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Adaptive polarization design of radar antenna has recently become the focus of attention in radar polarization community. A
polarimetric detector against non-Gaussian clutter with transmitter polarization optimization has been proposed in this paper.
First, the radar data model including the realistic dependence of the clutter on the transmitted polarization is introduced. Then
the polarimetric detector with transmitter polarization optimization is developed. By employing the simulation, we demonstrate
that the polarization waveform optimization can bring the significant performance gain on target detection as compared to
the conventional full-polarization approach. Besides, jointly optimizing transmitter and receiver polarization to form a scalar
measurement is confirmed not to achieve a better detection performance than vector measurement with only transmitter
polarization optimization.

1. Introduction

The detection of static or slowly moving targets in non-
Gaussian clutter is considered as a difficult problem for a long
time. Polarization diversity is an effective way to improve the
performance of target detection. It has been widely studied
during the last decades and extensively exploited for both
military and civilian applications. The early studies on this
topic are stated in [1], concerning the design of polarization
filters and adaptive polarization cancelers.The recentwork on
polarization detection starts from [2], in which Novak et al.
introduce the optimal polarimetric detector (OPD), the best
linear polarimetric detector, and the polarimetric matched
filter (PMF). Also new polarimetric target and clutter mod-
els are described there to predict the performance of the
detectors. Here we highlight the OPD because it provides
the best possible detection performance from polarimetric
radar data, so seen as the optimal performance bound of
polarimetric detection. But the OPD is derived based on the
assumption of the known knowledge on target and clutter
scattering matrices, which is unrealistic for many real radar
applications. Thus, detection algorithms that use training
data to estimate the clutter covariance matrix based on

the Gaussian and compound-Gaussian distributions have
been developed [3–9].

More specifically, the polarimetric detectors combin-
ing polarization and space-time processing, with unknown
polarimetric characteristics, embedded in the Gaussian clut-
ter with unknown covariance matrix, have been addressed
in [3, 4]. The proposed receivers ensure the constant false
alarm rate (CFAR) property with respect to the clutter
covariance. However, experimental evidences have shown
that the Gaussian assumption can no longer be met for
clutter returns in high resolution radars. As a consequence,
a significant performance loss will occur for the detectors in
[3, 4]. Real measurements have shown that clutter in high
range resolution can be modeled as a compound-Gaussian
process which consists of a Gaussian speckle component
modulated by the “slowing varying” nonnegative random tex-
ture component.Thismotivates that the polarization diversity
detection of targets embedded in compound-Gaussian clutter
was addressed in [6–9]. In [7] an adaptive receiver is designed
according to the generalized likelihood ratio (GLR) criteria,
which also ensures the CFAR property with respect to the
texture statistics. The detection algorithm in [8] employs a
different GLR procedure and the quoted detector is faster
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to implement than the detector in [7] when the number of
polarimetric channels to be processed is greater than the
receiver in [7]. Different design strategies which can lead to
decision statistics achieving higher detection probabilities or
stronger robustness are considered in [9], in which two detec-
tion algorithms based on the Rao and theWald tests [10] have
been devised. Remarkably, the two detectors also guarantee
CFARness with respect to the texture statistics. Moreover,
the performance analysis shows that the Wald test achieves
generally a performance level higher than the Rao test in
the presence of a small amount of training data. However, it
is necessary to point out that the aforementioned detectors
based on the compound-Gaussian clutter are designed for
radar systems with two polarimetric channels. When the
polarimetric channels increase, the detection statistics can
no longer retain the closed-form expression [7] or do not
support the CFAR property anymore [8]. This represents
serious limitations because four polarimetric channels or
three polarimetric channels (based on the reciprocity) need
to be employed when the complete polarization information
is used.

To overcome the existing problems, in [11] the authors
have developed a polarimetric detector using only primary
data vectors and have shown that this test statistic has the
standard 𝐹-distribution. It is worth mentioning that the
detector in [11] employs the adaptive transmitter antenna
polarization design. Hence, the performance of the polari-
metric detector can be improved by optimally choosing the
polarization of the transmitted pulses to maximize the non-
centrality parameter. As the evidences of the advantages of
adaptive polarization technology, in [12] the full-polarization
matched-illumination for target detection and identification
has been investigated based on the assumption of known
target and clutter polarization characteristics and a signifi-
cant performance improvement over that corresponding to
chirped full-polarization transmission waveforms has been
verifiedwith simulated target data.Then in [11, 13, 14] adaptive
scheduling of radar polarization for unknown target and clut-
ter responses to optimize the performance in target detection,
estimation, and tracking is investigated and the significant
performance gain over conventional polarization radar and
single polarization radar also has been confirmed therein.
Overall, the adaptive antenna polarization design can provide
a potential performance improvement on target detection,
estimation, tracking, and identification with respect to the
conventional full-polarization radar.

In this paper, we still address the problem of polariza-
tion detection design combined with adaptive polarization
optimization and extend the results of [11] in a number of
ways. First, the system response matrix is replaced from the
vector-sensor array to the common polarization radarmodel,
namely, dual transmitter antennas and dual receiver antennas
(notice that the transmitter and receiver employ the single
platform formonostatic radar systems and separate platforms
for bistatic or multistatic systems; also see [1] where the
block diagrams of a number of polarization diversity radars
are shown). Second, we recast the full-polarization target
and clutter scattering vectors from a 3-dimensional vector
form into the 4-dimensional one which occurs for bistatic

or multistatic radar so it represents a more general case.
Third, the performance of scalar measurement with joint
transmitter and receiver polarization optimization has been
investigated to highlight the benefit of vector measurement.

The remainder of the paper is organized as follows.
Section 2 describes the signal model. Section 3 focuses on
the problem formulation and the derivation of the detector.
Section 4 deals with the performance assessment of the
detector with respect to non-Gaussian clutter and conven-
tional full-polarization radar design, respectively. Section 5
illustrates that employing vector measurement provides the
similar detection performancewith the approach that linearly
combines both received signals to give a scalar measurement.
Finally, concluding remarks are given in Section 6.

2. Signal Model

Let us consider one point-like target illuminated by the radar
system.The polarized waveform transmitted by the radar can
be written as

s (𝑡) = 𝜉𝑠 (𝑡) = [𝜉ℎ, 𝜉V]
𝑇
𝑠 (𝑡) , (1)

where (⋅)
𝑇 is the transpose operation, 𝜉 is the transmitter

polarization vector, and 𝑠(𝑡) is the complex envelope of
the transmitted signal. Assume that ‖𝜉‖𝐹 = 1 since 𝜉
contains only the transmitter polarization property without
the transmitter power, where ‖ ⋅ ‖𝐹 is the Frobenius norm of
the matrix.

As the returns consist of not only the target echoes
but also the undesired reflections from the environment,
the recorded data corresponding to the range cell can be
represented as

y (𝑡) =
𝑔

𝑟2
(s𝑡 + s𝑐) 𝜉𝑠 (𝑡 − 𝜏) + n (𝑡) , (2)

where n(𝑡) is the white noise vector, 𝜏 is the delay that
resulted from waveform forward and backward propagation,
𝑟 is the distance from the target to the radar, and 𝑔 is a
constant depending on the radar system characteristic such
as operating frequency and antenna gain at the target illu-
mination angle. s𝑡 and s𝑐 are the target and clutter scattering
matrices, respectively, completely describing the polarization
transforming properties of the target and clutter. Generally,
they are expressed in the following matrices:

s𝑡 = [

[

𝑠
𝑡

ℎℎ
𝑠
𝑡

ℎV

𝑠
𝑡

Vℎ 𝑠
𝑡

VV

]

]

,

s𝑐 = [

[

𝑠
𝑐

ℎℎ
𝑠
𝑐

ℎV

𝑠
𝑐

Vℎ 𝑠
𝑐

VV

]

]

.

(3)

After performing matched filtering on (2) and then the
normalization by absorbing the constant 𝑔/𝑟2 into n(𝑡), the
observation model is obtained as

y = (s𝑡 + s𝑐) 𝜉 + n, (4)
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where n is the new white noise vector. For notational conve-
nience, in our problem we convert (4) into a linear observa-
tion model by the vectorization of s𝑡 and s𝑐. That is,

x𝑡 = [𝑠
𝑡

ℎℎ
𝑠
𝑡

ℎV 𝑠
𝑡

Vℎ 𝑠
𝑡

VV]
𝑇
,

x𝑐 = [𝑠
𝑐

ℎℎ
𝑠
𝑐

ℎV 𝑠
𝑐

Vℎ 𝑠
𝑐

VV]
𝑇
.

(5)

Let the system response matrix be

H def
= [

𝜉ℎ 𝜉V 0 0

0 0 𝜉ℎ 𝜉V
] , (6)

and (4) is reformulated as
y = Hx𝑡 +Hx𝑐 + n. (7)

Then, to detect the target, multiple pulses of different
polarizations need be transmitted to obtain the multiple
measurements y. Supposing there are 𝑀 pulses during the
radar dwell, the observation model from these𝑀 pulses can
be written as

y (𝑚) = H (𝑚) x𝑡 (𝑚) + H (𝑚) x𝑐 (𝑚) + n (𝑚) ,

𝑚 = 1, 2, . . . ,𝑀.

(8)

As stated before, the target is considered to be stationary
or slow-moving. Hence, it is reasonable to suppose that
the scattering coefficient of the target is unchanged during
the radar illumination. Thus x𝑡 is a deterministic vector.
However, the clutter in the range cell is a large collection of
point scatters producing incoherent reflections of the radar
signal. So x𝑐 can be seen as a zero-mean complex Gaussian
random vector with the covariance matrix Σ. The noise n
can be considered to be a zero-mean complex Gaussian
random vector with the covariance matrix 𝜎

2I𝑀, where I𝑀
is the 𝑀 × 𝑀 identity matrix. In addition, we assume that
the clutter reflections and the thermal noise are statistically
independent. As a consequence, the distribution of each
snapshot is

y (𝑚) ∼ CN (Hx𝑡,HΣH
𝐻
+ 𝜎
2I𝑀) ,

𝑚 = 1, 2, . . . ,𝑀,

(9)

where CN denotes a complex Gaussian distribution. (⋅)𝐻 is
the conjugate transpose operation. In (9) H is known since
the waveform and the direction in which it has been trans-
mitted are known for the active radar systems. Meanwhile,
the power of the thermal noise 𝜎

2 can be easily estimated
from the recorded data when no signal has been transmitted.
However, we have no prior knowledge of the target and
clutter. Therefore, the vector x𝑡 and the matrix Σ are the
unknown parameters of the statistical data model. Thus the
GLR test for the detection algorithm design is employed.

3. Problem Formulation and Design Issues

In this section, the target detection algorithm is derived.
Firstly, the test model could be written as

𝐻0 : x𝑡 = 0,Σ,

𝐻1 : x𝑡 ̸= 0,Σ.
(10)

Based on the Neyman-Pearson test criterion [10], 𝐻1 is
decided when

ln 𝐿 = ln𝑓1 (y1, . . . , y𝑀; x̂𝑡, Σ̂1)

− ln𝑓0 (y1, . . . , y𝑀; Σ̂0) > ln 𝛾,
(11)

where 𝑓0 and 𝑓1 are the likelihood functions under 𝐻0 and
𝐻1, respectively. Σ̂0 and Σ̂1 are the MLEs of Σ under 𝐻0 and
𝐻1. x̂𝑡 is theMLE of x𝑡 under𝐻1. 𝛾 is the detection threshold.
For notational convenience, we notate ln𝑓0(y1, . . . , y𝑀; Σ̂0)
and 𝑓1(y1, . . . , y𝑀; x̂𝑡, Σ̂1) as ln𝑓0(Σ̂0) and ln𝑓1(x̂𝑡, Σ̂1) in the
following.

Under hypothesis𝐻0, assuming that x̂𝑡 = 0 the likelihood
function is

ln𝑓0 (Σ) = −𝑀[ln𝜋 + ln |C| + tr (C−1s0)] , (12)

where | ⋅ | denotes the determinant of the matrix and C =

HΣH𝐻+𝜎2I𝑀 is the theoretical covariancematrix of the data,
defined in (9). s0 is the sample covariance matrix with

s0 =
1

𝑀

𝑀

∑

𝑚=1

y𝑚y
𝐻

𝑚
. (13)

The MLE of Σ is obtained as (see the derivation in
Appendix A of [11])

Σ̂0 = H+s0H
+𝐻

− 𝜎
2
(H𝐻H)

−1

, (14)

whereH+ = (H𝐻H)
−1H𝐻 is the pseudo-inverse matrix.

Thus, the logarithmic likelihood function concentrated
with respect to Σ is

ln𝑓0 (Σ̂0) = −𝑀[4 + ln𝜋 − 3 ln𝜎2 + ln H
𝐻H

+ 𝜎
−2 tr (Π⊥s0) + ln H

+s0H
+𝐻

] ,

(15)

where Π⊥ = 1 −HH+.
Under hypothesis𝐻1, the logarithmic likelihood function

is

ln𝑓1 (x𝑡,Σ) = −𝑀[ln𝜋 + ln |C| + tr (C−1C̃1)] , (16)

where

C̃1 =
1

𝑀

𝑀

∑

𝑚=1

(y𝑚 −Hx𝑡) (y𝑚 −Hx𝑡)
𝐻
. (17)

Theunknownparameters x̂𝑡 and Σ̂1 are (see the derivation
in Appendix A of [11])

x̂𝑡 = H+y

Σ̂1 = H+s1H
+𝐻

− 𝜎
2
(H𝐻H)

−1

,

(18)

where y is the sample mean vector

y =
1

𝑀

𝑀

∑

𝑚=1

y𝑚 (19)
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and s1 is the sample covariance matrix

s1 =
1

𝑀

𝑀

∑

𝑚=1

(y𝑚 − y) (y𝑚 − y)∗ , (20)

where (⋅)∗ is the conjunction of complex number (⋅).Then the
logarithmic likelihood function concentrated with respect to
x𝑡 and Σ is

ln𝑓1 (x̂𝑡, Σ̂1) = −𝑀[4 + ln𝜋 − 3 ln𝜎2 + ln H
𝐻H

+ 𝜎
−2 tr (Π⊥s0) + ln H

+s1H
+𝐻

] .

(21)

Substituting the concentrated likelihood functions (21) and
(15) into (11), with applying the following equality which is
valid for any matrix s of dimension𝑀×𝑀

ln H
+sH+𝐻 = ln H

𝐻sH
− 2 ln H

𝐻H
, (22)

the logarithmic GLR test statistic is obtained as

ln 𝐿 = −𝑀(ln H
𝐻s1H


− ln H

𝐻s0H

) . (23)

Since the following equality holds for the above equation
[15]


H𝐻s0H


=

H𝐻s1H


[1 + y𝐻H (H𝐻s1H)

−1

H𝐻y] (24)

then

ln 𝐿 = 𝑀 ln [1 + y∗H (H𝐻s1H)
−1

H𝐻y] (25)

is a monotonously increasing function of the term
y∗H(H𝐻s1H)

−1H𝐻y. Therefore, the equivalent detection test
statistic is written as

𝑇 = y∗H (H𝐻s1H)
−1

H𝐻y. (26)

To this point, we obtain the test statistic for the signal model.

4. Performance Assessment

In this section, we will take the performance assessment
of the proposed detection algorithm. First, the analytical
expression of the detection performance is derived. After that
the performance against non-Gaussian clutter is examined,
and subsequently the gain of the transmitter polarization
optimization over the approach with only horizontal polar-
ization (𝐻 polarization) and the approach with only vertical
polarization (𝑉 polarization) is verified to demonstrate the
advantage of the proposed detector.

Let z𝑚 = H𝐻y𝑚 (𝑚 = 1, . . . ,𝑀), and the test statistic (26)
can be written as

𝑇 = z𝐻s−1
𝑧
z, (27)

where z and s𝑧 are the samples mean and covariance,
respectively, formed from a random sample of size 𝑀 of the
distribution CN(H𝐻Hx𝑡,H𝐻HΣH𝐻H + 𝜎

2H𝐻H) and

z = 1

𝑀

𝑀

∑

𝑚=1

z𝑚,

s𝑧 =
1

𝑀

𝑀

∑

𝑚=1

(z𝑚 − z) (z𝑚 − z)𝐻 .

(28)

Applying Corollary 5.2.1 from [16], the detection statistic
is distributed as follows:

𝑇
𝑀 − 4

4
∼ {

𝐹8,2(𝑀−4) under 𝐻0
𝐹


8,2(𝑀−4)
(𝜆) under 𝐻1,

(29)

where 𝐹𝜐
1
,𝜐
2

denotes an 𝐹-distribution with 𝜐1 and 𝜐2 degrees
of freedom and 𝐹



𝜐
1
,𝜐
2

(𝜆) denotes a noncentral 𝐹-distribution
with 𝜐1 and 𝜐2 degrees of freedom and noncentrality param-
eter 𝜆. 𝜆 is given by

𝜆 = 2𝑀x𝐻
𝑡
H𝐻H [H𝐻 (HΣH𝐻 + 𝜎

2
)H]
−1

H𝐻Hx𝑡

= 2𝑀x𝐻
𝑡
[H+ (HΣH𝐻 + 𝜎

2
)H+𝐻]

−1

x𝑡

= 2𝑀{x𝐻
𝑡
Σ
−1x𝑡 − x𝐻

𝑡
(Σ +
ΣH𝐻HΣ

𝜎2
)

−1

x𝑡} .

(30)

Finally, the detection performance is obtained as

𝑝fa = 𝑄𝐹
8,2(𝑀−4)

(𝛾

) ,

𝑝𝑑 = 𝑄𝐹
8,2(𝑀−4)
(𝜆) (𝛾

) ,

(31)

where 𝑄 is the right-tail probability function and 𝛾
 is the

detection threshold for the required probability of false alarm.
In particular, note that the expression for 𝑝fa does not depend
on the covariance of clutter and thermal noise, nor on the
transmitted signal; thus (31) is a CFAR test.

4.1. The Performance against Non-Gaussian Clutter. The test
statistic of the proposed detector is computed with only the
data of the test cell andwithout the secondary cells.Therefore,
it should have good performance against the non-Gaussian
clutter environment. To demonstrate the robustness of the
proposed detector against non-Gaussian clutter, the OPD
[2], polarization-space-time GLR detector (PST-GLR) [3],
and texture-free GLR (TF-GLR) detector [5] are chosen as
its counterparts to evaluate the detection performance. As
the PST-GLR and TF-GLR detectors employ secondary data
but have no analytical expression in non-Gaussian clutter,
the Monte Carlo simulation is employed. The compound-
Gaussian distribution is chosen as the clutter model with the
covariancematrix 𝜏Σ, for which 𝜏 is the texture andmeets the
generalized Gamma probability distribution

𝑝 (𝜏) =
1

Γ (])
(
]
𝛿
)

]
𝜏
]−1

𝑒
−(]/𝛿)𝜏

, (32)
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where ] is the order and 𝛿 is the average power. Note that
when ] = +∞, (32) corresponds to clutter with Gaussian
distribution; when ] decreases, (32) deviates from Gaussian.

Set 𝜉𝐻 = √2/2 and 𝜉𝑉 = √2/2 for H in (6) because
conventional full-polarization radar systems alternatively or
simultaneously transmit 𝐻 and 𝑉 polarization. Also let 𝛿 =

50, Σ = [
1 0 0
0 0.1 0
0 0 1

]. For different value of ] we generate the
corresponding clutter data with the length of test range cell
𝑁 = 1, the guard cells 𝐻 = 2 and secondary cells 𝐾 = 32

in both sides, respectively, and the total number of snapshots
𝑀𝑡 = 10

4. But as for each trial, 10 snapshots of the clutter data
are employed, which means𝑀 = 10 in (9). The Monte Carlo
simulation is run for 105 times. Figure 1 shows the result of
the values of 𝑝fa as a function of the order ], which clearly
shows that the proposed detector and the OPD keep their
false alarm rates when the clutter becomes non-Gaussian. As
the counterparts, the false alarm rates of TF-GLRT and PST-
GLRT detectors increase obviously when the clutter departs
fromGaussian.This confirms that the proposed approach has
the robustness in non-Gaussian clutter.

4.2. Performance Comparison with the Conventional Ap-
proach. In this section, we will demonstrate the advantage of
the transmitter polarization optimization over the approach
with fixed 𝐻 or 𝑉 polarization. In only 𝐻 or 𝑉 polarization
systems, the system response matrix of transmitter polariza-
tion is H = [

1 0 0 0
0 0 1 0

] or H = [
0 1 0 0
0 0 0 1 ], respectively. For

adaptive transmitter polarization systems, suppose x𝑡 and Σ
are well estimated based on (18); then H can be designed
to maximize 𝜆 in (30) and subsequently the probability of
detection. Here the clutter covariance matrix in the following
form is chosen so that the covariance matrix is a unitary
matrix with the full rank:

Σ = UΛΛ𝐻U𝐻, (33)

where a unitary matrix is randomly picked for U, which is
constructed with the left singular vectors of a 4 × 4 matrixM
with i.i.d. complex Gaussian entries; that is, the singular value
decomposition of M can be written as M = UΛMU𝑟. Λ is a
diagonalmatrix and its diagonal elements are positive and are
chosen randomly. Meanwhile, the target vector is randomly
chosen, but the signal-to-clutter ratio (SCR) is kept in the
certain level. The definition of the SCR and clutter-to-noise
ratio (CNR) is given in the Appendix.

The grid search method is used to seek the optimal trans-
mitter polarizationH for the transmitter adaptive system.The
power of noise is fixed to be 𝜎

2
= 0.1 and the probability

of false alarm is fixed to be 𝑝fa = 10
−3, and the value of

SCR varied. For each SCR, 105 Monte Carlo runs are taken
to obtain the mean value of 𝜆 and then the probability of
detection 𝑝𝑑. In Figure 2, the curves of 𝑝𝑑 as a function of
the SCR for the detectors with the transmitter polarization
optimization, fixed 𝐻 transmitter polarization, and fixed 𝑉

transmitter polarization are plotted. As shown in the figure, a
significant improvement in performance is visible with using
the optimal waveform polarization.

Furthermore, let SCR be equal to 0 dB with 𝜎
2

= 0.1

and then vary the value of 𝑝𝑓. For each 𝑝𝑓 take 10
5 Monte
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Figure 1:The values of𝑝fa versus the order parameter ] of the clutter
texture distribution for the proposed detector, OPD, and PST-GLR
and TF-GLR detectors.
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Figure 2: Detection performance comparison as a function of the
SCR for the detectorswith the transmitter polarization optimization,
𝐻 transmit polarization, and 𝑉 transmit polarization, respectively;
𝑝fa = 10

−3 and 𝜎
2
= 0.1.

Carlo runs to obtain the mean value of 𝜆 and then the
probability of detection 𝑝𝑑. 𝑝𝑑s as a function of 𝑝𝑓s are
plotted for the detectors with the transmitter polarization
optimization and also fixed 𝐻 transmitter polarization and
fixed 𝑉 transmitter polarization. Also it can be seen from
Figure 3 that the striking improvement in performance is
offered by the polarization optimization.

Besides, the influence of CNR on the performance of the
proposed detector is investigated. That is, to fix SCR and the
false alarm rate and then check the change of probability of
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Figure 3: Detection performance comparison as a function of
the probability of false alarm 𝑝𝑓 for the detectors with optimal
transmitter polarization, fixed 𝐻 transmitter polarization, and 𝑉

transmitter polarization, respectively; SCR = 0 dB and 𝜎
2
= 0.1.

detection with CNR, let SCR = 10 dB, let 𝑝fa = 10
−3, and

vary the value of 𝜎2. With the simulation approach being
the same as the numerical examples before, the probabilities
of detection for three detectors employing optimal trans-
mitter polarization, fixed 𝐻 transmitter polarization, and 𝑉

transmitter polarization, respectively, as a function of the
probability of false alarm have been plotted in Figure 4. The
numerical results show that when CNR increases, namely,
𝜎
2 is reduced, the probabilities of detection are higher than

before. This coincides with (30), in which the increase of 𝜎2
means the decrease of 𝜆, finally resulting in the loss of the
probability of detection.

To this point, it has been demonstrated that, by opti-
mizing transmitter polarization design, radar systems will
obtain the significant improvement on the performance of
target detection. Then one could think that joint transmitter
and receiver polarization optimization will certainly have
a better performance than only transmitter polarization
optimization. However, the fact could oppose the judgment.
Detailed discussion on this topic will be provided in the next
section.

5. Scalar Measurement with
Adaptive Transmitter and Receiver
Polarization Design

Many conventional polarization radar systems unite the two
received signals linearly and coherently at the receiver to form
a scalar measurement [1]. For such systems, the output at the
receiver is an inner product of the returns and the receiver
antenna polarization. The receiver polarization vector is
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Figure 4: Detection performance comparison as a function of CNR
for the detectors with the transmitter polarization optimization,
𝐻 transmit polarization, and 𝑉 transmit polarization, respectively;
𝑝fa = 10

−3 and SNR = 10 dB.

optimally chosen along with the transmitter polarization to
achieve improved performance. In this section the signal
model for such systems is briefly provided as the main
derivation is similar to the approach in Section 2, and then
the performance of the detector with joint transmitter and
receiver optimization is discussed.

Let𝜂 = [𝜂ℎ, 𝜂V]
𝑇 be the receiver polarization vector, where

‖𝜂‖𝐹 = 1. The rest of the variables are defined the same as in
Section 2. Then the scalar measurement is represented as

𝑦 (𝑡) =
𝑔

𝑟2
𝜂
𝑇
(s𝑡 + s𝑐) 𝜉𝑠 (𝑡 − 𝜏) + n (𝑡) . (34)

After the signal passes through a series of matched filters and
is then normalized to move the effect of 𝑔/𝑟2 into the noise
term, the output at the receiver is

𝑦 (𝑡) = 𝜂
𝑇
(s𝑡 + s𝑐) 𝜉 + n. (35)

Let

H = [𝜂ℎ𝜉ℎ, 𝜂ℎ𝜉V, 𝜂V𝜉ℎ, 𝜂V𝜉V] . (36)

Then convert (35) into a linear observation model as follows:

𝑦 = Hx𝑡 +Hx𝑐 + n. (37)

Equation (37) is the signal model for scalar measurement
systems. The only difference with vector measurement in
Section 2 is on H. The detector is proven to have the same
form as the earlier model. Also the performance formula-
tion can be expressed in the same formulation except the
difference of H. As done in Section 4.2, the optimal system
response matrix H of jointly optimizing transmitter and
receiver polarization in order to make the probability of
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Figure 5: Detection performance comparison as a function of the
SCR for the detectors with the transmitter polarization optimization
and joint transmitter and receiver polarization optimization, with
𝑝fa = 10

−3 and 𝜎
2
= 0.1.

detection maximum is computed with grid search method.
Fix the power of noise to be 𝜎2 = 0.1 and 𝑝fa = 10

−3 and vary
the value of SCR. For each SCR 10

5 Monte Carlo runs are
taken to obtain the mean value of 𝜆 and then 𝑝𝑑. The curves
of probability of detection as a function of the SCR for the
detectors with the transmitter polarization optimization and
joint transmitter and receiver polarization are provided in
Figure 5,which clearly shows that the detection performances
of the two optimization approaches are almost the same.

Then, let SCR be equal to 0 dB, let 𝜎
2

= 0.1, and
vary the value of 𝑝𝑓. For each 𝑝𝑓 105 Monte Carlo runs
are taken to obtain the mean value of 𝜆 and then the
probability of detection 𝑝𝑑. 𝑝𝑑s as a function of 𝑝𝑓 for the
detectors with joint transmitter and receiver polarization
optimization and the transmitter polarization optimization,
respectively, are plotted in Figure 6.The similar performance
offered by the different polarization optimization is clear
from Figure 6. However, the optimization for the joint opti-
mization system will include not only optimization over the
transmitter polarization but also the receiver polarization, so
more onerous computational burden is faced as compared to
the approach of only transmitter polarization optimization,
which highlights the advantage of vector measurement.

6. Conclusion

In this paper, we investigated the transmitter polariza-
tion optimization for the detection of a target in a non-
Gaussian clutter environment. We derive a detector with
transmitter waveform design.Then we demonstrate its better
performance against non-Gaussian clutter comparing with
three other detectors by using the numerical example. Our
numerical results also demonstrate that, by carefully choosing
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Figure 6: Detection performance comparison as a function of the
probability of false alarm 𝑝𝑓 for the detectors with the transmitter
polarization optimization and joint transmitter and receiver polar-
ization optimization. SCR = 0 dB and 𝜎

2
= 0.1.

the transmitter polarizations, the detection performance
could be sufficiently improved compared to the conven-
tional way. Meanwhile, we also point out and verify that
joint transmitter and receiver optimization to form a scalar
measurement has not shown a better performance than only
transmitter polarization optimization. In the future, we will
conduct research on the computational burden reduction on
seeking for the optimal polarization, also the polarization
adaptive detection of extended target in non-Gaussian clutter.

Appendix

Here we show the definition of the SCR and the CNR. First,
the target power is defined as

𝑃𝑡 =
x𝑡



2

𝐹
. (A.1)

Similarly, the clutter power is

𝑃𝑐 = 𝐸 [
x𝑐



2

𝐹
] = tr (Σ) , (A.2)

where 𝐸 is the expectation operator. Then, the SCR is given
by

SCR =
𝑃𝑡

𝑃𝑐

(A.3)

and the CNR is

CNR =
𝑃𝑐

𝜎2
. (A.4)
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