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Redesigning user association strategies to improve energy efficiency (EE) has been viewed as one of the promising shifting
paradigms for the fifth generation (5G) cellular networks. In this paper, we investigate how to optimize users’ association to enhance
EE for hyper dense heterogeneous networking in the 5G cellular networks, where the low-power node (LPN) much outnumbers
the high-power node (HPN). To characterize that densely deployed LPNs would undertake a majority of high-rate services, while
HPNsmainly support coverage; the EEmetric is defined as average weighted EE of access nodes with the unit of bit per joule.Then,
the EE optimization objective function is formulated and proved to be nonconvex. Two mathematical transformation techniques
are presented to solve the nonconvex problem. In the first case, the original problem is reformulated as an equivalent problem
involving the maximization of a biconcave function. In the second case, it is equivalent to a concave minimization problem. We
focus on the solution of the biconcave framework, and, by exploiting the biconcave structure, a novel iterative algorithm based on
dual theory is proposed, where a partially optimal solution can be achieved. Simulation results have verified the effectiveness of the
proposed algorithm.

1. Introduction

To provide universal high-data coverage and a seamless user
experience, it is anticipated that the fifth generation (5G)
cellular networks have extreme base station (BS) density
and heterogeneity. Besides, the core networks can reach
unprecedented levels of flexibility and intelligence [1], which
allows the cellular strategies designed towards high efficiency
withmoderate complexity.Meanwhile the issue on improving
energy efficiency (EE) has gained big momentum due to the
increasing awareness of environmental protection and cost-
efficiency. Energy-aware design and planning are motivated
by the fact thatwireless networks are responsible for a fraction
between 0.2 and 0.4 percent of total carbon dioxide emissions
[2], and this value is expected to grow due to the ever-
increasing number of subscribers.

To curtail expenditures and improve EE performance,
cloud radio access networks (C-RANs) are by now recog-
nized as a promising system structure evolution for the 5G

cellular networks [3]. The densely deployed remote radio
heads (RRHs) operate as soft relay by compressing and
forwarding the received signals from UEs to the centralized
baseband unit (BBU) pool. Then, the centralized large-scale
cooperative processing, such as the joint decompression and
decoding schemes, can proceed in the BBUs. Since RRHs
are mainly deployed to provide high capacity in special
zones, to guarantee backward compatibility with the existing
cellular systems and support seamless coverage, high-power
nodes (HPNs) are still critical in C-RANs. With the help
of HPNs, the multiple heterogeneous radio networks can
be converged, and all system control signals are delivered
wherein. Consequently,HPNs should be incorporated intoC-
RANs, and thus heterogeneous cloud radio access networks
(H-CRANs) are proposed in [4, 5], to take full advantage of
both HetNets and C-RANs.The abovementioned advantages
and challenges for cellular networks request a redesign of
user association strategies [6]. Therefore, this paper focuses
on how to design user association strategies to improve EE
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for the hyperdense heterogeneous networking with a mass of
low-power nodes (LPNs) and some HPNs.

Traditionally, users are associated with the BS providing
themaximum received signal reference power (RSRP), which
imposes a heavy burden on the tower-mountedmacroBSs. To
make themost of the dense low-power infrastructure, mobile
users are actively pushed onto small BSs by using biases in
[7]. Considering the fairness among users, load balancing
between macrocells and small cells is investigated in [8, 9].
In [8], the metric of cell selection is changed from the signal
strength to the average throughput. Based on this metric,
handover will happen once it brings positive gain of network
throughput. In [9], the received signal to interference and
noise ratios (SINRs) at users from BSs are multiplied by the
designed factors to make small cells more attractive than
macrocells. To control the bias towards improving through-
put and enhancing users’ fairness during association, a 𝛼-
fairness network utility function is formulated and optimized
in [10].The user association problem in conjunction with the
almost blank subframe (ABSF) technique is considered in
heterogeneous networks (HetNets) in [11], and the optimal
ABSF density is proved to be the proportion of vulnerable
users in total users. All aforementionedworks have a network
utility maximization objective that was adopted with log-
utility to obtain network-wide proportional fairness [12],
but few of them focus on the EE performance of cellular
networks.

Recently, attentions have been also paid to the energy-
efficient design of user association strategies [13, 14]. A
distributed association strategy is developed to minimize the
total power cost of heterogeneous cloud cellular networks in
[13]. An energy-efficient user association problem is studied
from a population game-theoretic perspective to minimize
power consumption in [14]. However, the researches on
energy-efficient user associations are still much limited and
insufficient. One of the open issues is how to define EE
for different networks. Ordinarily, EE metrics are mainly
designed either tominimize the network power consumption
under quality of service (QoS) constraints or tomaximize the
ratio of the network throughput to the area power consump-
tion. However, for hyperdense heterogeneous networking
in the 5G cellular networks, with the loads continuing to
be transferred from macrocells to small cells, the roles of
macro BSs and small BSs are gradually distinguished [15].
High-power macrocells are mainly responsible for coverage,
while a large number of low-power small cells undertake
a majority of high-rate services. It indicates that power
is consumed for both providing coverage and enhancing
network capacity. Such distinction should be reflected in
the EE metric. Therefore, the EE metric may need to be
redesigned for above characteristics.

Another important issue is how to solve nonconvex
EE optimization problems. In [16], the weighted EE is
proved to be quasiconcave, and a bisection based resource
allocation (RA) strategy is proposed accordingly. In [17],
to monotonically increase EE, a quasi-distributed iterative
RA algorithm is proposed for heterogeneous orthogonal
frequency divisionmultiplexing (OFDM) systems. In [18], an
equivalent model for the nonconvex EE optimization object

function is researched and solved by an iterative algorithm.
These aforementioned works mainly focus on the design
of energy-efficient RA strategies and suggest that there is
no common solution for nonconvex optimization problems.
In this paper, two mathematical transformation techniques
will be presented to solve the nonconvex energy-efficient
association strategy.

Contributions of this paper are summarized as follows.
First, the EEperformance ofHPNs andLPNs is distinguished,
and a new EE metric, that is, average weighted EE of access
nodes, with the unit of bit per joule is proposed. Second, an
EE optimization objective function is formulated to optimize
user association strategy under the constraints of backhaul
capacity, users’ data rate, and the maximum transmit power
of BSs, which is proved to be neither convex nor quasicon-
vex. Third, two mathematical transformation techniques are
introduced. In the first case, the nonconvex original problem
is reformulated as a biconcave maximization framework. In
the second case, the original problem is equivalent to a con-
caveminimization framework. Furthermore, the relationship
between two reformulated problems is presented. Fourth, an
iterative algorithm based on dual theory and properties of
the biconcavity is proposed to solve the equivalent biconcave
maximization problem. Simulation results have verified the
effectiveness of the iterative algorithm and suggest that
transferring loads from HPNs to LPNs can improve the
network EE.

The remainder of the paper is organized as follows.
Section 2 gives the systemmodel and formulates the problem.
In Section 3, two equivalent transformation techniques are
presented, respectively; then the optimization algorithm for
the first equivalent problem is introduced. In Section 4, sim-
ulation results are presented, followed by some conclusions
drawn in Section 5.

2. System Model and Problem Formulation

A general K-tier downlink radio network is considered,
which can apply to a H-CRAN network or a dense HetNet.
All deployed access nodes are called a BS for simplicity.Then,
denote by B the set of all BSs in K-tiers and U the set of all
users. As shown in Figure 1, users are allowed to be associated
with multiple BSs at the same time.The association indicator
for the 𝑖th user and the 𝑗th BS is represented as 𝑥

𝑖,𝑗
, where

∀𝑖 ∈ U, 𝑗 ∈ B, 𝑥
𝑖,𝑗

∈ [0, 1], and ∑
𝑖∈U 𝑥
𝑖,𝑗

= 1. Denote
by 𝑐
𝑖

𝐵𝑗
the average spectral efficiency (SE) on the radio link

between the 𝑖th user and the 𝑗th BS, and assume that the
system has the knowledge of {𝑐𝑖

𝐵𝑗
}
|U|×|B| during association

(similar assumptions can be found in [7–11], in which the
received average SINRs at users from BSs for different radio
resources are fixed during association; in addition, {𝑐𝑖

𝐵𝑗
}
|U|×|B|

can be easily obtained in H-CRANs, wherein HPNs can
achieve all system control signals in a centralized way).
The data rate requirement of the 𝑖th user is represented as
𝑅
𝑖
, and the 𝑗th BS is responsible for 𝑥

𝑖,𝑗
𝑅
𝑖
. Denote by 𝑊

𝑗

and 𝑃
𝐵𝑗

the total frequency band and maximum transmit
power of the 𝑗th BS, respectively. Then, the 𝑗th BS needs
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Figure 1: User association in the hyperdense HetNet.

to assign the user with 𝑤
𝑖

𝐵𝑗
= 𝑥
𝑖,𝑗
𝑅
𝑖
/𝑐
𝑖

𝐵𝑗
frequency band,

which accounts for𝑤𝑖
𝐵𝑗
𝑃
𝐵𝑗
/𝑊
𝑗
power consumption. Based on

above assumptions, it is easy to verify that if the requirement
of the 𝑖th user is satisfied, the achieved data rate is 𝑅

𝑖
. The

total transmit power and throughput in the 𝑖th BS are written
as 𝑃
𝑡𝑗

= ∑
𝑖∈U(𝑥𝑖,𝑗𝑅𝑖𝑃𝐵𝑗

/𝐶
𝑖

𝐵𝑗
𝑊
𝑗
) and 𝐶

𝑗
= ∑
𝑖∈U 𝑥
𝑖,𝑗
𝑅
𝑖
,

respectively.

2.1. Energy Efficiency Metric. Then, how to define EE for
the dense K-tier radio network is our focus in this part.
As mentioned in the Introduction, for hyperdense hetero-
geneous networking, a large number of LPNs like pico BSs
undertake a majority of high-rate services, while HPNs like
macroBSs aremainly responsible for coverage.ThoughHPNs
could contribute a small proportion of throughput compared
with LPNs, they account for a significant proportion of
power consumption due to high transmit, circuit, and cooling
power. The existing EE metric defined as the ratio of area
network throughput to area power consumption can not
reflect the above characteristics. To distinguish the power
consumption for ensuring coverage and providing high-rate
services, we propose a new EE metric:

EE =

1
|B|

∑

𝑗∈B

𝑘
𝑗
EE
𝑗
, (1)

which also has the unit bit per joule, where |B| denotes the
cardinality of the BS setB and 𝑘

𝑗
and EE

𝑗
are the predefined

weight factor and the EE value of the 𝑗th BS, respectively.
A tradeoff between ensuring coverage and enhancing data
services can be achieved by adjusting the weight factors of
HPNs and LPNs.

2.2. Problem Formulation. Denote by x = {𝑥
𝑖,𝑗
}
|U|×|B| the

association matrix. Mathematically, we formulate the EE
optimization objective function for the association as

(PX) max
x

𝜂EE (x) =
1
|B|

∑

𝑗∈B

𝑘
𝑗
𝐶
𝑗

𝑃
𝑡𝑗
𝛽
𝑗
+ 𝑃0𝑗

(2)

s.t.
𝑃
𝑡𝑗

𝑃
𝐵𝑗

= ∑

𝑖∈U

𝑥
𝑖,𝑗
𝑅
𝑖

𝑐
𝑖

𝐵𝑗
𝑊
𝑗

≤ 1, ∀𝑗 ∈ B, (3)

∑

𝑖∈U

𝑥
𝑖,𝑗
𝑅
𝑖
≤ 𝑅BH𝑗 , ∀𝑗 ∈ B, (4)

{

{

{

∑

𝑗∈B

𝑥
𝑖,𝑗
= 1, 𝑥

𝑖,𝑗
∈ [0, 1] | ∀𝑖 ∈U, 𝑗 ∈B

}

}

}

,

(5)

where 𝛽
𝑗
and 𝑃0𝑗 are the amplifier coefficient and the fixed

power consumption in the 𝑗th BS, respectively. The fixed
power includes circuit power and cooling power (only macro
BSs). The expressions (3), (4), and (5) constrain the transmit
power of BSs, the backhaul throughput, and users’ data rate,
respectively. In (4),𝑅BH𝑗 represents the capacity limitation for
the backhaul links of the 𝑗th BS.

Remark 1. Problem (PX) is presented as the maximization
of the sum of linear fractional functions over the domain
constrained by (3)∼(5). Though the domain can be proved to
be convex, it is shown in [19] that problem (PX) is neither
quasiconcave nor quasiconvex, even when |B| = 2 and
𝑃
𝑡2
+ 𝑃02 is set equal to 1, that is, even when problem (PX)

is simplified as the sum of one linear term and one fractional
term.

3. Two Mathematical Transformation
Techniques and Association
Optimization Methods

In this section, two mathematical transformation techniques
for the nonconvex problem (PX) are introduced individu-
ally. First, problem (PX) is reformulated as an equivalent
biconcave maximization problem. Second, problem (PX) is
equivalent to a concave minimization problem.The relation-
ship between the two equivalent problems will be introduced.
Then, we focus on how to solve the biconcave maximization
framework by employing dual theory and properties of
biconcave functions.

3.1. The First Mathematical Transformation Technique.
Denote by𝑋 the domain constrained by (3), (4), and (5). For
𝑗 = 1, 2, . . . , |B|, we first consider the subproblem

(PX
𝑗
) max

x

√𝑘
𝑗
∑
𝑖∈U 𝑥
𝑖,𝑗
𝑅
𝑖

∑
𝑖∈U (𝑥

𝑖,𝑗
𝑅
𝑖
/𝑐
𝑖

𝐵𝑗
𝑊
𝑗
)𝑃
𝐵𝑗
𝛽
𝑗
+ 𝑃0,𝑗

s.t. x ∈ 𝑋.

(6)

Since the numerator in (6) is differentiable and concave
on 𝑋 and the denominator in (6) is positive and linear on
𝑋, problem (PX

𝑗
) is pseudoconcave on 𝑋 according to [20].

Therefore, for each 𝑗 = 1, 2, . . . , |B|, any local maximum
of problem (PX

𝑗
) is also a global maximum of problem

(PX
𝑗
). Furthermore, problem (PX

𝑗
) can be solved by using
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any appropriate convex programmingmethods. For example,
a simple roll polling algorithm can be employed here; that
is, the 𝑗th BS first serves the user with the largest 𝑐𝑖

𝐵𝑗
, and

other users can be served if and only if their association
can enhance the EE of the 𝑗th BS. Note that the association
optimization for a single user to a single BS is convex. The
detailed procedures for the roll polling algorithm are omitted
here to save space, and we directly denote the maximum

value of problem (PX
𝑗
) by 𝑄

𝑗
. Then, a vector parameter q =

{𝑞
𝑗
}1×|B| can be defined in the following set:

𝑄 = {q ∈R|B| | 0≤ 𝑞
𝑗
≤𝑄
𝑗
, 𝑗 ∈ |B|} ,

(7)

where R|𝐵| denotes |B|-dimensional real space. Since prob-
lem (PX) is nonconvex, we introduce the following problem:

(PX1) max
x,q

𝑈 (x, q) = 1
|B|

∑

𝑗∈B

[

[

2𝑞
𝑗√

𝑘
𝑗
∑

𝑖∈U

𝑥
𝑖,𝑗
𝑅
𝑖
− 𝑞
𝑗

2
(∑

𝑖∈U

𝑥
𝑖,𝑗
𝑅
𝑖

𝑐
𝑖

𝐵𝑗
𝑊
𝑗

𝑃
𝐵𝑗
𝛽
𝑗
+𝑃0𝑗)

]

]

s.t. x ∈ 𝑋, q ∈ 𝑄.

(8)

The objective of problem (PX1) is to achieve the optimal
combination of {x, q} that maximizes the network-wide
utility function 𝑈(x, q). Both 𝑋 and 𝑄 can be proved to be
convex sets. Problems (PX) and (PX1) are equivalent in the
aspects shown inTheorem 2 according to [19].

Theorem 2. Problem (PX1) is biconcave on 𝑋 × 𝑄. If (x∗, q∗)
is a globally optimal combination for problem (PX1), then x∗
is a globally optimal solution for the EE optimization problem
(PX). Besides, it holds the relationship

𝑞
∗

𝑗
=

√𝑘
𝑗
∑
𝑖∈U 𝑥
∗

𝑖,𝑗
𝑅
𝑖

∑
𝑖∈U (𝑥

∗

𝑖,𝑗
𝑅
𝑖
/𝑐
𝑖

𝐵𝑗
𝑊
𝑗
)𝑃
𝐵𝑗
𝛽
𝑗
+ 𝑃0𝑗

, 𝑗 ∈ |B| . (9)

Proof. First,𝑋 and 𝑄 are convex sets. For all 𝑗 ∈ B, let

𝑚
𝑗
(x, 𝑞
𝑗
) = 2𝑞

𝑗√
𝑘
𝑗
∑

𝑖∈U

𝑥
𝑖,𝑗
𝑅
𝑖

− 𝑞
𝑗

2
(∑

𝑖∈U

𝑥
𝑖,𝑗
𝑅
𝑖

𝑐
𝑖

𝐵𝑗
𝑊
𝑗

𝑃
𝐵𝑗
𝛽
𝑗
+𝑃0𝑗) ,

(10)

where x ∈ 𝑋 and 𝑞
𝑗
∈ [0, 𝑄

𝑗
]. Since, for each x ∈ 𝑋 and

q ∈ 𝑄,

𝑈 (x, q) = 1
|B|

∑

𝑗∈B

𝑚
𝑗
(x, 𝑞
𝑗
) , (11)

to show that (PX1) is biconcave, it suffices to show that, for
all 𝑗 ∈ B, 𝑚

𝑗
is biconcave. Given a fixed x ∈ 𝑋, 𝑚

𝑗
is a

quadratic function with respect to 𝑞
𝑗
. Since the coefficient

(∑
𝑖∈U(𝑥𝑖,𝑗𝑅𝑖/𝑐

𝑖

𝐵𝑗
𝑊
𝑗
)𝑃
𝐵𝑗
𝛽
𝑗
+ 𝑃0𝑗) is always positive, 𝑚

𝑗
is

concave to 𝑞
𝑗
on [0, 𝑄

𝑗
]. In addition, given a fixed 𝑞

𝑗
∈ [0, 𝑄

𝑗
],

the power function 2𝑞
𝑗√

𝑘
𝑗
∑
𝑖∈U 𝑥
𝑖,𝑗
𝑅
𝑖
can be easily proved to

be concave on𝑋. Besides, 𝑞
𝑗

2
(∑
𝑖∈U(𝑥𝑖,𝑗𝑅𝑖/𝑐

𝑖

𝐵𝑗
𝑊
𝑗
)𝑃
𝐵𝑗
𝛽
𝑗
+𝑃0𝑗)

is linear. Therefore, 𝑚
𝑗
(x, 𝑞
𝑗
) is concave on the vector 𝑥

𝑗
,

where 𝑥
𝑗
= (𝑥1,𝑗, . . . , 𝑥|U|,𝑗)

𝑇. The notation | ⋅ |
𝑇 represents

the transpose operation. The biconcavity has been proved.

Suppose that (x∗, q∗) is the globally optimal solution to
problem (PX1). q∗ can be directly obtained based on the
biconcavity of problem (PX1) by solving

𝜕𝑈 [x∗, 𝑞
𝑗
]

𝜕𝑞
𝑗

= 0,

0 ⩽ 𝑞
𝑗
⩽ 𝑄
𝑗
,

𝑗 ∈ B.

(12)

It is easy to verify that

𝑞
∗

𝑗
=

√𝑘
𝑗
∑
𝑖∈U 𝑥
∗

𝑖,𝑗
𝑅
𝑖

∑
𝑖∈U (𝑥

∗

𝑖,𝑗
𝑅
𝑖
/𝑐
𝑖

𝐵𝑗
𝑊
𝑗
)𝑃
𝐵𝑗
𝛽
𝑗
+ 𝑃0𝑗

, 𝑗 ∈ |B| . (13)

To prove the optimality of x∗, we first deny that x∗ is the
globally optimal solution for the EE optimization problem
(PX). Then, for some x ∈ 𝑋,

𝜂EE (x) > 𝜂EE (x
∗
) . (14)

Also, because 𝑈(x, q) is biconcave on𝑋 × 𝑄, the globally
optimal solution q to the subproblem

max
q

𝑈 (x, q)

s.t. q ∈ 𝑄,

x = x
(15)

can be calculated as

𝑞
𝑗
=

√𝑘
𝑗
∑
𝑖∈U 𝑥
𝑖,𝑗
𝑅
𝑖

∑
𝑖∈U (𝑥

𝑖,𝑗
𝑅
𝑖
/𝑐
𝑖

𝐵𝑗
𝑊
𝑗
)𝑃
𝐵𝑗
𝛽
𝑗
+ 𝑃0𝑗

, 𝑗 ∈ |B| . (16)

Since 𝑞
𝑗
must be smaller than 𝑄

𝑗
according to subprob-

lem (PX
𝑗
), the combination (x, q) is a feasible point in𝑋×𝑄.
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Substituting (16) into problem (PX1), the utility value of prob-
lem (PX1) can be obtained, which equals 𝜂EE[x]. Similarly,
substituting (13) into problem (PX1), the result is 𝜂EE[x

∗
].

Since (x∗, q∗) is the global optimal solution of problem (PX1)
in 𝑋 × 𝑄, it requires that 𝜂EE[x] ≤ 𝜂EE[x

∗
] which contrasts

(14). Therefore, x∗ must be a globally optimal association
matrix for the EE optimization problem (PX).

According to Theorem 2, the nonconvex EE optimiza-
tion problem in (2) can be reformulated as an equivalent
optimization problem (PX1) involving the maximization of
a biconcave function over 𝑋 × 𝑄, where 𝑄 ⊆ +R|𝐽| is a
hyperrectangle.

3.2. The Second Mathematical Transformation Technique.
Based on above discussions, the nonconvex problem (PX)
can be reformulated as an equivalent biconcave problem. In
this part, we will present another transformation technique
which reformulates problem (PX) as a concave minimization
framework.

For each 𝑗 ∈ B, let 𝑄
𝑗
and 𝑞

𝑗
be defined as before. For

a given q, a new vector k = {V
𝑗
}1×|B| is introduced, which is

constrained as

𝑉 = {k ∈R|B| | 𝑞2
𝑗
⩽ V
𝑗
⩽𝑄
𝑗

2
, 𝑗 ∈B} . (17)

Then, a utility function is formulated on 𝑄 × 𝑉 as

𝑌 (q, k) = min
x∈𝑋

∑

𝑗∈|B|

[

[

−2𝑞
𝑗√

𝑘
𝑗
∑

𝑖∈|U|

𝑥
𝑖,𝑗
𝑅
𝑖

+ V
𝑗
( ∑

𝑖∈|U|

𝑥
𝑖,𝑗
𝑅
𝑖

𝑐
𝑖

𝐵𝑗
𝑊
𝑗

𝑃
𝐵𝑗
+𝑃0,𝑗)]

]

.

(18)

Notice that 𝑄 × V is a convex set. Furthermore, for each
(q, k) ∈ 𝑄×𝑉, 𝑌(q, k) is the minimum value of a set of linear
functions of (q, k) evaluated at (q, k). Since linear functions
are also concave functions, 𝑌 is a concave function on 𝑄 × 𝑉

according to [21]. Based on the definition of 𝑌 function, we
formulate a utility minimization problem as follows:

(PX2) min
q,k

𝑌 (q, k)

s.t. q ∈ 𝑄, k ∈ 𝑉.

(19)

Problem (PX2) involves the minimization of a concave
function 𝑌 on the convex set 𝑄 × 𝑉, and it is an equivalent
problem of the EE optimization problem (PX) in the aspects
shown inTheorem 3.

Theorem 3. If (q∗, v∗) is a globally optimal solution for
problem (𝑃𝑋2), then x∗ is a globally optimal solution for
problem (𝑃𝑋), where x∗ is any associationmatrix that achieves
the minimum in (18) with (q, v) = (q∗, v∗).

Proof. First, suppose that (q∗, k∗) is a globally optimal solu-
tion for problem (PX2) and x∗ achieves the minimum in
(18) with (q, k) = (q∗, k∗). Since in cellular networks the
expressions √𝑘

𝑗
∑
𝑖∈|U| 𝑥𝑖,𝑗𝑅𝑖 and (∑

𝑖∈|U|(𝑥𝑖,𝑗𝑅𝑖/𝑐
𝑖

𝐵𝑗
𝑊
𝑗
)𝑃
𝐵𝑗

+

𝑃0,𝑗) are always positive for each 𝑗 ∈ B, to achieve the
minimum of 𝑌(q, k), the variable k should be assigned with
a minimum value in 𝑉. Therefore, based on the definition of
𝑉, it holds that k∗ = q∗2, and this implies that x∗ globally
minimizes 𝑌(q∗, q∗2). It is equivalent to saying that (x∗, q∗)
is the globally optimal solution for problem (PX1), which
maximizes 𝑈(x, q). Therefore, x∗ is the globally optimal
solution for problem (PX) according toTheorem 2.

Based on above discussion, the nonconvex EE opti-
mization problem (PX) can be reformulated as a concave
minimization problem (PX2). This new property provides
a new way to solve the original EE optimization problem.
In addition, as proved in Theorem 3, problem (PX2) can be
further transformed to problem (PX1) by setting k = q2;
hence our next focus is how to solve problem (PX1) by taking
advantage of its biconcavity.

3.3. The Energy-Efficient Association Strategy. In this section,
the biconcave problem (PX1) is solved by using the Alternate
Convex Search (ACS) algorithm as in [20]. First, given a
feasible association matrix x0 ∈ 𝑋, the subproblem

(S1) : max
q

𝑈 (x, q)

s.t. q ∈ 𝑄,

x = x0 = {𝑥
0
𝑖,𝑗
}
|U|×|B|

(20)

is concave on 𝑄 and has a globally optimal solution repre-
sented as q0 = {𝑞

0
𝑗
}1×|B|, where

𝑞
0
𝑗
=

√𝑘
𝑗
∑
𝑖∈U 𝑥

0
𝑖,𝑗
𝑅
𝑖

∑
𝑖∈U (𝑥

0
𝑖,𝑗
𝑅
𝑖
/𝑐
𝑖

𝐵𝑗
𝑊
𝑗
)𝑃
𝐵𝑗
𝛽
𝑗
+ 𝑃0𝑗

, 𝑗 ∈ |B| . (21)

The solution (x0, q0) is a feasible point in 𝑋 × 𝑄 for
problem (PX1). Similarly, given the q0, the subproblem

(S2) : max
x

𝑈 (x, q)

s.t. x ∈ 𝑋,

q = q0

(22)

is concave on 𝑋. To obtain the globally optimal solution of
problem (S2), the dual theory is applied here.The duality gap
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is zeros since problem (S2) is concave. The Lagrange dual
function for problem (S2) is formulated as

𝑔 (𝛼, 𝛽, 𝜆) = max
x∈𝑋

𝐿 (x, 𝛼, 𝛽, 𝜆)

= max
x∈𝑋

∑
𝑗∈B [2𝑞0

𝑗
√𝑘
𝑗
∑
𝑖∈U 𝑥
𝑖,𝑗
𝑅
𝑖
− 𝑞

0
𝑗

2
(∑
𝑖∈U (𝑥

𝑖,𝑗
𝑅
𝑖
/𝑐
𝑖

𝐵𝑗
𝑊
𝑗
)𝑃
𝐵𝑗
𝛽
𝑗
+ 𝑃0𝑗)]

|B|

+ ∑

𝑗∈B

𝛼
𝑗
(1− ∑

𝑖∈U

𝑥
𝑖,𝑗
𝑅
𝑖

c𝑖
𝐵𝑗
𝑊
𝑗

)

+ ∑

𝑗∈B

𝛽
𝑗
(𝑅BH𝑗 − ∑

𝑖∈U

𝑥
𝑖,𝑗
𝑅
𝑖
)+ ∑

𝑖∈U

𝜆
𝑖
(1− ∑

𝑗∈B

𝑥
𝑖,𝑗
) ,

(23)

where𝐿(x, 𝛼, 𝛽, 𝜆) is the Lagrangian function and𝛼 = {𝛼
𝑗
, 𝑗 ∈

B} ⪰ 0, 𝛽 = {𝛽
𝑗
, 𝑗 ∈ B} ⪰ 0, and 𝜆 = {𝜆

𝑖
, 𝑖 ∈ U} ⪰ 0 are

the dual variables for constraints (3), (4), and (5), respectively.
The notation ⪰ is an element-wide operation. 𝐿(x, 𝛼, 𝛽, 𝜆) can
be easily proved to be concave on x ∈ 𝑋, and the optimal
solution x∗ to (23) is represented as

𝑥
∗

𝑖,𝑗
=

{
{
{
{

{
{
{
{

{

0, 𝜏0 ⩽ 0

𝜏0, 0 < 𝜏0 < 1

1, 1 ⩽ 𝜏0,

(24)

where 𝜏0 = 𝑞
0
𝑗

2
𝑘
𝑗
𝑅
𝑖
/((𝛾
𝑖
+ 𝛽
𝑗
𝑅
𝑖
)|B| + (𝛼

𝑗
𝑅
𝑖
|B| +

𝑞
0
𝑗

2
𝑅
𝑖
𝑃
𝐵𝑗
𝛽
𝑗
)/𝑐
𝑖

𝐵𝑗
𝑊
𝑗
)
2
− ∑
𝑚∈U\𝑖 𝑥

∗

𝑚,𝑗
(𝑅
𝑚
/𝑅
𝑖
).

Considering that𝐿(x, 𝛼, 𝛽, 𝜆) is concave on𝑋, the optimal
association matrix for problem (S2) can be achieved by using
the iterative coordinate search method in [21]. The explicit
procedures are omitted here to save space. For simplicity of
presentation, the solution of problem (S2) with input q0 is
represented as x∗(q0) ∈ 𝑋. The dual problem is given as

(D-S2) min 𝑔 (𝛼, 𝛽, 𝜆) = 𝐿 (x∗ (q0) , 𝛼, 𝛽, 𝜆)

s.t. 𝛼 ⪰ 0, 𝛽 ⪰ 0, 𝜆 ⪰ 0.
(25)

Obviously, 𝐿(x∗(q0), 𝛼, 𝛽, 𝜆) is linear to 𝛼, 𝛽, 𝜆. Hence,
𝑔(𝛼, 𝛽, 𝜆) is the maximum of linear function and the dual
problem (D-S2) is always convex. Furthermore, the subgra-
dient of 𝑔(𝛼, 𝛽, 𝜆) is presented as

Δ𝛼
𝑗
= ∑

𝑖∈U

𝑥
𝑖,𝑗
𝑅
𝑖

𝑐
𝑖

𝐵𝑗
𝑊
𝑗

− 1,

Δ𝛽
𝑗
= ∑

𝑖∈U

𝑥
𝑖,𝑗
𝑅
𝑖
−𝑅BH𝑗 ,

Δ𝜆
𝑖
= ∑

𝑗∈B

𝑥
𝑖,𝑗
− 1.

(26)

Then, problem (S2) can be solved by updating 𝛼, 𝛽, 𝜆 via
the ellipsoid method [21], of which the details are omitted
here for brevity. Finally, the ACS algorithm is shown in
Algorithm 1 at the next page. For simplicity, denote by x∗

𝑛
and

q∗
𝑛
the solutions to problem (S1) and problem (S2) at the 𝑛th

iteration, respectively.
The complexity of Algorithm 1 is related with the value

of 𝜀. In each iteration, problem (S1) can be directly and
optimally solved, while problem (S2) needs an inner loop
to attain the optimal x∗ for a fixed q. The main operation
expenditure of Algorithm 1 is equivalent to that of solving
problem (S2), which is further equivalent to the complexity of
solving (|B|×|U|) linear equations.Therefore, the complexity
of Algorithm 1 is 𝑂(|B| × |U|).

Theorem 4. The obtained sequence {𝑈(x∗
𝑛
, q∗
𝑛
)}
𝑛∈N generated

by Algorithm 1 monotonically converges. Further, it holds that
lim
𝑛→∞

‖x∗
𝑛
− x∗
𝑛−1‖ = 0. (N denotes the set of nonnegative

integers, and the notation ‖ ⋅ ‖ denotes the Euclidean norm of a
matrix.)

Proof. Since the sequence {𝑈(x∗
𝑛
, q∗
𝑛
)}
𝑛∈N generated by

Algorithm 1 is monotonically increasing and the function
𝑈(x, q) is bounded from above, the sequence {𝑈(𝑥∗

𝑛
, 𝑞
∗

𝑛
)}
𝑛∈N

converges to a finite value. Furthermore, suppose a feasible
point (x, q) ∈ 𝑋 × 𝑈. Since both problem (S1) with fixed x
and problem (S2) with fixed q are convex and have a globally
optimal solution, lim

𝑛→∞
‖x∗
𝑛
− x∗
𝑛−1‖ = 0 holds according to

Theorem 4.9 in [20].

Although it has been proved in Theorem 3 that both the
sequence {𝑈[x∗

𝑛
, q∗
𝑛
]}
𝑛∈N and the sequence {x∗

𝑛
}
𝑛∈N converge

in finite iterations, the obtained x∗
𝑛

by Algorithm 1 is a
partially optimal solution to problem (PX) instead of a
globally optimal one.

4. Simulation

In this section, simulations are carried out to verify the effec-
tiveness of Algorithm 1. A macro-pico HetNet is considered,
and the parameters of BSs are set as in [21], where, for pico
BSs, 𝑃

𝐵𝑗
= 1W, 𝑃

𝑜𝑗
= 6.8W, and 𝛽

𝑗
= 4.7; for macro BSs,

𝑃
𝐵𝑗

= 40W, 𝑃
𝑜𝑗
= 130W, and 𝛽

𝑗
= 4. ∀𝑗 ∈ B,𝑊

𝑗
= 107 Hz.

In addition, 𝑘1 = 𝑘2 = ⋅ ⋅ ⋅ = 𝑘
|B| = 1. The initialed value

of the association matrix is set as 𝑥0 = {1/|B|}
|U|×|B|, that
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(1) Input: x0 ∈ 𝑋, q0 ∈ 𝑄, {𝐶𝑖
𝐵𝑗
}
|u|×|B|

(2) Initialize the maximum tolerance 𝜀, the maximum iteration number𝑁max, the iteration index 𝑛 = 1,
x∗0 = x0, and q∗0 = q0.

(3) repeat {Main Loop}
(4) Calculate the optimal q∗

𝑛
by solving problem (S1) with input x∗

𝑛−1.
(5) Calculate the optimal x∗

𝑛
by solving problem (S2) with input q∗

𝑛
.

(6) if |𝑈(x∗
𝑛
, q∗
𝑛
) − 𝑈(x∗

𝑛−1, q
∗

𝑛−1)| < 𝜀

(7) then Convergence = true
(8) end if
(9) 𝑛 = 𝑛 + 1
(10) until Convergence = true or 𝑛 > 𝑁max

Algorithm 1: The Alternate Convex Search algorithm.
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Figure 2: The network EE and the utility value of HetNets with
respect to iteration number under ideal and nonideal backhaul
scenarios.

is, an average connection. We focus on the EE and the utility
performances of a macro BS and several pico BSs.

Figure 2 shows how the network EE 𝜂EE(x) and the utility
value 𝑈(x, q) change with respect to the iteration number in
Algorithm 1. First, for both scenarios with ideal and nonideal
backhaul, the EE lines and the utility lines monotonically
increase with respect to the iteration number and match
with each other in the end. The blue line represents the
maximum EE value for the ideal backhaul scenario, where
the optimal association matrix is obtained by a brute-force
search. The solid lines of EE and the utility can gradually
approach the optimal value as the iteration number increases,
which verifies the effectiveness of Algorithm 1. In addition,
as expected, nonideal backhaul can reduce the performance
of network EE compared with the scenario with ideal
backhaul.
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Figure 3: The EE and utility value of pico BSs and macro BSs with
respect to iteration number under ideal backhaul scenario.

Figure 3 shows how the EE and the utility value of
individual pico BSs and macro BSs change with respect to
the iteration number in Algorithm 1. First, as with Figure 2,
all the dashed utility lines and solid EE lines of pico BSs and
macro BSs match well when the iteration ends. Second, pico
BSs perform much better than macro BSs in terms of EE,
and their EE values are about 10 times larger than that of the
macro BS. Third, it can be seen that, during the association,
loads are transferred from macro BSs to pico BSs and among
pico BSs. From the 2nd iteration to the 7th iteration, the EE
values of the above three pico BSs’ lines almost do not change,
while the EE of the macro BS decreases, and the EE of the
below pico BS’s line increases. It indicates that the loads of
the macro BS are transferred to the pico BS. From the 8th
iteration to the 14th iteration, the EE of themacro BS remains
the same, while the blue pico BS’s line continues to increase;
the other pico BSs’ lines monotonically decrease. It indicates



8 International Journal of Antennas and Propagation

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10

En
er

gy
 effi

ci
en

cy
 (b

it/
J)

EE: with ideal backhaul
EE: with nonideal backhaul

×10
4

k

Figure 4:The network EEwith respect to the weight factor ofmacro
BSs under ideal and nonideal backhaul scenarios.

that loads are being transferred among pico BSs. Since the
network EE can monotonically increase, the above results
suggest that one simple energy-efficient association strategy
is to transfer the loads of macro BSs to pico BSs as much as
possible.

Figure 4 presents the impact of the weight factors of
macro BSs on the performance of the network EE. For both
scenarios with ideal and nonideal backhaul, the network EE
monotonically decreases as the weight factor of the macro
BS increases. It further suggests that transferring loads from
macro BSs to pico BSs is a promising approach to improve
EE. For the blue line, the EE value at the point of 𝑘 = 5 is
about 7 times larger than the EE value at the point of 𝑘 = 15.
Therefore, a proper design of the weight factors can achieve a
large gain of network EE.

5. Conclusion

In this paper, we investigate the design of energy-efficient
association strategy for hyperdense heterogeneous network-
ing in the 5G cellular networks. The network EE is defined
as average weighted EE of access nodes to characterize the
feature that high-power macro BSs are mainly responsible
for coverage while low-power small BSs undertake a majority
of high-data rate services. The formulated EE optimiza-
tion objective function is proved to be nonconvex. Two
mathematical transformation techniques are presented to
equivalently reformulate the original nonconvex problem as
a biconcave maximization and a concave minimization prob-
lems, respectively. Furthermore, an iterative algorithm based
on the properties of biconcave functions and dual theory is
proposed to solve the biconcave problem. Simulation results
indicate that transferring loads from macro BSs to small BSs
can improve the network EE.
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