algorithm [18, 19] as our LR decomposition scheme,
which only requires partial information of the block to be
compressed and is thus very efficient.

After the #-matrices based impedance matrix is gener-
ated, the hierarchical LU (#-LU) factorization [12, 26, 28] is
employed on it and finally we get an LU decomposed system
matrix LU (ZCFIE). During and after the factorization process,
subblocks in LR format are kept all the time. Having the
LU (Z“™®), we can easily solve the IE with given excitations
by a recursive backward substitution procedure. Figure 1l
illustrates the overall procedure of the #°-matrices based FDS
introduced above.

From Z'E to LU (Z“'®), the hierarchical LU factoriza-
tion is employed. The factorization algorithm is elaborated
below. Consider the block LU factorization of the level-1

partitioned Z°FE matrix; namely,
Z, Z L U, U
7CHE _ [ 11 12] _ [ 11 ] [ 11 12]. 10
Z, Z Ly Ly, Uy, (10)

We carry out the following procedures in a recursive way: (i)
get L;; and U,; by LU factorization Z,; = L, U,;; (ii) get
U,, by solving lower triangular system Z,, = L,;,U,,; (iii)
get L,; by solving upper triangular system Z,, = L,, U, ;; (iv)
update Z,,: Z,, = Z,, — L,;U},; and (v) get L,, and U,, by
LU factorization Z,, = L,,U,,. Recursive implementations
are participated among all procedures (i)-(v). Procedures
(ii) and (iii) (and similar operations under the hierarchical
execution of (i) and (v)) are performed via partitioned
forward/backward substitution for hierarchical lower/upper
triangular matrices [12, 28]. Procedure (iv) is a vital operation
that contributes most of the computing time cost. This
subblocks addition-multiplication procedure occurs not only
in one or several certain levels, but pervades in all of the
recursive executions. Figure 1illustrates the overall procedure
of % -matrices based FDS. Implementation details about -
matrices compression and recursive LU factorization can be
found in [12, 14, 15]. In addition, a similar recursive direct
solving process for noncompression IE system matrix is
discussed in [26].

Based on the result of #’-LU factorization, we can easily
get the solution for any given excitation, namely, right-hand
side (RHS) vector by hierarchical backward substitution. The
CPU time cost for backward substitution is trivial compared
to that of #’-LU factorization.

4. Parallelization of 77-Matrices Based IE Fast
Direct Solver

The parallelization of #’-matrices based IE FDS contains two
parts: (a) the parallelization (of the process) of generating
the forward/impedance matrix with 7Z’-matrices form; (b)
the parallelization of 7 -LU factorization and backward
substitution. In this section, we will elaborate the approaches
for implementing these two parts separately.
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FIGURE 1: Overall procedure of % -matrices based FDS.

4
/ N Object with
/ " multilevel partition
1 i
\
\
\\
Geometrical
interactions
Procedure I:
form ZCFIE
h Procedure II:
1
' decompose Z°F1E
100
200
300
400
500
600
100 200 300 400 500 600
100
200
300
400
500
600

100 200 300 400 500 600

FIGURE 2: Data distribution strategy for forward/impedance matrix
and also for LU factorized matrix.

4.1. Parallelization of Generating Forward/Impedance Matrix.
Since our FDS is executed on a computer cluster, the com-
puting data must be stored distributively in an appropriate
way, especially for massive computing tasks. The main data
of 7 -matrices based IE FDS are the LR compressed for-
ward/impedance and LU factorized matrices. In principle, for
forward/impedance matrix, we divide it into multiple rows,
and each computing node stores one of these row-blocks.
This memory distribution strategy is shown in Figure 2. The
width of each row is not arbitrary but in correspondence to
the hierarchical partition of the matrix in certain level K.
Therefore, no LR formatted block will be split by the division
lines that cross the entire row. In practice, the width of each
row is approximately equal and the total number of rows is
the power of 2, namely, 2K Kisan integer which is less than
the depth of the binary tree structure of #’-matrices, which is
denoted by L. Each row-block is computed and filled locally
by each MPI node it is assigned to. Since every subblock is an
independent unit, the filling process for these row-blocks can
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be parallelized for all MPI nodes without any communication
or memory overlap. Furthermore, for each MPI node with
multicore processor, the filling process of its corresponding
blocks can be accelerated by utilizing the OpenMP memory
share parallel computing. In the case of MoM, OpenMP
is very efficient to parallelize the calculation of impedance
elements, since this kind of calculation only depends on
the invariant geometrical information and electromagnetic
parameters, which are universally shared among all nodes.

4.2. Parallelization of % -LU Factorization. The #-LU factor-
ization is executed immediately after the forward/impedance
matrix is generated. Compared with the forward/impedance
matrix filling process, the parallelization of #-LU factoriza-
tion is not straightforward because its recursive procedure is
sequential in nature. In order to put #-LU factorization into
a distributed parallel framework, here we use an incremental
strategy to parallelize this process gradually.

During the 7-LU factorization, the algorithm is always
working/computing on a certain block which is in LR form or
full form or the aggregation of them, so that we can set a cri-
terion based on the size of the block for determining whether
current procedure should be parallelized. Specifically, assum-
ing that the (total) number of unknowns is N, we have about
2% nodes for computing; then if the maximal dimension of
ongoing processing block is larger than N/2X, MPI parallel
computing with multiple nodes is employed; otherwise the
process will be dealt with by single node. It should be noted
that OpenMP memory share parallel is always employed for
every node with multicore processor participating in comput-
ing. In the #-LU factorization process, OpenMP is in charge
of intranode parallelization of standard LU factorization,
triangular system solving for full subblocks, and SVD or QR
decomposition for LR subblocks addition and multiplication,
and so forth, which can be implemented through highly
optimized computing package like LAPACK [34].

According to the recursive procedure of #-LU factor-
ization, at the beginning, the algorithm will penetrate into
the finest level of #-matrices structure, namely, level L, to
do the LU factorization for the toILD—left most block with the
dimension of approximately (N/2%) x (N /25). Since L > K,
this process is handled by one node. After that the algorithm
will recur to level L — 1 to do the LU factorization for the
extended top-left block of approximately (N/ 2 (N2
upon the previous factorization. If L — 1 > K remains true,
this process is still handled by one node. This recursion is kept
on when it returns to level I that I < K, for which MPI parallel
with multiple nodes will be employed.

For the sake of convenience, we use #-LU(I) to denote
the factorization on certain block in the level [ of -
matrices structure. Recall the #-LU factorization procedure
in Section 3. Procedure (i) is #-LU itself, so its parallelization
is realized by other procedures on the finer levels. For the
procedure (ii) and procedure (iii) we solve the triangular
linear system as

LX = A, (11)

YU =B, (12)

in which L, U, A, and B are the known matrices and L, U
are lower and upper triangular matrices, respectively. X and
Y need to be determined. There two systems can actually
be solved recursively through finer triangular systems. For
instance, by rewriting (11) as

[Lu ] [Xu X12] - [Au A12] (13)
Ly Ly [ Xy Xy Ay Ay’

we carry out the following procedures: (i) get X;; and X,
by solving lower triangular systems A,; = L;;X;, and
A,, = L;X,, respectively; (ii) get X,; and X,, by solving
lower triangular system A,, — L,;X,; = L,,X,, and A, -
L, X,, = L,,X,,, respectively. From the above procedures
we can clearly see that getting columns [XH,XZI]T and

(X5 X" represents two independent processes, which can
be parallelized. Similarly, by refining Y as

Yy, le]
) 14
[Y21 Y, a4)

getting rows [Y,;,Y,,] and [Y,,;,Y,,] represents two inde-
pendent processes. Therefore, if the size of X or Y, namely,
U,, or Ly, in the Z-LU context is larger than N/2X, their
solving processes will be dealt with by multiple nodes.

After solving processes of triangular systems is done, the
updating for Z,,, namely, the procedure (iv) of #-LU, is
taking place. We here use UPDATE(/) to denote any of these
procedures on level I. Rewriting it as

Z=17-AB, (15)

apparently, this is a typical matrix addition and multiplication
procedure, which can be parallelized through the addition
and multiplication of subblocks when it is necessary:

z
z
_ [Zu le] _[Au Au] [Bu Blz]
Z21 Z22 A21 A22 B21 B22
le - AllBll - A12B21 ZIZ - A11B12 - AIZBZZ]
V4 .

21— A21B11 - A22B21 Z22 - A21B12 - A22B22
(16)

In the final form of (16), the matrix computation for each of
the four subblocks is an independent process and can be dealt
with by different nodes simultaneously. When Z,, is updated,
the LU factorization is applied to Z,, for getting L,, and U,,.
This procedure is identical to the #°-LU factorization for Z,,
so any parallel scheme employed for factorizing Z,, is also
applicable for factorizing Z,,.

The overall strategy for parallelizing #-LU factorization
is illustrated in Figure 3. Before the LU factorization on
level K—%-LU(K) is finished, only one node P, takes the
computing job. Afterwards, two nodes P, and P, are used to
get Uy, and L, simultaneously for 7-LU(K — 1). Then Z,, is
updated and factorized for getting U,, and L,, by the process
Z-LU(K). For triangular solving process on the K — 2 level,
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FIGURE 3: Parallel strategy/approach for 7 -LU factorization. P, (i =
1,2,3,...) denotes the ith node.

4 nodes can be used concurrently to get U;, and L,, based
on the parallelizable processes of solving the upper and lower
triangular systems as we discussed above. Besides, updating
Z,, can be parallelized by 4 nodes for 4 square blocks as
enclosed by blue line in Figure 3. This parallelization can
be applied to coarser levels in general. As for factorization
71U (I < K), 25" nodes can be used for parallelizing
the process of solving triangular systems and 457 nodes
can be used for parallelizing the procedure of updating Z,,.
During and after #-LU factorization, the system matrix is
kept in the form of distributive format as the same as that
for forward/impedance matrix shown in Figure 2. Under the
perspective of data storage, those row-blocks are updated by
Z-LU factorization gradually. It should be noted that, for the
nodes participating in parallel computing, the blocks they
are dealing with may not relate to the row-blocks they stored.
Therefore, necessary communication for blocks transfer
occurs among multiple nodes during the factorization.

4.3. Theoretical Efficiency of MPI Parallelization. To analyze
the parallelization efficiency under an ideal circumstance,
we assume that the load balance is perfectly tuned and the
computer cluster is equipped with high-speed network; thus
there is no latency for remote response and the internode
communication time is negligible. Suppose there are P nodes
and each node has a constant number of OpenMP threads.
The parallelization efficiency is simply defined as

T,

= Ty a7)

Mp

in which T; is the processing time with i nodes.
Apparently, for the process of generating forward/impe-
dance matrix, #, could be 100% if the number of operations
for filling each row-block under P-nodes parallelization

05" is 1/P of the number of operations for filling the whole
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matrix @?ﬂ by single node, since T; o @?H and Tp o
oW = ©%/p are true if the CPU time for taking single
operation is invariant. This condition can be easily satisfied
to a high degree when P is not too large. When P is large
enough, to divide the system matrix into P row-blocks may
force the depth of 7 -matrices structure inadequately that
consequently increases the overall complexity of Z’-matrices
method. In other words,

5l
G T}, (for large P). (18)

Under this situation, the parallelization becomes ineflicient.

For the process of #-LU factorization, by assuming that
P = 2K, the total number of operations under P-nodes
parallelization O} is

@}L,U =~ P-0[%-LU(K)]
+P(P-1)-0[#-TriSolve (K)] (19)

3

+ %@ [#-AddProduct (K)],

where 7-LU(K), Z-TriSolve(K), and Z’-AddProduct(K)
denote the processes for LU factorization, triangular system
solving, and matrices addition and multiplication in #-
format in the Kth level of % -matrices structure, respectively.
Their computational complexity is O(n*) (2 < a < 3), in
which n = N/P. However, because of parallelization, some
operations are done simultaneously. Hence, the nonoverlap
number of operations O}, that represents the actual wall time
of processing is

6L = P-0[7-LU (K)]
N % - 0 [ TriSolve (K)] (20)

2
; PT@ [9-AddProduct (K)] .

Additionally, the number of operations without paralleliza-
tion for %#-LU factorization OV is definitely no larger than
0% for the potential increased overall complexity by paral-
lelization. Therefore, the parallelization efficiency is
o _ Op
= < . 21
" =P 6t = P.0} @

When P goes larger, the result is approximately

(P’/6) O [%-AddProduct (K)] 2 2
P = b (P7/4) 6 [%-AddProduct (K)] ~ 3

According to our analysis, we should say that, for a
given size of IE problems, there is an optimal P for best
implementation. If P is too small, the solving process cannot
be fully parallelized. On the other hand, larger P will make
the width of the row-blocks narrower that eliminate big LR
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subblocks and cause #-matrices structure to be flatter, which
will consequently impair the low complexity feature of % -
matrices method.

Similarly, the number of OpenMP threads M has an opti-
mal value too. Too small M will restrict OpenMP paralleliza-
tion, and too large M is also a waste because the intranode
parallel computing only deals with algebraic arithmetic for
subblocks of relatively small size; excessive threads will not
improve its acceleration and lower the efficiency.

5. Numerical Results

The cluster we test our code on has 32 physical nodes in total;
each node has 64 GBytes of memory and four quad-core Intel
Xeon E5-2670 processors with 2.60 GHz clock rate. For all
tested IE cases, the discrete mesh size is 0.1A, in which A is
the wavelength.

5.1. Parallelization Efficiency. First, we test the parallelization
scalability for solving scattering problem of PEC spheres
with different electric sizes. The radii of these spheres are
R = 251, R = 50A and R = 10.0A, respectively.
The total numbers of unknowns for these three cases are
27,234,108,726, and 435,336, respectively. Figure 4 shows the
efficiency for the total time solved by 1, 2, 4, 8, 16, 32, 64, and
128 MPI nodes, with 4 OpenMP threads for each node. The
definition of parallelization efficiency is the same as formula
(17); thus in this test we only consider the efficiency of pure
MPI parallelization. Unsurprisingly, for parallelization with
large number of nodes, bigger cases have higher efficiencies
because of better load balance and less distortion to the -
matrices structure. Besides, since the #-LU factorization
dominates the solving time consumption, these tested effi-
ciencies of bigger cases are close to the maximum efficiency
of theoretical one #7;,” = 2/3, which demonstrates the good
parallelizing quality of our code.

Next, we investigate the hybrid parallelization efficiency
for different MPI nodes (P)/OpenMP threads (M) propor-
tion. We employ all 512 cores in cluster to solve the 3PEC
sphere cases above in four scenarios, from pure MPI paral-
lelization (1 OpenMP thread for each MPI node, large P/ M)
to heavy OpenMP parallelization embedded in MPI (16
OpenMP threads for each MPI node, small P/M). Here we
slightly change the definition of parallelization efficiency as

T,

= 23
ey = ) M-Tpnn (23)

in which T}; ;) denotes the total solving time parallelized by
i MPI nodes with j OpenMP threads for each node. The
results are presented in Figure5. We can clearly see that
both pure MPI parallelization and heavy OpenMP hybrid
parallelization have poorer efficiency compared to that of
moderate OpenMP hybrid parallelization.

Ideally, larger P/ M should give better efficiency for bigger
cases. But, in reality, since larger P/M can result in more
frequent MPI communication, more time is required for
communication and synchronization, and so forth. Besides,
large P also impairs the low complexity feature of 7Z’-matrices

1.0 ! ! ! ! ! !

094\ v
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064 i TN T |

Parallelization efficiency ()
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FIGURE 4: Parallelization efficiency for solving scattering problems
of PEC sphere of different electric sizes.
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FIGURE 5: Parallelization efficiency of different MPI nodes/OpenMP
threads allocation.

method regardless of the size of problems. Therefore, pure
MPI parallelization does not show superiority over hybrid
parallelization in our test. Referring to the optimal number
of OpenMP threads per node, it is mainly determined by the
size of smallest blocks in 7 -matrices which is preset, since
OpenMP efficiency strongly relates to the parallelization of
full or LR blocks addition and multiplication at low levels.
For all cases of this test, the size of smallest blocks is between
50 and 200, so their optimal number of OpenMP threads
per node turns out to be 4. However, we can expect the
optimal number of OpenMP threads to be larger (smaller)
it the size of the smallest blocks is larger (smaller). For
the case of solving PEC sphere of R = 10.0A with 128
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FIGURE 6: Memory cost for different MPI nodes/OpenMP threads
proportion.

nodes, 4 threads per node, the parallelization efficiency in this
test is 0.737, which is higher than that of 0.562 in previous
test. This is because, by our new definition of efficiency, the
OpenMP parallelization is taken into account. These results
also indicate the superiority of MPI-OpenMP hybrid paralle-
lization over pure MPI parallelization.

Figures 6 and 7 show the memory cost and solving
time for different problem sizes under different MPI nodes/
OpenMP threads proportion. The memory cost complexity
generally fits the O(N') trend, which has also been demon-
strated in sequential FDS [15, 17, 19]. Since the parallelization
efficiency gradually rises along with the increase of problem
size as shown above, the solving time complexity is about
O(N'#*) instead of O(N?) exhibited in sequential scenario
(15,17,19].

5.2. PEC Sphere. In this part, we test the accuracy and
efficiency of our proposed parallel FDS and compare its
results to analysis solutions. A scattering problem of one PEC
sphere with radius R = 30.0A is solved. After discretization,
the total number of unknowns of this case is 3,918,612.
For hybrid parallelizing, 128 MPI nodes are employed, with
4 OpenMP threads for each node. The building time for
forward system matrix is 4,318.7 seconds, % -LU factorization
time is 157,230.2 seconds, and solving time for each excitation
(RHS) is only 36.6 seconds. The total memory cost is 987.1
GBytes. The numerical bistatic RCS results agree with the
analytical Mie series very well, as shown in Figure 8.

5.3. Airplane Model. Finally, we test our solver with a more
realistic case. The monostatic RCS of an airplane model with
the dimension of 60.841 x 35.00A x 16.25A is calculated. After
discretization, the total number of unknowns is 3,654,894.
The building time for forward system matrix is 3548.5
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FIGURE 8: Bistatic RCS of PEC sphere with R = 30.0A solved by
proposed hybrid parallel FDS.

seconds; #'-LU factorization time is 110,453.4 seconds; and
the peak memory cost is 724.3 GBytes. With the LU form of
the system matrix, we directly calculate the monostatic RCS
for 10,000 total vertical incident angles (RHS) by backward
substitution. The average time cost for calculating each inci-
dent angle is 31.2 seconds. The RCS result is compared with
that obtained by FMM iterative solver of 720 incident angles.
Although FMM iterative solver only costs 112.4 GBytes for
memory, the average iteration time of solving back scattering
for each angle is 938.7 seconds with SAI preconditioner [23],
which is not practical for solving thousands of RHS. From
Figure 9 we can see that these two results agree with each
other well.
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FIGURE 9: Monostatic RCS of airplane model solved by proposed
hybrid parallel FDS and FMM iterative solver.

6. Conclusion

In this paper, we present an 7 -matrices based fast direct
solver accelerated by both MPI multinodes and OpenMP
multithreads parallel techniques. The macrostructural imple-
mentation of #Z-matrices method and 7 -LU factorization is
parallelized by MPI, while the microalgebraic computation
for matrix blocks and vector segments is parallelized by
OpenMP. Despite the sequential nature of % -matrices direct
solving procedure, this proposed hybrid parallel strategy
shows good parallelization efficiency. Numerical results also
demonstrate excellent accuracy and superiority in solving
massive excitations (RHS) problem for this parallel direct
solver.
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