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This study focuses onmitigating themultipath, especially the short-delaymultipath of the BeiDou navigation satellite system under
impulsive noise conditions. A modified least mean p-norm (LMP) algorithm is developed to reduce the convergence time with
the same steady-state error by predicting the updating trend of weights. The modified normalized power and the normalized
polynomial least mean pth power are also directly provided according to a similar principle. According to the research work,
an average filter has been utilized to improve the processing gain of designed mitigation scheme. Some significant simulation
results verified the performance of the proposed adaption algorithm. Multipath parameter estimation tests have been conducted
under different noise levels. Some comparative statistics performance assessments are quantified and verified under impulsive and
additional white Gaussian noise environments. Results with various window widths of the average filtering and carrier-to-noise
ratios indicate that the proposed scheme is able to improve the performance of the short-delay multipath mitigation under normal
and degraded environments.

1. Introduction

The BeiDou navigation satellite system (BDS), which cur-
rently covers the Asia Pacific region, is aimed at entering the
global network stage and becoming a global navigation satel-
lite system (GNSS) in 2015. The BDS will eventually operate
in the ocean, urban, and indoor environments, similar to the
global positioning system (GPS) [1].

The multipath problem has received considerable atten-
tion in recent years as the dominant error source in the
preceding applications. Traditional techniques suffer from a
common drawback in their ineffectiveness to suppress short-
delay multipath signals (i.e., less than approximately 20m)
with respect to the line-of-sight (LOS) signal [2]. This situ-
ation is a big limitation because the real-life multipath tends
to be the close-in, short-delay type.The a posteriorimultipath
estimation (APME) [2], swarm intelligence optimization
algorithms [3], and adaptive filtering techniques [4, 5] are
the approaches used to suppress the short-delay multipath.
The APME has improved in order to suppress the short-
delay multipath signal, but its rejection of the medium-delay

multipath is unsatisfactory.The swarm intelligence optimiza-
tion method is difficult to be implemented for practical
applications because of its computational complexity. The
adaptive filtering method is a practical technology which
includes the recursive least squares (RLS) adaptive filtering
algorithm and is mostly based on Gaussian assumptions.The
RLS using the minimum mean square error criterion com-
pletes the inverse and iterative adaptive operation by using a
simplifiedmatrix andprovides a small steady-state error. Acc-
ordingly, the limitations of the RLS are defined by the optimal
assumptions.This condition ensures an analytical solution for
the detection of a known signal in additional white Gaussian
noise (AWGN) [4–6] in most cases.

The GNSS signal is buried in noise due to limitedly trans-
mitted power from the satellites. Some effective algorithms
mostly are based on the signal despreading to obtain enough
processing gain. Compared with the signal-to-noise ratio
(SNR), the carrier-to-noise ratio (CNR) is more easily accep-
ted by lots of literatures to assess the performance of a GNSS
receiver. It is defined according to the noise power in a 1Hz
bandwidth. In fact, in the context of digital modulations,
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digitally modulated signals are usually referred to as carriers.
Therefore, the term CNR, instead of SNR, is preferred to exp-
ress the signal quality when the signal has been digitallymod-
ulated. Moreover, the traditional adaptive filter has to be app-
lied before the signal despreading, which leads to a limited
processing gain. However, this problem has apparently not
been discussed in [4–7].

As mentioned previously, the growing need for indoor
GNSS and the increasing demand for satellite-based naviga-
tion in manned and autonomous ground, aerial, and surface
vehicles have to be addressed. Hence, the GNSS receivers
are operated in close proximity to various noise sources with
Gaussian and non-Gaussian characteristics. Such non-Gaus-
sian random signals contain a large number of outliers.These
outliers disturb the receiver’s performance by impeding the
baseband signal processing phase and increase the ranging
error and bit error rates [8]. References [8–11] have thorou-
ghly analyzed these non-Gaussian impulsive sources and the
effect on the receiver, which operates in the GNSS operating
band. For instance, the impulsive signal source is the ultra-
wideband signals which cover the GNSS operating band and
are adopted more and more in outdoor and indoor environ-
ments.Themodel for these signals cannot be justified because
of the Gaussian noise. Accordingly, an important class of dis-
tributions (i.e., a-stable distributions) is used to model this
type of impulsive noises [11–14].

In order to overcome these problems, many variations of
the least mean squares (LMS) have been proposed over the
past decades. These LMS methods include the variable step-
size approach [15], the affine projection algorithms [16], and
the higher- or lower-order statistics method [17]. The third
method yields many robust algorithms with improved con-
vergence rate and robustness against the impulsive interfer-
ence. The higher- or lower-order statistics method includes
the least mean 𝑝-norm (LMP) and its normalized version
(NLMP algorithm), which have been reported in [17, 18].
Additionally, [19] has proposed the normalized polynomial
least mean 𝑝th power (NPLMP) to improve the algorithm
convergence rate by extending the LMP algorithm. More-
over, some variable step-size sign algorithms similar to the
extended LMS are also effective to accelerate the convergence
process [20]. This study introduces another method to accel-
erate the LMP algorithm convergence process by using a self-
tunedweighted term,which is an extension fromother classic
algorithms.

The structure of the paper is as follows. In Section 2, a
BDS multipath parameter estimation scheme based on adap-
tive filter with an average filter is designed. Section 3 presents
the derivation and analysis of the modified LMP adaptive
filter and some extended algorithms which use the self-tuned
weighted term. A variety of comparable tests are conducted
in Section 4. The interesting results and analysis are also
presented in this section. The conclusions are provided in
Section 5.

2. BDS Multipath Parameter Estimation

2.1. BDS B1 Signal Model in Multipath Environments. The
description of the statistical model of the received signal in

the presence of a multipath is difficult in the case of a
BDS. Nevertheless, many hypotheses are made. One of these
hypotheses assumes that the multipath signals are delayed
with respect to the direct BDS signal. The reflected signals
with a delay of less than one chip will usually be considered
because the signals with a code delay which is larger than one
chip are uncorrelated with the direct signals; otherwise, the
multipath signal is assumed to have lower power than the
direct one. The baseband signal model is represented as fol-
lows:

𝑠IF (𝑛) =
𝑀

∑

𝑚=0

𝐴
𝑚
𝐶 (𝑛𝑇

𝑠
− 𝜏
𝑚
) 𝑒
𝑗(2𝜋𝑓IF𝑛𝑇𝑠+𝜃𝑚) + 𝜂IF (𝑛) , (1)

where𝑚 = 0 represents the LOS component;𝐶(⋅) is the rang-
ing code, which modulates the Neumann-Hoffman code; 𝑇

𝑠

is the sampling period; 𝑓IF is the immediate frequency; 𝜂IF is
the noise; and𝐴

𝑚
, 𝜏
𝑚
, and 𝜃

𝑚
are, respectively, the amplitude,

carrier phase, and code delay of the𝑚th delay component.
Unlike GPS signals, the NH code period is selected acco-

rding to the duration of a navigation data bit [21]. The bit
duration of the NH code is equal to bit period of the ranging
code. The duration of one navigation data bit is 20ms, while
that of the ranging code is 1ms (Figure 1).The NH code (0, 0,
0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0) with a length of 20 bits,
a rate of 1 kbps, and a bit duration of 1ms is synchronously
modulated on the ranging code with the navigation data bit.

As described in Section 1, if the 𝜂IF is impulsive noise, the
a-stable distribution is able to be used to model this type of
noises. Its characteristic function has the following form [17]:

𝜑 (𝑡) = exp (𝑗𝑎𝑡 − 𝛾 |𝑡|𝛼 [1 + 𝑗𝛽 sign (𝑡) 𝜔 (𝑡, 𝛼)]) , (2)

where −∞ < 𝑎 < +∞, 𝛾 > 0, 0 < 𝛼 ≤ 2, −1 ≤ 𝛽 ≤ 1 and

𝜔 (𝑡, 𝛼) =

{{

{{

{

tan(𝛼𝜋
2
) 𝛼 ̸= 1

(
2

𝜋
) log |𝑡| 𝛼 = 1.

(3)

𝑎 is location parameter, 𝛾 is scale parameter, also called the
dispersion, 𝛽 is index of skewness. 𝛼 is characteristic expo-
nent.

The characteristic exponent 𝛼 is a shape parameter. It
measures the “thickness” of the tails of the density function. 𝛼
values close to 0 indicate impulsive nature that is considerable
probability mass in the tails of the distribution. 𝛼 values close
to 2 indicate a more Gaussian type of behavior. When 𝛽 = 0,
the distribution is symmetric about the center 𝑎. Symmetric
stable distributions with characteristic exponent 𝛼 are called
symmetric 𝛼-stable (S𝛼S). The dispersion 𝛾 can be any
positive number and behaves like the variance. When 𝛼 = 2,
it is half of the variance.

2.2. Error Analysis of the BDS Code Discriminator. Consider-
ing an early-minus-late power code discriminator, three pairs
of correlators are required to produce three in-phase compo-
nents (i.e., 𝐼

𝐸
, 𝐼
𝑃
, and 𝐼

𝐿
) and three quadraphase components

(𝑄
𝐸
, 𝑄
𝑃
, and 𝑄

𝐿
). These components, respectively, corre-

spond to the early (𝐸), punctual (𝑃), and late (𝐿) reference
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Figure 1: BDS CB1I NH code modulation.

ranging codes. The discriminator’s output is expressed as fol-
lows [8]:

𝐷 = (𝐼
2
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+ 𝑄
2

𝐸
) − (𝐼

2
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𝐿

)
2

,

(4)

where 𝑆 is the signal power; 𝑇 is the loop integration time,
which is usually equal to the ranging code period; 𝑅 is the
cross-correlation function between the incoming ranging
code and the reference code; 𝜙 is the residual phase error; and
𝜂
𝐼
𝐸

, 𝜂
𝑄
𝐸

, 𝜂
𝐼
𝐿

, 𝜂
𝑄
𝐿

are the in-phase and quadraphase noise com-
ponents of the correlator outputs.

Zero is an expected result for (4) assuming that 𝑑
𝑐
is the

early-late correlator spacing. The tracking error 𝜌 is then
obtained by applying the derivation process in [8] as follows:

𝜌 = 𝜏
𝑃
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2
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𝑑
𝑐

2
))

−1

) .

(5)

The code tracking error is proportional to the integration
time 𝑇 and inversely proportional to the early-late correlator
spacing 𝑑

𝑐
.
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Figure 2: Multipath mitigation scheme.

The generalized central limit theorem is one of the impor-
tant characteristics of the 𝛼-stable distribution. Therefore, an
average filter is considered to further suppress the noise acco-
rding to (5) and improve the processing gain. Its basic prin-
ciple is that a sliding window is set in a working region of a
function and the average of all elements in the window is at
the center of the window. Accordingly, time domain filtering
is carried out. The average filter adjusts the relevant param-
eters of the large pulse and weakens their influence, thereby
reserving the useful signal components.

2.3. Modified BDS Multipath Mitigation in the Presence of
Impulse Noise. The adaptive multipath suppression scheme
in the presence of impulsive noise is shown in Figure 2 [4–6].
The modules in the dotted box are a classic signal tracking
loop. The input of the adaptive multipath parameter estima-
tion is the received digital intermediate frequency signal, the
local code, and the carrier numerically controlled oscillator
output.

2.3.1. Multipath Parameter Estimation. The adaptive filter
module identifies the direct andmultipath signal using adap-
tion algorithm. The multipath signal amplitude is then esti-
mated from the output weights.The delay elements correspo-
nding to the amplitude are also obtained.

2.3.2. Tracking Error Compensation. The impact of the corre-
lation value𝐶

𝑚
of the𝑚th multipath signal to the correlation

value 𝐶
𝑟
of the received signal is obtained from the ranging

code autocorrelation function according to the estimated
amplitude, propagation delay of the multipath, relative phase
of the reference signal, and autocorrelation function of the
ranging codes.

2.3.3. Mitigation Multipath Effects. The correlation value 𝐶
𝑟

of the received signal subtracts superposition 𝐶
𝑝
= ∑𝐶

𝑚
of

all of the correlation values of the multipath signals, with the
result as𝐶

𝑑
= 𝐶
𝑟
−𝐶
𝑝
.𝐶
𝑑
is similar to the code discriminator

input.
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Figure 3: Proposed weight updating process.

The reference signal in this scheme has not been despread
before the multipath parameter estimation. Hence, its pro-
cessing gain is very low because of the low GNSS signal rece-
ive power (i.e., typically −130 dBm). Moreover, the RLS adap-
tion algorithm is usually used for parameter estimation. Some
deficiencies also exist when a GNSS receiver works in the
presence of an impulsive noise environment.

In this paper, a design based on the modified adaption
algorithm with self-tuned weight was used to suppress the
multipath in the impulsive noise environment, to improve
the processing gain of the system, and to reduce the ambient
noise (Figure 3). Furthermore, an average filter with a win-
dow is also introduced to improve the processing gain.

Parameter 𝜏
𝑑
is the minimum delay unit in Figure 3.

Assuming that 𝐴
𝑚
, 𝜏
𝑚
, and 𝜃

𝑚
are the amplitude estima-

tion of the weight coefficient ℎ
𝑚
, delay estimation, and phase

error estimation arg(ℎ
𝑚
) for the 𝑚th delay element, respec-

tively, the local carrier demodulates the received intermediate
frequency signal 𝑠IF(𝑛) as follows:

𝑠
𝐷 (𝑛) =

𝑀

∑

𝑚=0

𝐴
𝑚
𝐶 (𝑛𝑇

𝑠
− 𝜏
𝑚
) exp (𝑗 (𝜃

𝑚
− 𝜃
0
)) + 𝜂

󸀠
(𝑛) ,

(6)

where 𝜂󸀠 is the noise after removing the carrier component.
Restructuring signal 𝑟

0
= NH(𝑛𝑇

𝑠
+𝜏
0
)𝐶(𝑛𝑇

𝑠
+𝜏
0
), obtain

a time delay as follows:

𝑟
𝑚
= NH (𝑛𝑇

𝑠
+ 𝜏
0
− 𝑚𝑇
𝑠
) 𝐶 (𝑛𝑇

𝑠
+ 𝜏
0
− 𝑚𝑇
𝑠
)

(𝑚 = 0, 1, . . . ,𝑀) .
(7)

When 𝜏
𝑑
= 𝑇
𝑠
, the filter output is expressed as follows:

𝑦 (𝑛) =

𝑀

∑

𝑚=0

ℎ
𝑚
𝐶 (𝑛𝑇

𝑠
+ 𝜏
0
− 𝑚𝑇
𝑠
) . (8)

An error signal 𝜀(𝑛) is obtained by comparing the desired
signal 𝑠

𝐷
(𝑛) with the filter output 𝑦(𝑛). The error signal is

used to adjust the adaptive filter weights. The average filter

is adopted after the weights convergence to obtain a higher
processing gain.The relationship of the weights and the para-
meters of 𝑠

𝐷
(𝑛) is described as follows.

If 𝜏
0
− 𝜏
0
= 0, then

ℎ
0
= 𝐴
0
exp 𝑗 (𝜃

0
− 𝜃
0
) . (9)

If 𝜏
𝑚
− 𝜏
0
= 𝑚𝑇
𝑠
, then

ℎ
𝑚
= 𝐴
𝑚
exp 𝑗 (𝜃

𝑚
− 𝜃
𝑚
) . (10)

3. Least Mean 𝑝-Norm Algorithm Using
Self-Tuned Weight

The adaptive linear system model is expressed as

𝑦 (𝑘) = wT
(𝑘) x (𝑘) , (11)

wherew(𝑘) = [𝑤
1
(𝑘), 𝑤

2
(𝑘), . . . , 𝑤

𝑁
(𝑘)]

T is theweight vector,
x(𝑘) = [𝑥

1
(𝑘), 𝑥
2
(𝑘), . . . , 𝑥

𝑁
(𝑘)]

T is the input vector, 𝑦(𝑘) is
the output,𝑁 is the order of the adaptive filter.

Assuming that the ideal system output is 𝑑(𝑘), the output
error is

𝑒 (𝑘) = 𝑑 (𝑘) − 𝑦 (𝑘) . (12)

By using 𝐸[|𝑒(𝑘)|𝑝] instead of the mean square error
(MSE) of LMS, the weight update rule of the traditional LMP
algorithm is obtained as [17]

w (𝑘 + 1) = w (𝑘) + 𝜇 |𝑒 (𝑘)|𝑝−1 x (𝑘) sign (𝑒 (𝑘)) , (13)

where 𝜇 is the step size.
A self-tuned weight update process is to improve the

convergence of the LMP algorithm, and the convergence is
accelerated by introducing weight trends.

Given a cost function

𝐽 (w, 𝑘) =
𝑘

∑

𝑖=1

𝜆
𝑘−𝑖 󵄨󵄨󵄨󵄨𝑑 (𝑖) − 𝑦 (𝑖)

󵄨󵄨󵄨󵄨
𝑝
, (14)

where 𝜆 is an exponent weight factor and 0 < 𝜆 < 1.
Calculate the gradient of the function 𝐽(w, 𝑘) at w to

obtain an instantaneous gradient estimation which is

∇
𝑤
𝐽 (w, 𝑘) = 𝑝

𝑘

∑

𝑖=1

𝜆
𝑘−𝑖
|𝑒 (𝑖)|
𝑝−1 x (𝑖) sign (𝑒 (𝑖)) . (15)

Applying the gradient search, obtain the coefficient
update rule, which is

w (𝑘 + 1) = w (𝑘) +
𝜇

𝑝
∇
𝑤
𝐽 (w, 𝑘)

= w (𝑘) + 𝜇
𝑘

∑

𝑖=1

𝜆
𝑘−𝑖
|𝑒(𝑖)|
𝑝−1 x (𝑖) sign (𝑒 (𝑖))

= w (𝑘) + 𝜇 |𝑒(𝑡)|𝑝−1 x (𝑘) sign (𝑒 (𝑘))

+ 𝜇

𝑘−1

∑

𝑖=1

𝜆
𝑘−𝑖
|𝑒 (𝑖)|
𝑝−1 x (𝑖) sign (𝑒 (𝑖)) .

(16)
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By (15) and (16), the previous weight update rule is repla-
ced by 𝑘−1 after making 𝑘. Some necessary arrangements are
expressed as

w (𝑘) = w (𝑘 − 1) +
𝜇

𝑝
∇
𝑤
𝐽 (w, 𝑘 − 1)

= w (𝑘 − 1) + 𝜇
𝑘−1

∑

𝑖=1

𝜆
𝑘−1−𝑖

|𝑒(𝑖)|
𝑝−1 x (𝑖) sign (𝑒 (𝑖))

= w (𝑘 − 1) +
𝜇

𝜆

𝑘−1

∑

𝑖=1

𝜆
𝑘−𝑖
|𝑒 (𝑖)|
𝑝−1 x (𝑖) sign (𝑒 (𝑖)) .

(17)

The following relationship is carried out according to (17):

𝑘−1

∑

𝑖=1

𝜆
𝑘−𝑖
|𝑒 (𝑖)|
𝑝−1 x (𝑖) sign (𝑒 (𝑖))

=
𝜆

𝜇
(w (𝑘) − w (𝑘 − 1)) .

(18)

Substituting (18) to (16), obtain the following equation:

w (𝑘 + 1) = w (𝑘) + 𝜇 |𝑒 (𝑘)|𝑝−1 x (𝑘) sign (𝑒 (𝑘))

+ 𝜆 (w (𝑘) − w (𝑘 − 1)) .
(19)

Apply similar derivation and denote Δw
𝑛
= w(𝑘) −w(𝑘 −

𝑛). Accordingly, a new weight updating rule was obtained:

w (𝑘 + 1) = w (𝑘) + 𝜇 |𝑒(𝑘)|𝑝−1 x (𝑘) sign (𝑒 (𝑘))

+
Δw
𝑛

(1/𝜆𝑛 + ⋅ ⋅ ⋅ (1/𝜆2) + 1/𝜆)

= w (𝑘) + 𝜇 |𝑒(𝑘)|𝑝−1 x (𝑘) sign (𝑒 (𝑘))

+
(1 − 𝜆) 𝜆

𝑛

1 − 𝜆𝑛
Δw
𝑛
.

(20)

The weight updating process in the modified LMP
(MLMP) algorithm is shown in (20). According to its deriva-
tion process, we can infer the following.

(1) The weight vector will be convergent when (14)
reaches the minimum, which is the weighted average
𝑝-norm.

(2) 𝑛 can be any integer value and should be larger or
equal to zero for the additional term (((1 −𝜆)𝜆𝑛)/(1−
𝜆
𝑛
))Δw
𝑛
in (20). This value is used to accelerate the

convergence speed as an additional weight-changing
tendency. If 𝑛 is equal to zero, it will be similar to the
well-known LMP algorithm.

(3) If parameter 𝑛 is a constant, a faster convergence will
be achieved with a greater 𝜆.

Further conclusionwill be determined by comparing (20)
with (13), which represents the classic LMP algorithm. The
initial aim of the idea is to predict the weight updating tend-
ency at a current time using the prior results. If a larger 𝑛 is
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Figure 4: 𝑦 = (2/𝜋)arctg(𝑥).

adopted while 𝜆 is set to a constant, the last term will not
reflect the weight updated tendency at the current time
considering lim

𝑛→∞
(((1−𝜆)𝜆

𝑛
)/(1−𝜆

𝑛
))Δw
𝑛
→ 0. Further-

more, the algorithm will be gradually reduced to the well-
known LMP algorithm. On the other hand, parameter 𝜆
should not be too large if 𝑛 is set to a certain constant; oth-
erwise, the weight-changing tendency will be overestimated.
In contrast, the weight-changing tendency will be underesti-
mated when 𝜆 is too small. As a result, the algorithm conver-
gence will not be significantly improved.

A larger 𝜆 is expected to be used in order to speed up the
weight convergence before the algorithm reaches the conver-
gence status. Moreover, 𝜆 should be quickly decreased to zero
when the algorithm begins to converge. The initial weight
value is usually set to zero tomeet the preceding requirement.
As a result, this study uses an arctan function to adjust 𝜆
because of its particular profile (Figure 4).

The following rule is applied to ensure that 𝜆 is equal to
zero after the weights arrive at its convergence:

𝜆 (𝑘) =

{{

{{

{

2

𝜋
arctg( 1

‖w(𝑘)‖2
) 𝑘 < 𝑁

0 𝑘 ≥ 𝑁,

(21)

where𝑁 is determined by adjusting time of weights.
To improve the convergence properties of LMP, two

well-known normalized adaptation algorithms, NLMP and
NPLMP, with the motivation of the normalized-LMS algo-
rithm have been derived based on LMP.These two adaptation
algorithms have the following time update [18, 19], respec-
tively.

NLMP:

w (𝑘 + 1) = w (𝑘) +
𝜇 |𝑒 (𝑘)|

𝑝−1 sgn (𝑒 (𝑘))
󵄩󵄩󵄩󵄩y (𝑘)

󵄩󵄩󵄩󵄩
𝑝

𝑝
+ 𝛿

y (𝑘) . (22)

NPLMP:

w (𝑘 + 1) = w (𝑘) +
𝜇𝑝 |𝑒 (𝑘)|

𝑝−1 sgn (𝑒 (𝑘))
󵄩󵄩󵄩󵄩y (𝑘)

󵄩󵄩󵄩󵄩
𝑝

𝑝
+ 𝛿

y (𝑘) . (23)
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In (22) and (23), normalization is obtained by dividing
the update term by the 𝑝-norm of the input vector, y(𝑘). The
regularization parameter 𝛿 is used to avoid excessively large
updates in case of an occasionally small input.

Similar to the MLMP derived in (20), the following new
weight updating rules would be, respectively, obtained when
the principle above is extended to NLMP and NPLMP algo-
rithms.

MNLMP:

w (𝑘 + 1) = w (𝑘) +
𝜇 |𝑒 (𝑘)|

𝑝−1 sgn (𝑒 (𝑘))
󵄩󵄩󵄩󵄩y (𝑘)

󵄩󵄩󵄩󵄩
𝑝

𝑝
+ 𝛿

y (𝑘)

+
(1 − 𝜆) 𝜆

𝑛

1 − 𝜆𝑛
Δw
𝑛
.

(24)

MNPLMP:

w (𝑘 + 1) = w (𝑘) +
𝜇𝑝 |𝑒 (𝑘)|

𝑝−1 sgn (𝑒 (𝑘))
󵄩󵄩󵄩󵄩y (𝑘)

󵄩󵄩󵄩󵄩
𝑝

𝑝
+ 𝛿

y (𝑘)

+
(1 − 𝜆) 𝜆

𝑛

1 − 𝜆𝑛
Δw
𝑛
.

(25)

4. Test Results and Analysis

4.1. Comparative Performance Analysis for Least Mean 𝑝-
Norm Algorithm with Self-Tuned Weight. The following are
the AR(2) 𝛼-stable processes considered in the simulation
studies:

𝑥 (𝑛) = 𝑎1𝑥 (𝑛 − 1) + 𝑎2𝑥 (𝑛 − 2) + 𝑢 (𝑛) , (26)

where 𝑎
1
= 0.97, 𝑎

2
= −0.7 are the coefficients of the AR(2)

process. 𝑢(𝑛) is an 𝛼-stable sequence of independent and
identically distributed random variables. Its mathematical
model has been described in (2). The common distribution
of 𝑢(𝑛) is an even function, that is, 𝛽 = 0 in (2). The charac-
teristic exponent 𝛼 is set to 1.5. The dispersion 𝛾 is set to one
to avoid the loss of generality. It should be pointed out that
the 𝛾 is used to adjust CNR in Section 4.2 due to its variance
behavior.

Two sets of simulation studies are performed. The step
size𝜇 is set to 0.001 in the first set.The tapweight adaptation is
performed for the LMP andMLMP algorithms with 𝑛 = 1, 5,
10, 20. The 𝑁 is set to 2000 in (21). The transient behaviors
of the tap weight adaptations for the AR(2) process are
plotted in Figure 5. Correspondingly, the introduced MLMP
has a better convergence behavior than the traditional LMP
algorithm.

A smaller 𝑛 results in faster convergence rate for the
MLMP algorithm (Figure 5). The convergence time can be
reduced to 1000 from 3000 iterations when 𝑛 is equal to 1.The
MLMP algorithm only needs to calculate the weight trend
term and store the weight value of the previous time. The
computation burden slightly increases because of its recursive
implementation structure. Furthermore, the advantage of the
algorithm gradually weakens when the value of 𝑛 becomes
larger. This phenomenon is explained in Figure 6. A smaller
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Figure 5: Weight convergence history for different 𝑛.
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value of 𝑛 during the weight-adjusting process results in the
prediction of more significant effects of the weight-changing
tendency.

The second simulation tests the performances of the LMP
(13), MLMP (20), NLMP (22), MNLMP (24), NPLMP (23),
and MNPLMP (25) algorithms when 𝑛 is equal to 1. The
adaptation performances are plotted in Figures 7 and 8 using
100 Monte Carlo trials of the experiment. The three new
weight updating approaches have comparable performances.
Accordingly, they converge faster than the traditional weight
updating approaches.Their final estimation error is similar to
the traditional approaches, where 𝐸(𝑘) = ‖𝑤(𝑘) − 𝑤∗‖, 𝑤(𝑘),
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and 𝑤∗ are the current tap weight and the optimal solution
vectors, respectively (Figure 8).

Because the MNPLMP has a faster convergence rate than
the MLMP and MNLMP algorithms, the MNPLMP algo-
rithm has been used in the following tests.

4.2. Multipath Parameters Estimation Performance. After
evaluating the convergence performance of the improved
adaption algorithm under different conditions in Section 4.1,
this section focuses on evaluating the proposed BDS multi-
path parameter estimation scheme.The scheme based on the
RLS algorithm is widely accepted. Additionally, [6] provides

a detailed comparison of the RLS adaptive multipath mitiga-
tion method based on the traditional narrow correlator. Cor-
respondingly, the multipath delay lock loop, the Strobe cor-
relator, and the RLS adaptive multipathmitigationmethod in
the long- and short-delay multipath aspects are significantly
advantageous.Therefore, a comparison of the MNPLMP and
RLS mitigation schemes is conducted in this section. The
same average filter has also been added to the tested RLS
scheme to increase the processing gain. It is different from
previous studies (e.g., [4–7]).

The following settings are employed in the simulation
tests: a software simulator generates the tested BDS B1 signal
with an IF frequency of 4.092MHz and a sampling frequency
of 16.368MHz; the code correlator spacing is half of a chip;
and the front-end filter bandwidth is 4.5MHz. Three multi-
path signals are added into the LOS according to (1). Their
amplitudes and delay relation to the LOS are 𝐴

1
= 0.3,

𝜏
1
= 𝑇
𝑐
/8;𝐴
2
= 0.5, 𝜏

2
= 3𝑇
𝑐
/8; and𝐴

3
= 0.6, 𝜏

3
= 𝑇
𝑐
/2. The

corresponding code and the carrier phase delay are calculated
using these parameters. Obviously, the first component is a
short-delay.

The following three simulations were set up to evaluate
the performance of the proposed scheme: the effective test
of the average filter, the estimation performance in various
CNRs, and the time delay estimation. Moreover, in addition
to the impulsive noise, the AWGN noise environments are
also tested considering realistic application scenarios. The
various CNRs are calculated based on signal power and the
dispersion 𝛾 for impulsive noise environments, and AWGN
variance is used for AWGN noise environments.

The coordinate scale of the test results obtained from the
two different schemes varies greatly, especially for the impul-
sive noise. As a result, a separate display for the test results
of the MNPLMP and RLS mitigation schemes is provided to
observe the details better.

4.2.1. Effective Test of the Average Filter. The window width
of the average filter is increased from 1ms to 20ms, and the
maximum is determined by the navigation data period. The
estimated amplitudes are obtained by 100 independent trials
of the experiment. A different computer realization of the
noise is rendered for each trial. The mean and the variance
of the amplitude estimation errors under the impulsive noise
environment are shown in Figure 9. Figures 9(a) and 9(b)
illustrate theMNPLMP and the RLS algorithms, respectively.
The expected behaviors of the MNPLMP scheme have been
plotted in the figure, especially in terms of the wide window
of the average filter and the smaller mean and variance of the
estimation error. The short-delay component has been cor-
rectly estimated. The third multipath has a more significant
delay, which has achieved more estimation precision. Steady
estimation results are obtained for all of the three multipath
signals when the window width of the average filter is more
than 10ms.Meanwhile, the test results for the RLS scheme are
unacceptable even using the 20ms window width.

The test results for the two schemes under the AWGN
environment are shown in Figure 10. Both schemes obtain a
small estimation error, and the precision is similar.



8 International Journal of Antennas and Propagation

2 4 6 8 10 12 14 16 18 20
−0.1

0

0.1

The window width of the average filter (ms)

M
ea

n

2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

The window width of the average filter (ms)

Va
ria

nc
e

A1 = 0.3

A2 = 0.5

A3 = 0.6

(a) MNPLMP

2 4 6 8 10 12 14 16 18 20
−0.4
−0.2

0
0.2
0.4
0.6

The window width of the average filter (ms)

M
ea

n

2 4 6 8 10 12 14 16 18 20
0

5

10

15

The window width of the average filter (ms)

Va
ria

nc
e

A1 = 0.3

A2 = 0.5

A3 = 0.6

(b) RLS

Figure 9: Multipath amplitude estimation error in various average filtering times under the impulsive noise environment.
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Figure 10: Multipath amplitude estimation errors in various average filtering times under the AWGN environment.

4.2.2. Amplitude Estimation Errors to Various CNRs. The
window width of the average filter is set to 20ms to assess
the estimation error under various CNRs. The range of the
tested CNR is 25–45 dB-Hz although 45 dB-Hz has been used
on the previous experiment. The received signal quality on
the light indoor and open sky condition is actually in this
range. Similarly, 100 independent trials of the experiment
have been conducted.

The mean and the variance of the amplitude estimation
error are plotted in Figure 11. The obtained estimation error
using the MNPLMP scheme gradually becomes smaller

when the tested CNR increases. Furthermore, the acceptable
performance is obtained for the CNRs greater than 35 dB-Hz.
The RLS scheme is also unstable even in high CNR condi-
tions.

Figure 12 shows the very similar results under the AWGN
noise conditions.

4.2.3. Delay Estimation Test Results and Analysis. The delay
recognition capability of the algorithm in different settings
was valued. The CNR was set to 40 dB-Hz; the delay range
was gradually increased from 0.125 chips to 1.5 chips by 0.125
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Figure 11: Multipath amplitude estimation errors in various CNRs under an impulsive noise environment.
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Figure 12: Multipath amplitude estimation errors in various CNRs under the AWGN environment.

chips; and the window width of the average filter was set to
20ms. The estimation of each delay was used to compensate
the correlator output.Moreover, the error of the compensated
output was transferred to the range error. The obtained
error envelopes in the two noise conditions were shown in
Figure 13. To obtain the error envelope curves, negative mul-
tipath magnitude was also simulated though it had no special
physical meaning.

The designedmultipathmitigation scheme in both condi-
tions was able to efficiently estimate and compensate for the
corresponding delay (Figure 13). Furthermore, the compen-
sation precision for the short-delaymultipath was acceptable,

and its error was less than 6m. Because the code discrimina-
tor output was close to zero at around half of one chip, this
position was sensitive to noise, and a larger error could be
observed at 0.7 chips. In this case, narrow correlator spacing
was usually adopted to achieve a higher compensation preci-
sion. References [6, 7] had demonstrated its superiority.

5. Conclusion

To obtain a faster convergence rate and higher processing
gain in the presence of the impulsive noise condition, a BDS
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Figure 13: The ranging estimation error after removing multipath.

short-delay multipath mitigation scheme with modified ada-
ption algorithms and a simple average filter was designed.

For the modified adaption algorithms, the RLS algorithm
does not suppress the impulsive noise mostly. Therefore, a
better adaption algorithm was presented. The proposed sch-
eme accelerates convergence rate of the traditional algorithm
by introducing the weight-changing tendency term. Its
steady-state error was similar to that of the traditional algo-
rithm. Extended algorithmswere also directly provided acco-
rding to similar principle.

The comparative performance assessments in the normal
and degraded conditions indicated that the proposed appro-
ach was suitable for estimating the multipath parameters
under the impulsive and AWGN noise interference. Given a
correlator spacing of 0.5 chips, the scheme’s delay estimation
error was less than 9m for any delay and 6m for short-delay.
Consequently, a better effect was expected if the correlator
spacing was decreased.

The average filter improved the processing gain with an
acceptable performance on the critical value of 35 dB-Hz.
However, this value was not enough for the CNRs below
35 dB-Hz. Further studies should be conducted.
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