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Resonances in reverse Vavilov-Cherenkov radiation produced by the charged particles beam passage over periodic boundary
of dispersive left-handed medium are found out and studied. Analysis and modeling are performed on the base of rigorous
mathematical approaches. For the first time, several physical peculiarities owing to these effects are considered in the conditions of
possible resonant scattering of electromagnetic waves.

1. Introduction

Vavilov-Cherenkov radiation is appreciated as one of the
greatest discoveries of the 20th century. The modern his-
tory of Vavilov-Cherenkov radiation (VChR) goes back to
Cherenkov’s experiments, 1934–1937 [1]. Tamm and Frank
developed this radiation theory in 1937 [2]. In 1958, the work
was awarded a Nobel Prize in physics. Since then, VChR
has been extensively used in physics and engineering [3].
As materials science and engineering advance, actual left-
handed media providing qualitatively new characteristics in
the implementation of well-known phenomena come and
cause a fresh interest in VChR from both theoretical and
applied standpoints.

The study presented in the paper considers several still
poorly understood peculiarities of the diffraction radiation
[4] and, in particular, the direct and reverse VChR [4–7] pro-
duced by a beam of charged particles moving above the dis-
persive medium surface (generally periodic). Depending on
frequency, this medium can be right-handed (conventional
dielectric),mononegative (either permittivity or permeability
is negative), or left-handed (both permittivity and permeabil-
ity are negative). Emphasis is placed on the radiation charac-
teristics in the conditions of possible resonant scattering of

electromagnetic waves when the modulation period of the
electron beam is comparable with the interface period and
the excitation of eigenwaves supported by this boundary is
possible. The study of resonant situations requires adequate
research methods and tools that are based mainly on the
idea of analytic regularization of boundary value problems in
electromagnetic theory of gratings [8, 9].

2. Models and Characteristics

In free space (𝜀(𝑔) = 𝜇(𝑔) ≡ 1), the eigenfield
{�⃗�
𝑖
(𝑔, 𝑘), �⃗�

𝑖
(𝑔, 𝑘)} of electron beam with modulated density

and the instantaneous value of the charge density given by
the expression 𝜌𝛿(𝑧 − 𝑎)exp[𝑖((𝑘/𝛽)𝑦 − 𝑘𝑡)] represents the
𝐻-polarized field (𝜕/𝜕𝑥 ≡ 0, 𝐸𝑖

𝑥
= 𝐻
𝑖

𝑦
= 𝐻
𝑖

𝑧
= 0) and

accordingly [4]
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⋅ [

|𝑧 − 𝑎|
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] ; 𝑧 ̸= 𝑎,

𝐸
𝑖

𝑦
(𝑔, 𝑘) = − (

𝜂0
𝑖𝑘

)

𝜕𝐻
𝑖

𝑥
(𝑔, 𝑘)

𝜕𝑧

,

𝐸
𝑖

𝑧
(𝑔, 𝑘) = (

𝜂0
𝑖𝑘

)

𝜕𝐻
𝑖

𝑥
(𝑔, 𝑘)

𝜕𝑦

.

(1)

Here 𝛿(⋅ ⋅ ⋅ ) is Dirac’s 𝛿-function; 𝜌 and 𝑘 are the amplitude
and the modulation frequency of the electron beam and
0 < 𝛽 < 1 is beam’s relative velocity; 𝜂0 = (𝜇0/𝜀0)

1/2

is the impedance of free space; 𝜀0 and 𝜇0 are electric and
magnetic constants of the vacuum; 𝜀(𝑔) and 𝜇(𝑔) are relative
permittivity and permeability of the medium in the domain
of wave propagation; 𝑔 = {𝑦, 𝑧} is a point in the space
𝑅
2; time dependence of the harmonically oscillating fields is

determined by the factor exp(−𝑖𝑘𝑡). All physical quantities
have the dimension of the SI, only “time” is measured in
meters; it is the product of the real time on the speed of light
in vacuum.

Suppose −2𝜋𝜌𝛽√𝑙 exp[−𝑘(𝑎 − ℎ)√(1/𝛽)2 − 1] = 1.
Then, eigenfield (1) of the electron beam passing in the
conventional medium (vacuum) over the periodic boundary
𝑆 (see Figure 1) of the dispersive medium with constitutive
parameters defined by relations

𝜀 (𝑘) = 1−
𝑘
2
𝜀

𝑘
2 ,

𝜇 (𝑘) = 1−
𝑘
2
𝜇

𝑘
2

(2)

generates in the domains 𝑧 ≥ ℎ and 𝑧 ≤ 0 the 𝐻-
polarized field {�⃗�𝑠(𝑔, 𝑘), �⃗�𝑠(𝑔, 𝑘)} with nonzero components
represented as follows [8]:
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(3)

Here, 𝑙 and 0 ≤ ℎ < 𝑎 are the period length and height of
the corrugation mounts 𝑆 = {𝑔 : 𝑧 = 𝑓(𝑦), 0 ≤ 𝑓(𝑦) ≤ ℎ};
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Figure 1: Geometry of the problem of diffraction radiation.

𝑘 = 2𝜋/𝜆 and 𝜆 is the length of the electromagnetic waves
in free space; 𝑘

𝜀
and 𝑘

𝜇
are the characteristic frequencies of

dispersivemedium;𝜇
𝑛
(𝑦) = 𝑙

−1/2exp(𝑖Φ
𝑛
𝑦),Φ
𝑛
= 2𝜋𝑛/𝑙+Φ0,

and Φ0 = 𝑘/𝛽; Γ
𝑛
= √𝑘

2
− Φ

2
𝑛
and Re Γ

𝑛
≥ 0, Im Γ

𝑛
≥

0. Signs of real and imaginary parts of the root Γ𝜀,𝜇
𝑛

=

√𝑘
2
𝜀(𝑘)𝜇(𝑘) − Φ

2
𝑛
are given so that all partial components

𝑈
𝑇

𝑛
(𝑔, 𝑘) = 𝑇

𝑛
(𝑘) exp[−𝑖Γ𝜀,𝜇

𝑛
𝑧]𝜇
𝑛
(𝑦) (spatial harmonics) of

the field {�⃗�𝑠(𝑔, 𝑘), �⃗�𝑠(𝑔, 𝑘)} in the domain 𝑧 ≤ 0 are the
outgoing plane waves, that is, homogeneous waves (Im Γ𝜀,𝜇

𝑛
=

0), transferring energy in the direction towards 𝑧 = −∞

or the inhomogeneous waves (Re Γ𝜀,𝜇
𝑛

= 0), exponentially
decaying when moving in the same direction.

Amplitude coefficients 𝑅
𝑛
(𝑘) and 𝑇

𝑛
(𝑘) are complicated

function of frequency and geometric and constitutive param-
eters of the media of wave propagation. We find them by
solving numerically the following boundary value problem
[8] in the strip 0 ≤ 𝑦 ≤ 𝑙:

[

𝜕
2

𝜕𝑦
2 +

𝜕
2

𝜕𝑧
2 + 𝑘

2
𝜀 (𝑔) 𝜇 (𝑔)]𝐻

𝑥
(𝑔, 𝑘) = 0; 0 ≤ 𝑧 ≤ ℎ, (4a)

𝐻
𝑥
{

𝜕𝐻
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𝜕𝑦

} (𝑙, 𝑧, 𝑘) = exp (𝑖Φ0𝑙)𝐻𝑥 {
𝜕𝐻
𝑥

𝜕𝑦

} (0, 𝑧, 𝑘) ;

0 ≤ 𝑧 ≤ ℎ,
(4b)

𝐻
𝑥
(𝑔, 𝑘) =

∞

∑

𝑛=−∞

𝜇
𝑛
(𝑦)

⋅

{

{

{

𝛿
𝑛

0 exp [−𝑖Γ𝑛 (𝑧 − ℎ)] + 𝑅𝑛 (𝑘) exp [𝑖Γ𝑛 (𝑧 − ℎ)] ; 𝑧 ≥ ℎ

𝑇
𝑛 (
𝑘) exp [−𝑖Γ𝜀,𝜇

𝑛
𝑧] ; 𝑧 ≤ 0,

(4c)

𝐻
𝑥
(𝑔, 𝑘) , 𝐸

𝑡𝑔
(𝑔, 𝑡)

are continuous across 𝑆 and virtual boundaries 𝑧 = 0, 𝑧

= ℎ.

(4d)

Here, 𝛿𝑛
𝑚
is the Kronecker symbol and 𝐻

𝑥
(𝑔, 𝑘) is one of the

three nonzero components of the total field

{�⃗� (𝑔, 𝑘) , �⃗� (𝑔, 𝑘)}

=

{

{

{

{�⃗�
𝑖
(𝑔, 𝑘) , �⃗�

𝑖
(𝑔, 𝑘)} + {�⃗�

𝑠
(𝑔, 𝑘) , �⃗�

𝑠
(𝑔, 𝑘)} ; 𝑧 ≥ ℎ

{�⃗�
𝑠
(𝑔, 𝑘) , �⃗�

𝑠
(𝑔, 𝑘)} ; 𝑧 < ℎ.

(5)

This problem allows determining (within the approxi-
mation of a given current) the electromagnetic field (field
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of diffraction radiation) generated by density modulated
electron beam [4, 8]. The method, usually called as a method
of analytic regularization [8, 9], was used for numerical
solving of the problem of interest. The application of this
method provided already the majority of the physical and
applied results of the electromagnetic theory of gratings
associated with resonant and anomalous spatial-frequency
and spatial-time transformations of electromagnetic fields in
periodic structures [8, 10–13].

The energy characteristics of diffraction radiation are
given by the relation [8]

∞

∑

𝑛=−∞

[




𝑅
𝑛






2 Re Γ
𝑛
+




𝑇
𝑛






2 Re Γ𝜀,𝜇
𝑛
𝜀
−1
(𝑘)]

= 2 Im𝑅0 Im Γ0,

(6)

obtained by the application of the Poynting theorem for
complex power to the field {�⃗�(𝑔, 𝑘), �⃗�(𝑔, 𝑘)} within the
domain [0 ≤ 𝑦 ≤ 𝑙] × [0 ≤ 𝑧 ≤ ℎ]. The term
in the left part in (6) is the total electromagnetic energy
𝑊 = 𝑊

↑
+ 𝑊
↓ radiated into the half-spaces 𝑧 ≥ ℎ

and 𝑧 ≤ 0. In the approximation of the given current, it
is determined by the expression 2 Im𝑅0 Im Γ0. The values
𝑊
𝑅

𝑛
= |𝑅
𝑛
|
2Re Γ
𝑛
and 𝑊𝑇

𝑛
= |𝑇
𝑛
|
2Re Γ𝜀,𝜇
𝑛
𝜀
−1
(𝑘) characterize

the distribution of the energy, lost by the electrons beam,
between the channels open for radiation, that is, between
the harmonics of the spatial spectrum such that Re Γ

𝑛
≥

0 and/or Re Γ𝜀,𝜇
𝑛
𝜀
−1
(𝑘) > 0. The last inequality and the

relationship Re𝑃
𝑦
(𝑘) = 𝜀

−1
(𝑘)∑
𝑛: ImΓ𝜀,𝜇

𝑛
=0 |𝑇𝑛|

2
Φ
𝑛
(𝑃
𝑦
(𝑘)

is the 𝑦-component of the Poynting vector �⃗�(𝑘) for field
{�⃗�(𝑔, 𝑘), �⃗�(𝑔, 𝑘)} in the plane 𝑧 = 0 averaged over the period
𝑙) allow determining unambiguously and quite rigorously the
direction of the phase velocity of propagating in the half-
space 𝑧 > 0 harmonic𝑈𝑇

𝑛
(𝑔, 𝑘) and the direction inwhich this

harmonic carries the energy. In conventional media, these
directions coincide and are given by the vector Φ

𝑛
⃗𝑦 − Γ
𝜀,𝜇

𝑛
�⃗�,

Γ
𝜀,𝜇

𝑛
> 0. In binegative media Γ𝜀,𝜇

𝑛
< 0, the phase velocity is

oriented along the vectorΦ
𝑛
⃗𝑦−Γ
𝜀,𝜇

𝑛
�⃗�, and the energy transfer

holds along the vector −Φ
𝑛
⃗𝑦 + Γ
𝜀,𝜇

𝑛
�⃗�. In media with only

one negative constitutive parameter the harmonics 𝑈𝑇
𝑛
(𝑔, 𝑘)

carrying the energy in the direction 𝑧 = −∞ are forbidden
and cannot be excited.

For {�⃗�𝑖(𝑔, 𝑘), �⃗�𝑖(𝑔, 𝑘)} ≡ 0 and 𝑘 > 0 fixed, the
homogeneous (spectral) problem is obtained from (4a)–(4c).
Its nontrivial solutions 𝐻

𝑥
(𝑔, Φ0(𝑚)) exist for no more than

a countable set of eigenvalues {Φ0(𝑚)}𝑚 ∈ 𝐹 and define the
field of eigenwaves {�⃗�(𝑔, Φ0(𝑚)), �⃗�(𝑔, Φ0(𝑚))} of the periodic
interface [8, 10]. If several eigenvalues belong to the real
axis ReΦ0 of the first physical sheet of the surface 𝐹 (i.e.,
a Riemann surface onto which the solution of the problem
(4a)–(4c) can be analytically continued from the domain of
real values of the spectral parameterΦ0), then we are dealing
with conventional surface (or regular) waves propagating
near the interface without attenuation. Otherwise, leaky
waves, piston-type waves, and so forth do exist [8].

3. Physical Results: Plane Boundary

A flat boundary separating a conventional environment (vac-
uum) and a nonabsorbing dispersion medium (the medium
sort discussed below) is able to support direct (or forward)
surface waves in the frequency range [10]

𝐾2 =
𝑘
𝜀
𝑘
𝜇

√𝑘
2
𝜀
+ 𝑘

2
𝜇

< 𝑘 <

𝑘
𝜀

√2
= 𝐾1; 𝑘

𝜀
> 𝑘
𝜇
. (7)

These waves correspond to the propagation constants
Φ

direct
0 = 𝑘𝑘

−1
𝜀
√(𝑘

2
𝜀
− 𝑘

2
)(𝑘

2
𝜀
− 𝑘

2
𝜇
)(𝑘

2
𝜀
− 2𝑘2)−1 and velocity

𝛽 = 𝛽
direct

= 𝑘/Φ

direct
0 of synchronously moving electron

beam.
Within the range

𝑘
𝜀

√2
< 𝑘 <

𝑘
𝜀
𝑘
𝜇

√𝑘
2
𝜀
+ 𝑘

2
𝜇

; 𝑘
𝜀
< 𝑘
𝜇
, (8)

this boundary can support backward waves having phase
and group velocities oppositely directed and characterized
by anomalous dispersion. For such waves, the velocity of the
synchronously moving beam is 𝛽 = 𝛽

back
= 𝑘/Φ

back
0 and

Φ

back
0 = 𝑘𝑘

−1
𝜀
√(𝑘

2
𝜀
− 𝑘

2
)(𝑘

2
𝜇
− 𝑘

2
𝜀
)(2𝑘2 − 𝑘2

𝜀
)
−1.

Figure 2 shows 𝜀(𝑘) and 𝜇(𝑘), propagation constants
of eigensurface waves and velocity of electron beam syn-
chronized with these waves versus frequency 𝑘. All these
dependencies are presented within the ranges defined by (7)
and (8). For 𝑘

𝜇
= 0.5, 𝑘

𝜀
= 1.0, and 0.4472 < 𝑘 < 0.7071, we

have the forward waves (Figure 2(b)). For 𝑘
𝜇
= 1.0, 𝑘

𝜀
= 0.5,

and 0.3536 < 𝑘 < 0.4472, the backward waves (Figure 2(a)).
Principal differences in the behavior of these character-

istics for forward and backward surface waves are rather
obvious. In the frequency range 𝐾1 < 𝑘 < 𝐾2 where the
backward waves exist, the medium is binegative: 𝜀(𝑘) < 0 and
𝜇(𝑘) < 0. At the same time in the domain of the forward
waves existence, the binegative medium transforms into a
medium with 𝜀(𝑘) < 0 and 𝜇(𝑘) > 0. Naturally, these
differences also affect the characteristics of the field excited
by the electron beam.

The VChR into the lower half-space filled with the
dispersive medium is possible under the condition 𝛽2 >

[𝜀(𝑘)𝜇(𝑘)]
−1, which can be satisfied only for the bipositive

(conventional medium, direct VChR) or binegative (reverse
VChR) media. The dispersion law given by (2) yields the
following frequency restriction:

𝑘 < 𝐾0 =
√2𝑘
𝜀
𝑘
𝜇

√𝑘
2
𝜀
+ 𝑘

2
𝜇
+ √(𝑘

2
𝜀
− 𝑘

2
𝜇
)

2
+ 4𝑘2
𝜀
𝑘
2
𝜇
/𝛽

2

.

(9)

It can be shown that the inequality 𝐾0 < 𝑘
𝜀
𝑘
𝜇
/√𝑘

2
𝜀
+ 𝑘

2
𝜇

always holds if 0 < 𝛽 < 1. And as 𝛽 → 0, then 𝐾0 → 0.
As 𝛽 → 1, 𝐾0 → 𝑘

𝜀
𝑘
𝜇
/√𝑘

2
𝜀
+ 𝑘

2
𝜇
. In Figure 2, the VChR

domain is darkened.
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Figure 2: Curves of 𝜀(𝑘), 𝜇(𝑘),Φback
0 , Φdirect

0 , 𝛽back, and 𝛽direct.
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Figure 3: Contour plots of𝑊𝑇0 (𝑘, 𝛽) = const, characterizing the radiation intensity in the half-space 𝑧 < 0: (a) 𝑘
𝜀
= 0.5 and 𝑘

𝜇
= 1.0; (b)

𝑘
𝜀
= 1.0 and 𝑘

𝜇
= 0.5; (c) 𝜀 = −2.24, 𝜇 = −1.24, and 𝛽 = (𝜀𝜇)−1/2 ≈ 0.6.

In the case 𝑘
𝜀
< 𝑘
𝜇
, the frequency region of the VChR and

the backward surface wave region overlap. On the contrary,
when 𝑘

𝜀
> 𝑘
𝜇
, the domain of the forward surface waves is

beyond the domain of possible observation of the VChR.
At ℎ = 0, only zeroth spatial harmonics with amplitudes

𝑅0(𝑘) and 𝑇0(𝑘) remain in (4a)–(4c). The zeroth spatial
harmonic in the dispersive material becomes propagating,
that is, transferring the energy infinitely far in the direction
𝑧 = −∞ provided Im Γ

𝜀,𝜇

𝑛
(𝑘) = 0, or what is the same,

provided 𝛽2 > [𝜀(𝑘)𝜇(𝑘)]−1, which is necessary for the VChR
existence. Both the diffraction radiation and the VChR are
associated with the transfer of electromagnetic energy in
the same direction. Therefore, following [4], we identify the
Vavilov-Cherenkov radiation with the diffraction radiation

on the fundamental (zeroth) spatial harmonic of the periodic
interface.

Figure 3 shows the contour plots 𝑊𝑇0 (𝑘, 𝛽) = const,
describing the radiation intensity of VChR in the half-space
𝑧 < 0. Various fragments correspond to the media with
different parameters 𝜀(𝑘) and 𝜇(𝑘). And everywhere, as one
would expect, the range of values 𝑘 and𝛽 inwhich𝑊𝑇0 (𝑘, 𝛽) >
0 is bounded by curves 𝑃 : 𝛽 = [𝜀(𝑘)𝜇(𝑘)]−1/2 restricting the
domain of VChR existence.

In the case 𝑘
𝜀
> 𝑘
𝜇
(Figure 3(b)), a maximum VChR

intensity region is shifted towards higher 𝛽 (0.75 < 𝛽 <

0.95) and it is concentrated in the vicinity of the curve 𝑃.
In the case 𝑘

𝜀
< 𝑘
𝜇
(Figure 3(a)), a similar area is again

located near 𝑃, but shifted towards 0.4 < 𝛽 < 0.75. These
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Figure 4: Contour plots for𝑊𝑇0 (𝑘𝜀, 𝑘𝜇) = const: (a) 𝑘 = 0.3 and 𝛽 = 0.3; (b) 𝑘 = 0.6 and 𝛽 = 0.6.

behavioral features of energy characteristics are observed
only in the dispersivemedium. For a dispersion-freemedium
(Figure 3(c)) max

(𝜀𝜇)
−1/2
<𝛽<1𝑊

𝑇

0 (𝑘, 𝛽) is attained at any 𝑘, but
𝛽 ≈ 0.83 keeps unchanged.The value max

(𝜀𝜇)
−1/2
<𝛽<1𝑊

𝑇

0 (𝑘, 𝛽)
grows with 𝑘.

The contour plots 𝑊𝑇0 (𝑘𝜀, 𝑘𝜇) = const in Figure 4 give
a fairly complete picture of the influence of the constitutive
parameters of the dispersive medium with a plane boundary
on the VChR energy characteristics. Interestingly, in the case
of large 𝑘 and 𝛽 (in Figure 4(b)), the lines𝑊𝑇0 (𝑘𝜀, 𝑘𝜇) = const
intersect with straight line 𝑘

𝜀
= 𝑘
𝜇
(the most rapid variation

of VChR intensity) at an almost right angle, while for smaller
𝑘 and 𝛽 (see Figure 4(a)) and 𝑘

𝜀
> 0.8 the passage along the

line 𝑘
𝜀
= 𝑘
𝜇
does not lead to a noticeable change in the VChR

intensity.

4. Physical Results: Periodically
Rough Boundary

In the case of a periodically rough boundary 𝑆 (further on we
assume 𝑙 = 2𝜋), the radiation field in the domain 𝑧 ≥ ℎ (𝑧 <
0) consists of spatial harmonics𝑈𝑅

𝑛
(𝑔, 𝑘) = 𝑅

𝑛
(𝑘) exp[𝑖Γ

𝑛
(𝑧 −

ℎ)]𝜇
𝑛
(𝑦)(𝑈

𝑇

𝑛
(𝑔, 𝑘)) propagating without attenuation. So, it

is represented by harmonics with such 𝑛 that Im Γ
𝑛
= 0

(Im Γ𝜀,𝜇
𝑛

= 0). Obviously, when Φ0 = 𝑘/𝛽 only harmonics
with negative 𝑛 can propagate without attenuation in the
domain 𝑧 ≥ ℎ. In a dispersive medium, the range of 𝑘 and
𝛽 providing the propagation without decay of one or another
spatial harmonic𝑈𝑇

𝑛
(𝑔, 𝑘) can be easily determined using the

data on the configuration of their limits 𝑄
𝑛
: Γ
𝜀,𝜇

𝑛
(𝑘, 𝛽) = 0

(see, e.g., Figure 5(a)).

A periodically rough boundary supports a larger number
of surface waves. Their propagation constants in the fre-
quency range of interest (𝑘 < 1) and small ℎ are given
by the approximate relations Φdirect,±,𝑚

0 = ±Φ

direct
0 + 𝑚

and Φ

back,±,𝑚
0 = ±Φ

back
0 + 𝑚, 𝑚 = 0, ±1, ±2, . . . [8,

10]. Accordingly, we define the sets of approximate values
𝛽
direct,±,𝑚

= 𝑘/Φ

direct,±,𝑚
0 and 𝛽back,±,𝑚 = 𝑘/Φ

back,±,𝑚
0 (see

Figures 5(b) and 5(c)). It should be pointed out that all the
curves corresponding to velocities 𝛽direct,±,𝑚 and 𝛽back,±,𝑚
practically merge near the values of the frequency parameter
𝑘 = 𝑘accum = 𝑘

𝜀
/√2, which for the given dispersion law

(2) define accumulation point of the frequency spectra of the
electrodynamic structure [13]. At this point, 𝜀(𝑘) = −1 in
the vicinity of this frequency, there are an infinite number of
resonances in the intensity of diffraction radiation.

Consider now the changes in the radiation field arising
for ℎ ̸= 0 in that case when only zeroth spatial harmonic
propagates in the lower half-space without decay. Figure 6
shows the frequency dependence of the intensity of radiation
in the lower half-space for the electron beam velocity 𝛽 =

0.89. Over the whole frequency range considered here, we
have 𝜀(𝑘) < 0 and 𝜇(𝑘) < 0. For parameters 𝑘

𝜀
= 1.0 and

𝑘
𝜇
= 0.5 (see Figure 6(a)), a periodic boundary within the

considered frequency range and for not very large ℎ does not
support propagation of surface waves, and 𝑊𝑇0 (𝑘) behaves
almost in the same way as in the case ℎ = 0.

For parameters 𝑘
𝜀
= 0.5 and 𝑘

𝜇
= 1.0 (see Figure 6(b)),

the periodic boundary supports the propagation of backward
surface waves (see Figure 2(a)).This fact changes significantly
the 𝑊𝑇0 (𝑘) behavior: at 𝑘 ≈ 0.4365 a certain resonance
appears due to the excitation of the surface wave with
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Figure 5: (a) Configuration of boundaries 𝑄
𝑛
; (b) phase velocities of backward eigenwaves, 𝑘

𝜀
= 0.5 and 𝑘

𝜇
= 1.0; (c) phase velocities of

direct eigenwaves, 𝑘
𝜀
= 1.0 and 𝑘

𝜇
= 0.5.

eigenpropagation constantΦback,−,1
0 = −Φ

back
0 + 1 = 0.49. The

phase velocity of this wave is 𝛽back,−,1 = 𝑘/Φ

back,−,1
0 = 0.89

and coincides with the beam velocity 𝛽.
Resonances in reverse Vavilov-Cherenkov radiation are

possible in the region of parameter values 𝑘 and 𝛽 such that
𝛽
2
> [𝜀(𝑘)𝜇(𝑘)]

−1 and Re Γ𝜀,𝜇
𝑛
(𝑘, 𝛽) = 0 for all 𝑛 ̸= 0

(only the fundamental spatial harmonic propagates in the
dispersive medium without decay). It is also necessary that
in this domain (in the domain VCh

𝑘,𝛽
) the synchronism

conditions 𝛽 = 𝛽back,±,𝑚 = 𝑘/Φback,±,𝑚
0 for certain 𝑚 can be

implemented.
Naturally, the selected values 𝑘

𝜀
and 𝑘

𝜇
should ensure

the existence of such a domain. For example, when 0.5 <

𝑘
𝜀
< 𝑘
𝜇
, the values 𝛽 = 𝛽

back,±,𝑚
= 𝑘/Φ

back,±,𝑚
0 do not fall

into the domain VCh
𝑘,𝛽
; but for 𝑘

𝜀
= 0.1 and 𝑘

𝜇
= 0.55

in the domain VCh
𝑘,𝛽
, which is marked in Figure 7(b) with

oblique hatching, the surface waves whose phase velocity
coincides with the velocity of electron beam may already

exist. The latter case is particularly interesting because (i)
the resonances in the reverse VChR can appear for rather
small values 𝛽 (Figure 7(c)) and thus at low velocities of
the particles beam and (ii) the accumulation point of the
frequency spectrum 𝑘accum = 𝑘

𝜀
/√2 ≈ 0.0707 falls into

the region VCh
𝑘,𝛽

and within it the existence of a large
number of resonances in reverse VChR (Figures 7(a) and
7(c)) is possible. It should be pointed out once again that
these resonances appeared due to the implementation of
synchronism mechanism that is the coincidence of beam
velocity with the phase velocity of one or another surface
wave.

The data presented in Figure 8 allow us to estimate the
influence of parameters of the dispersive media 𝑘

𝜀
and 𝑘
𝜇
on

the intensity of reverse VChR. The lines𝑊𝑇0 (𝑘𝜀, 𝑘𝜇) = const
(Figure 8(b)) are calculated for parameters 𝑘

𝜀
and 𝑘
𝜇
from the

domain [0 ≤ 𝑘
𝜀
≤ 0.12] × [0.35 ≤ 𝑘

𝜇
≤ 0.7] and for 𝑘 = 0.08,

𝛽 = 0.2, and ℎ = 0.4. Under such choice of parameters,
the region bounded by the curves 𝑄

0
and 𝑄

−1
is the domain
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Figure 6: Change in frequency characteristics of radiation intensity with an increase in the height of corrugation mounts of periodically
rough boundary.

0.8

0.6

0.4

0.2

k

W
T 0
(k
)

0.07 0.08 0.09

(a)

0.8

0.6

0.4

0.2

Q0
Q−1

k

𝛽

0.04 0.08

(b)

0.8

0.6

0.4

0.2

k

W
T 0
(k
)

0.068 0.072 0.076 0.08

(c)

Figure 7: (a), (c) Dependencies𝑊𝑇0 (𝑘), characterizing the radiation intensity in the half-space 𝑧 < 0 for 𝛽 = 0.89 and 𝛽 = 0.2; (b) domain
VCh
𝑘,𝛽
. All for 𝑘

𝜀
= 0.1, 𝑘

𝜇
= 0.55, and ℎ = 0.4. Here and further on𝑊𝑇0 (⋅ ⋅ ⋅ ) = 𝑊

𝑇

0 (⋅ ⋅ ⋅ )/max
(⋅⋅⋅ )
𝑊
𝑇

0 (⋅ ⋅ ⋅ ).

VCh
𝑘
𝜀
,𝑘
𝜇

.The first pronounced resonant fall in the intensity of
the reverse VChR (the locus of corresponding points forms
the straight line in the given range of variables 𝑘

𝜀
and 𝑘

𝜇
)

corresponds to the synchronism of electron beam with the
surface wave having phase velocity Φback,−,1

0 . Sequence of
resonances is clearly displayed in Figure 8(a), where a plot

𝑊
𝑇

0 (𝑘𝜀) for 𝑘𝜇 = 0.55 is presented. The low-𝑄 resonant fall
of intensity of the reverse VChR manifests itself when 𝑘

𝜀

increases and then as you get closer to the value 𝑘
𝜀
= 0.113

at which the chosen frequency 𝑘 = 0.08 is an accumulation
point. As we have mentioned above and in [13] in the vicinity
of accumulation point, the number of high-𝑄 resonances,
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0 (𝑘, ℎ) = const. All for
𝜀 = −0.84, 𝜇 = −4.84, and 𝛽 = 0.89.

causing a sharp drop and a sharp rise in 𝑊𝑇0 (𝑘𝜀), increases
significantly.

Influence of profiling depth ℎ onto the intensity of VChR
shows itself differently depending on the values of other
parameters and, in fact, depending on whether a periodic
boundary between two media at such values of parameters
is able to support the propagation of forward or backward
surface waves and whether the synchronization of electron
beam velocity with phase velocity of these waves is possible.

Consider periodic boundary of the nondispersive left-
handed medium, 𝜇 = −4.84, 𝜀 = −0.84, and 𝛽 = 0.89,
Figure 9. The resonance dip to zero of intensity of reverse
VChR, which is clearly visible in Figure 9(b), is associated
with the excitation of a surface wave, and the quality factor
of the corresponding resonance is significantly reduced with

the increase of ℎ. Two other fragments of Figure 9 allow
considering the important details in the behavior of the
dependencies 𝑊𝑇0 (𝑘) (for some fixed values ℎ) and 𝑊𝑇0 (ℎ)
(for some fixed values 𝑘) which may be lost in the analysis
of the overall picture of the contour plots𝑊𝑇0 (𝑘, ℎ) = const
(Figure 9(b)).

In the case of the dispersive medium and the parameter
values 𝑘

𝜀
, 𝑘
𝜇
, 𝑘, and 𝛽, guaranteeing the existence of direct

surface waves, dependencies𝑊𝑇0 (ℎ) are almost monotonous.
In the region of the backward surface waves, intensity of the
reverse VChR varies essentially differently. For example, in
the case of parameters already considered above 𝑘

𝜀
= 0.1,

𝑘
𝜇
= 0.55, and 𝛽 = 0.89 (𝑘con ≈ 0.0707), functions

𝑊
𝑇

0 (ℎ) have a pronounced peak due to the coincidence of
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the electrons beam velocity with phase velocity of one of
the surface waves; and this maximum occurs at different
values of ℎ for different values of 𝑘 from the frequency
interval comprising 𝑘accum (Figure 10). Also, it is possible to
characterize the behavior and features of𝑊𝑇0 (ℎ) calculated for
fixed 𝑘

𝜇
= 0.55, 𝑘 = 0.08, and 𝛽 = 0.2, and for different

values 𝑘
𝜀
(Figure 11). Location of peaks of function 𝑊𝑇0 (ℎ)

is quite sensitive to changes in 𝑘
𝜀
value and this fact can be

used to solve problems related to the definition of parameters
of dispersive materials. The results similar to that shown in
Figure 10 may be useful in the selection of depth profiling of
left-handed dispersive medium capable of supporting over its
surface the propagation of eigenwave of a required type.

5. Conclusions

The resonances in reverse VChR produced by the charged
particles beam passage over periodic boundary of dispersive
left-handed medium are found out and studied.

Mathematical modeling and computational experiment
are the main methodological components of this work
devoted to the study of a series of features in the diffraction
radiation generated by a flat, density modulated electron
beam, moving over periodically rough boundary between
conventional media and media with frequency dependent
parameters. Conditions of radiation initiation, radiation
intensity, and possibility of the existence of different reso-
nance effects in reverse VChR associated with the excitation
of surface waves of the periodic boundary have been studied
analytically and numerically in the approximation of a given
current.The possibilities and perspectives for efficient control
of the characteristics of the reverse VChR, that may be per-
formed by changing, for example, characteristic frequencies
𝑘
𝜀
and 𝑘

𝜇
in constitutive parameters of dispersive medium

or/and the height of the corrugationmounts ℎ of the periodic
surface, are found out and examined.

The numerical results discussed in the paper concern the
limited number of specific situations. But the models and
algorithms created for their analysis can be used for a more
detailed research into the physics of diffraction radiation, for
a correct formulation and efficient solution to a number of
inverse problems having considerable practical interest.
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