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The target localization in distributed multiple-input multiple-output (MIMO) radar is a problem of great interest. This problem
becomes more complicated for the case of multitarget where the measurement should be associated with the correct target. Sparse
representation has been demonstrated to be a powerful framework for direct position determination (DPD) algorithmswhich avoid
the association process. In this paper, we explore a novel sparsity-based DPD method to locate multiple targets using distributed
MIMO radar. Since the sparse representation coefficients exhibit block sparsity, we use a block sparse Bayesian learning (BSBL)
method to estimate the locations of multitarget, which has many advantages over existing block sparse model based algorithms.
Experimental results illustrate that DPD using BSBL can achieve better localization accuracy and higher robustness against block
coherence and compressed sensing (CS) than popular algorithms in most cases especially for dense targets case.

1. Introduction

Multiple-input multiple-output (MIMO) radar study has
received considerable attention over the past few years [1–7].
MIMO radar is typically used in two antenna configurations,
namely, colocated [1, 2] and distributed [3, 4]. Colocated
MIMO radar with closely spaced antennas exploits the
waveform diversity and increased degrees of freedom (DOF)
to obtain better angular resolution due to the virtual aperture
[1]. The proximity of the antenna arrays allows considering
the same target response for each transmitter-receiver pair
[8]. Unlike colocated MIMO radar, distributed MIMO radar
exploits angular diversity by capturing information from dif-
ferent aspect angles of target with widely spaced antennas [3]
and supports accurate target location and velocity estimation
[9]. In distributedMIMOradar, targets display different radar
cross-sections (RCS) in different transmit-receive channels,
and thus better detection performance is ensured by aver-
aging the target scintillations from different angles [3]. In
this paper, we are concerned with solving multiple stationary
targets localization problem using distributed MIMO radar.

Location estimation technique is one important prob-
lem for MIMO radar systems due to its great potential to

enable different kinds of localization applications. The tradi-
tional approach to solve the localization problem consists of
a two-step procedure. The signal parameters such as direc-
tion of arrival (DOA), time of arrival (TOA), and time
difference of arrival (TDOA) are estimated firstly at sev-
eral receivers independently and then the coordinates of
targets are calculated by exploiting the explicit geometric
relationship.The authors in [10, 11] studied target localization
with MIMO radar systems by utilizing bistatic TOA for
multilateration and the Cramêr-Rao bound (CRB) for the
target localization accuracy was derived. It has been shown
that localization by coherent MIMO radar provides sig-
nificantly better performance than noncoherent processing
where the phase information is ignored. Coherent processing,
however, entails the challenge of ensuring multisite systems
phase synchronization [12] and the impact of static phase
errors at the transmitters and receivers over the CRB has
been well analyzed [13, 14]. Literature [15] has demonstrated
that even the noncoherent MIMO radar provides significant
performance improvement over a monostatic phased array
radar with high range and azimuth resolutions. Although
most publications on localization algorithms concentrate
on the two-step method, it is suboptimal in general [16].
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The problem becomes more complicated and challenging
for multiple dense targets scenario using the method given
in [11], where parameters as TOAs should be assigned to
the correct targets, which is called “Data Association” [17]
and it is an important problem especially for multiple target
applications. A multiple-hypothesis- (MH-) based algorithm
for multitarget localization was proposed to estimate the
number and states of targets [18].

On the contrary, the direct position determination (DPD)
method suggested by Weiss in [16] and Bar-Shalom and
Weiss in [19] does not need intermediate parameters as DOAs
or TOAs. The position estimates of interest are obtained
directly by minimizing a cost function using the grid-search
method, which can improve the estimation accuracy with
respect to the two-step method. A maximum likelihood
(ML) based DPD method dealing with one moving target
is developed [20]. Moreover, the DPD method can provide
superior localization capability in the context of multitarget
scenarios since the data association step is avoided. Despite
these advantages, the DPD method did not receive enough
attention due to its intensive computation load. Recently,
sparsity-based representation DPD framework is exploited
for target/source localization problem. In fact, since the
number of unknown targets is small in the radar scene, it
can be modeled as an ideal sparse vector in the localization
problem. Therefore, sparse modeling for distributed MIMO
radar is firstly presented in [21] and the location estimates
can be obtained by searching for the block sparse solution
of underdetermined model using block matching pursuit
(BMP)method. In [22], themultisource localization problem
using TDOA measurements is formulated to be a sparse
recovery problem and the problem of the data association
and multisource localization is solved in a joint fashion. The
method of block sparse Bayesian learning (BSBL) method in
[23] motivates us to consider its application to multitarget
localization problem in distributed MIMO radar. By exploit-
ing the intrablock correlation, BSBL can achieve a superior
performance over other algorithms for off-grid DOA estima-
tion [24]. Simulation results showed that the BSBL method
significantly outperforms competitive algorithms in different
experiments.

In this paper, motivated by [21], we propose to apply the
BSBL algorithm [23] for solving multitarget direct localiza-
tion problem by employing block sparse modeling and we
demonstrate the superiority of BSBL for multitarget localiza-
tion problem through sufficient numerical experiments from
many aspects. Specifically, we demonstrate the robustness of
BSBL against compressed sampling and capability of dealing
with dense targets localization. The effect of parameter
estimation based on the off-grid model is also shown.

The remainder of the paper is organized as follows.
We introduce the signal model for a distributed MIMO
radar and formulate the block sparse representation of
signal in Section 2. In Section 3, we review existing sparse
recovery algorithms for this problem. Then, the sparsity-
aware multitarget localization using BSBL is presented in
Section 4. The comparison of performance based on Monte
Carlo simulations is shown in Section 5. Finally, concluding
remarks and future work are addressed in Section 6.

Notations used in this paper are as follows. Boldface
letters are reserved for vectors and matrices. ‖ ⋅ ‖

1
and ‖ ⋅ ‖

2

denote the ℓ
1
norm and ℓ

2
norm, respectively. |A|, Tr(A)

are the determinant and trace of a matrix A, respectively.
diag{A

1
, . . . ,A

𝑔
} denotes a block matrix with principal diag-

onal blocks being the A
1
, . . . ,A

𝑔
in turn. ^ ⪰ 0 means each

elements in the vector ^ is nonnegative. 1
𝑀

denotes 𝑀 × 1

vector of all ones and I
𝑀
denotes𝑀×𝑀 identity matrix.

2. Signal Model

Consider a distributed MIMO radar network consisting of
𝑀
𝑇
transmitters, located at {t

𝑚
= [𝑥
𝑡

𝑚
, 𝑦
𝑡

𝑚
]}
𝑀𝑇

𝑚=1
,𝑀
𝑅
receivers,

located at {r
𝑙
= [𝑥
𝑟

𝑙
, 𝑦
𝑟

𝑙
]}
𝑀𝑅

𝑙=1
, and 𝐾 targets, located at

{p
𝑘
= [𝑥
𝑘
, 𝑦
𝑘
]}
𝐾

𝑘=1
in a two-dimensional (2D) plane. Without

loss of generality, we can extend the analysis in this paper to
the three-dimensional (3D) case. A set of orthogonal narrow-
band waveforms {𝑠

𝑚
(�̂�)}
𝑀𝑇

𝑚=1
are transmitted from different

transmitters where �̂� denotes the fast time. Suppose that the
𝑚th transmitter generates a linearly frequency-modulated
(LFM) signal

𝑠
𝑚
(�̂�) = rect( �̂�

𝑇
𝑝

) exp (𝑗2𝜋 (𝑓
𝑚
�̂� +

1

2
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2
)) , (1)

where

rect( �̂�

𝑇
𝑝

) =
{

{

{

1,
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 ≤

𝑇
𝑝

2
,

0, otherwise
(2)

denotes the window function, 𝑗 = √−1, 𝜇 = 𝐵/𝑇
𝑝
is

the chirp rate, 𝐵 represents the bandwidth, 𝑇
𝑝
denotes the

pulse duration, and 𝑓
𝑚
is the carrier frequency of the 𝑚th

transmitter. Further, we assume that the cross correlations
between these waveforms are close to zeros for different
delays; namely,

∫
∞

−∞

𝑠
𝑚
(�̂�) 𝑠
∗

𝑘
(�̂� − 𝜏) 𝑑𝑡 = 0, ∀𝑚 ̸= 𝑘, 𝜏, (3)

where (⋅)∗ denotes the conjugate operator. Let 𝛼𝑘
𝑚𝑙

denote
the complex RCS value corresponding to the 𝑘th target
between the 𝑚th transmitter and the 𝑙th receiver and each
target is modeled as a collection of𝑀

𝑇
𝑀
𝑅
various reflection

coefficients. In this work, we are interested in Rician target
model [25], which describes one dominant scatterer together
with a number of small scatterers, and target returns are
assumed to be deterministic and unknown.

For coherent processing, we obtain the bandpass signal
arriving at the 𝑙th receiver taking account of the phase errors
as

𝑦
𝑙
(�̂�) =

𝐾

∑
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𝑀𝑇
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2
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𝑘

𝑚𝑙
)
2

)) + 𝜀
𝑙
(�̂�) ,

(4)
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where 𝜏𝑘
𝑚𝑙

is the time delay corresponding to the 𝑘th target in
the (𝑚, 𝑙)th transmit-receive pair

𝜏
𝑘

𝑚𝑙
=
1

𝑐
(

p𝑘 − t

𝑚

2
+

p𝑘 − r

𝑙

2
) , (5)

and 𝑐 is the speed of the propagation of the wave in the
medium. 𝜃𝑡

𝑚
and 𝜃𝑟

𝑙
in (4) denote the phase error induced

by the𝑚th transmitter or 𝑙th receiver, respectively. The noise
𝜀
𝑙
(�̂�) is assumed to be complex Gaussian with power spectral

density (PSD) 𝜎2
𝜀
and is assumed to be independent for

different 𝑙.
The received signals at each receiver can be decomposed

by a bank of 𝑀
𝑇
matched filters. Then we take 𝑁 samples

within a range bin 𝑇
𝑔
centered at 𝜏0

𝑚𝑙
in the (𝑚, 𝑙)th transmit-

receive pair as

𝑦
𝑚𝑙
(𝑛) =

𝐾

∑
𝑘=1

�̃�
𝑘

𝑚𝑛
rect(

𝑛𝑇
𝑠
− 𝜏
0

𝑚𝑙

𝑇
𝑔

) Sinc (𝐵 (�̂�0
𝑚𝑙
+ 𝑛𝑇
𝑠
− 𝜏
𝑘

𝑚𝑙
))

× exp (−𝑗2𝜋𝑓
𝑚
𝜏
𝑘

𝑚𝑙
) + 𝜀
𝑚𝑙
(𝑛) ,

𝑚 = 1, . . . ,𝑀
𝑇
; 𝑙 = 1, . . . ,𝑀

𝑅
; 𝑛 = 1, . . . , 𝑁,

(6)

where 𝑛 and 𝑇
𝑠
denote the sample index and sampling

interval, respectively, 𝜏0
𝑚𝑙

= 1/𝑐(‖p0 − t
𝑚
‖
2
+ ‖p0 − r

𝑙
‖
2
),

p0 = [𝑥0, 𝑦0] is selected as the center of 𝐾 targets, �̂�0
𝑚𝑙

is the
sampling start time of corresponding range gate, and 𝜀

𝑚𝑙
(𝑛) is

the noise component at the output of the matched filter. Note
that unknown phase errors are absorbed in the unknown
reflection coefficient as �̃�𝑘

𝑚𝑛
≜ 𝛼
𝑘

𝑚𝑛
exp(𝑗𝜃𝑡

𝑚
+ 𝑗𝜃
𝑟

𝑙
). Plus, the

waveform term 𝑠
𝑚
is no longer present in this equation as it is

integrated out of thematched filter being a sinc function.This
model is more practical than that in [21] by taking account of
the effect of sampling deviation from the location of peaks.

We discretize the planar area into a grid of uniform cells
where each of the targets is located at one of the cells. If there
are 𝐾 targets in the area and is given a fine grid of 𝐺 cells
such that the cell’s occupancy is exclusive, the distribution of
the targets in the plane is sparse; that is, out of 𝐺 cells only
𝐾 ≪ 𝐺 contain the targets. This implies the spatial sparsity
model as depicted in Figure 1. Denoting the signal attributed
to the target located at cell 𝑔 at sample index 𝑛 as w𝑔(𝑛)
and concatenating the signals corresponding to each cells, the
signal vector coming from all the 2D plane can be formed

as w(𝑛) = [(w1(𝑛))𝑇, . . . , (w𝐺(𝑛))𝑇]
𝑇

, where {w𝑔(𝑛)}𝐺
𝑔=1

∈

C𝑀𝑇𝑀𝑅×1 and [⋅]𝑇 stands for the transpose operator. Further,
w𝑔(𝑛) is defined as

𝑤
𝑔

𝑚𝑙
(𝑛) = {

�̃�
𝑘

𝑚𝑙
, 𝑘th target is at grid𝑔

0, otherwise.
(7)

There are𝑀
𝑇
𝑀
𝑅
reflection coefficients corresponding to

the one particular cell where the target is located and there
are only 𝐾 ≪ 𝐺 targets. We characterize sparsity with such
structure as block sparsity. Figure 1 illustrates the particular
block sparsity model exhibited in representation of signals
coming from all over the grid as described above.
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Figure 1: The spatial sparsity of the targets inside the area is
illustrated through discretization of the area into a grid of 𝐺 cells.
The targets occupy only two cells marked as 1 and 2. Hence, the
spatial representation of the target reflection coefficients is sparse.
We can see that support of w exhibits the block sparsity structure as
there are only two blocks of nonzero elements corresponding to the
two targets.The size of each block is the number of transmit-receive
pairs.

For the coherent processing, the dictionary elements at
the 𝑔th grid at sample index 𝑛 in the (𝑚, 𝑙)th pair is given as

𝜓
𝑔

𝑚𝑙
(𝑛) = rect(

𝑛𝑇
𝑠
− 𝜏
0

𝑚𝑙

𝑇
𝑔

) Sinc (𝐵 (�̂�0
𝑚𝑙
+ 𝑛𝑇
𝑠
− 𝜏
𝑔

𝑚𝑙
))

× exp (−𝑗2𝜋𝑓
𝑚
𝜏
𝑔

𝑚𝑙
) .

(8)

The dictionary {Ψ(𝑛)}𝑁
𝑛=1

∈ C𝑀𝑇𝑀𝑅×𝐺𝑀𝑇𝑀𝑅 is partitioned
accordingly into

Ψ (𝑛) = [Ψ
1
(𝑛) ,Ψ

2
(𝑛) , . . . ,Ψ

𝐺
(𝑛)] , 𝑛 = 1, . . . , 𝑁, (9)

where

Ψ
𝑔
(𝑛) = diag {Ψ𝑔

1
(𝑛) , . . . ,Ψ

𝑔

𝑀𝑅
(𝑛)} , 𝑔 = 1, . . . , 𝐺,

Ψ
𝑔

𝑙
(𝑛) = diag {𝜓𝑔

1𝑙
(𝑛) , . . . , 𝜓

𝑔

𝑀𝑇𝑙
(𝑛)} , 𝑙 = 1, . . . ,𝑀

𝑅
.

(10)

Further, we arrange y
𝑚𝑙
(𝑛) (𝑚 = 1, . . . ,𝑀

𝑇
; 𝑙 =

1, . . . ,𝑀
𝑅
) and 𝜀

𝑚𝑙
(𝑛) (𝑚 = 1, . . . ,𝑀

𝑇
; 𝑙 = 1, . . . ,𝑀

𝑅
) in

(6) into 𝑀
𝑇
𝑀
𝑅
dimensional column vectors y(𝑛) and 𝜀(𝑛),

respectively. Therefore, we can express the received vector at
𝑛 as

y (𝑛) = Ψ (𝑛)w (𝑛) + 𝜀 (𝑛) , 𝑛 = 1, . . . , 𝑁, (11)

where w(𝑛) is a block sparse vector with only 𝐾 nonzero
blocks and each block containing 𝑀

𝑇
𝑀
𝑅
entries. We have

expressed our observed data at 𝑛 using sparse representation.
It is further assumed that the target reflection coefficients
remain constant across the range bin. In order to make
the model more concise, we stack {y(𝑛)}𝑁

𝑛=1
, {𝜀(𝑛)}𝑁

𝑛=1
, and
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{Ψ(𝑛)}
𝑁

𝑛=1
into y = [(y(1))𝑇, . . . , (y(𝑁))𝑇]𝑇, 𝜀 = [(𝜀(1))

𝑇
,

. . . , (𝜀(𝑁))
𝑇
]
𝑇

, and Ψ = [(Ψ(1))
𝑇
, . . . , (Ψ(𝑁))

𝑇
]
𝑇

to obtain
sparse representation as

y = Ψw + 𝜀, (12)

where 𝜀 ∈ C𝑁𝑀𝑇𝑀𝑅×1, y ∈ C𝑁𝑀𝑇𝑀𝑅×1, and w ∈ C𝐺𝑀𝑇𝑀𝑅×1.
Note that, in the above expression for the measurement

vector, Ψ ∈ C𝑁𝑀𝑇𝑀𝑅×𝐺𝑀𝑇𝑀𝑅 is known and only w depends
on the actual targets present in the illuminated area. The
nonzero entries of w represent the target RCS values and the
corresponding indices determine the positions. We assume
that the number of targets 𝐾 is unknown. The problem
of target localization is therefore turned into sparse vector
recovery problem. Recoverymethods for block sparse signals
will be addressed in the next section.

3. Existing Sparse Support Recovery

In the previous section, we have expressed that the signal
received across𝑀

𝑅
receive antennas over𝑁 snapshots using

sparse representation. In order to find the locations of the
targets, we need to recover the sparse vector w from the
measurements y. Since the sampling number 𝑁 is much
smaller than the grid number 𝐺, the inversion of (12) is an
ill-posed problem. In addition, w has block/group structure.
The exact sparsity of the signalw denoted by ‖w‖

0
, that is, the

ℓ
0
normofw, is equal to the number of nonzero elements inw

and is employed to get the inversion of (12). Then, the signal
vector can be obtained by solving the following optimization
problem:

ŵ = argminw {
y −Ψw


2

2
+ 𝛽‖w‖0} , (13)

where 𝛽 is the regularization factor proportional to the
noise level.The optimization problem requires combinatorial
search and is widely known as NP-hard. In order to simplify
the optimization problem, some convex relaxation is often
made. The most extensively used one is the ℓ

1
-norm relax-

ation as follows:

ŵ = argminw {
y −Ψw


2

2
+ 𝛽‖w‖1} . (14)

Since (13) is nonconvex, matching pursuit (MP) and
orthogonalMP are preferred.The aforementioned twometh-
ods use a greedy strategy that iteratively selects the basis
vector. After ℓ

1
-norm relaxation, many methods, such as

basis pursuit (BP) denoising, least absolute shrinkage, and
selection operator (LASSO), and gradient projection for
sparse reconstruction can be used to find the solution. These
algorithms recover sparse vectors but do not exploit the
knowledge of the block sparsity. It is known that exploiting
such block partition property can further improve recovery
performance. Recently, block-MP (BMP) algorithm has been
proposed [26] which exploits the knowledge of block sparsity.

Nevertheless, the BMP algorithm is effective on noiseless
scenarios. In practice, measurements are inevitably contami-
nated with noise and underlying uncertainties. Besides, the

performance of the sparsity based estimation approaches
is determined by the correlations between columns of the
dictionary matrix Ψ and the distance between the adjacent
grids. High dictionary coherence can potentially disrupt
BMP or Group-Lasso algorithms [27]. More importantly, one
should note that when one target belongs to the 𝑔th grid, not
only the target reflection coefficient block w

𝑔
is a nonzero

block, but also its elements are correlated in amplitude. The
correlation arises because the coefficients of the 𝑔th grid
are belonging to the same target, and thus the elements in
w
𝑔
are mutually dependent. It is shown that exploiting the

correlation within blocks can further improve the estimation
quality of ŵ [23].

Therefore, in this paper we propose to use BSBL [23]
to estimate ŵ by exploiting the block structure and the
correlation within blocks. In the next section we briefly
introduce BSBL and its algorithm.

4. Block SBL Based Target Localization

This section briefly describes the BSBL framework and corre-
sponding algorithm.

4.1. BSBL Framework. BSBL is an extension of the basic SBL
framework, which exploits a block structure and intrablock
correlation in the coefficient vector w. It is based on the
assumption that w can be partitioned into 𝐺 nonoverlapping
blocks as

w = [𝑤
1

1
, . . . , 𝑤

1

𝑑⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(w1)
𝑇

, . . . , 𝑤
𝐺

1
, . . . , 𝑤

𝐺

𝑑⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(w𝐺)
𝑇

]
𝑇

. (15)

For sparse model in this paper, 𝑑 = 𝑀
𝑇
𝑀
𝑅
. Then, each

block w𝑔 ∈ C𝑑×1 is assumed to satisfy a parameterized multi-
variate Gaussian distribution

𝑝 (w𝑔; ]
𝑔
,Q
𝑔
) ∼ CN (0, ]

𝑔
Q
𝑔
) , 𝑔 = 1, . . . , 𝐺, (16)

with the unknown parameters ]
𝑔
and Q

𝑔
. Here ]

𝑔
is a non-

negative parameter controlling the block sparsity ofw. When
]
𝑔
= 0, the 𝑔th block becomes zero. During the learning

procedure most ]
𝑔
tend to be zero, due to the mechanism

of automatic relevance determination. Thus sparsity at the
block level is encouraged. Q

𝑔
∈ C𝑑×𝑑 is a positive definite

and symmetrical matrix, capturing the intrablock correlation
of the 𝑔th block. Under the assumption that blocks are
mutually uncorrelated, the prior of w is 𝑝(w; {]

𝑔
,Q
𝑔
}
𝐺

𝑔=1
) ∼

CN(0,Σ
0
), where Σ

0
= diag{]

1
Q
1
, . . . , ]

𝐺
Q
𝐺
}. Assume the

noise vector 𝜀 satisfies 𝑝(𝜀; 𝜆) ∼ CN(0; 𝜆I), where 𝜆 is a
positive scalar to be estimated. Therefore the posterior of w
is given by

𝑝 (w | y; 𝜆, {]
𝑔
,Q
𝑔
}
𝐺

𝑔=1
) = CN (𝜇w,Σw) (17)

with

𝜇w = Σ0Ψ
𝑇
(𝜆I +ΨΣ

0
Ψ
𝑇
)
−1

y,

Σw = (Σ
−1

0
+
1

𝜆
Ψ
𝑇
Ψ)
−1

.

(18)
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Therefore, the estimate of w can be directly obtained
by using the the maximum a posteriori (MAP) estimation,
providing all the parameters 𝜆, {]

𝑔
,Q
𝑔
}
𝐺

𝑔=1
. The parameters

𝜆, {]
𝑔
,Q
𝑔
}
𝐺

𝑔=1
can be estimated by a Type II maximum

likelihood procedure [28]. This is equivalent to minimizing
the following cost function:

L (Θ) ≜ −2 log∫𝑝 (y | w; 𝜆) 𝑝 (w; {]
𝑔
,Q
𝑔
}
𝑔
) 𝑑w

= log 𝜆I +ΨΣ0Ψ
𝑇
+ y𝑇(𝜆I +ΨΣ

0
Ψ
𝑇
)
−1

y,
(19)

where Θ ≜ {𝜆, {]
𝑔
,Q
𝑔
}
𝐺

𝑔=1
} denotes all the parameters.

This framework is called the BSBL framework. The algo-
rithm derived from this framework includes three learning
rules, that is, the learning rules for ]

𝑔
, Q
𝑔
, and 𝜆. The

correlation matrix Q
𝑔

is modeled as a Toeplitz matrix.
There are several optimization methods to minimize the cost
function, such as the expectation-maximum (EM) method,
the bound-optimization (BO) method, and the duality
method.

4.2. Advantages of BSBL. Compared to Lasso-type algo-
rithms (such as Group-Lasso based on ℓ

1
-minimization)

and greedy algorithms (such as Group-MP based on ℓ
0
-

minimization), BSBL has the following advantages.

(1) BSBL provides large flexibility to model and exploit
intrablock correlation structure in signals. By exploit-
ing the correlation structures, recovery performance
is significantly improved [29].

(2) BSBL has the unique ability to find less-sparse and
nonsparse true solutions with very small errors [30].
This is attractive for practical use, since in practice
the true solutions may not be very sparse and existing
sparse signal recovery algorithms generally fail in this
case.

(3) Its recovery performance is robust to the character-
istics of the dictionary Ψ, while other algorithms
are not. This advantage is very attractive to sparse
representation and other applications, since in some
applications there is a trade-off between the reso-
lution (grid size) and the block coherence measure
[21]. When the grid points come closer, the reso-
lution is improved but blocks within Ψ are highly
coherent.

Therefore, BSBL is promising for multitarget localization.
In the followingwe choose the BSBL-ℓ

1
algorithm [23], which

transforms the BSBL cost function from the ^ space to the w
space by treating 𝜆 andQ

𝑔
as regularizers. Since it only takes

few iterations and each iteration is a standard Group-Lasso
type problem, it is much faster and is more suitable for large-
scale datasets than BSBL-EM and BSBL-BO algorithms [23].
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Figure 2: Comparison of NMSE versus SNR. Grid distance is 10 m.

5. Experiments

To demonstrate the superior performance of BSBL, this
section tests the performance of sparse recovery based multi-
target localization algorithms by conducting a wide range of
numerical experiments.Three algorithms are used, which are
the Group-Lasso method for solving (14), the Group/block-
MP for solving (13) [21], and the BSBL-ℓ

1
method.

We use the same radar configuration as in [21]. Consider a
2×2MIMO radar system in a common Cartesian coordinate
system. The transmitters are located at t

1
= [100, 0]m and

t
2
= [200, 0]m, respectively. The receivers are located at

r
1
= [0, 200]m and r

2
= [0, 100]m, respectively. The three

targets are located at p
1
= [120, 260]m, p

2
= [60, 320]m,

and p
3
= [80, 240]m. The carrier frequency of these two

transmitters are 𝑓
1
= 1GHz and 𝑓

2
= 1.5GHz. The pulse

duration is 𝑇
𝑝
= 0.2 𝜇s and signal bandwidth is 𝐵 = 10MHz.

The phase errors {𝜃𝑡
𝑚
}
𝑀𝑇

𝑚=1
and {𝜃𝑟

𝑙
}
𝑀𝑅

𝑙=1
are assumed to be 0. We

choose the range gate is 𝑇
𝑔
= 6𝑇
𝑝
and snapshots number

is 𝑁 = 24 for the simulation results. Therefore, y has 96
entries. We divide the planar area into 13 × 13 grid points.
Therefore, the total number of possible target states is 𝐺 =

169. Hence, the 676 dimensional sparse vector w has only 12
nonzero entries corresponding to the targets. The 𝑘th target
reflection coefficients follow a Rician distribution with pdf
𝑝(𝛼
𝑘
; 𝜁
𝑘
, 𝜎
0
) = (𝛼

𝑘
/𝜎
2

0
) exp(−((𝛼𝑘)2+(𝜁𝑘)2)/2𝜎2

0
)𝐼
0
(𝛼
𝑘
𝜁
𝑘
/𝜎
2

0
),

where the fixed-amplitude part of three targets in all transmit-
receive paths are 𝜁1 = 5 × 1

4
, 𝜁2 = 3 × 1

4
, and 𝜁3 = 1

4
,

and the power of Rayleigh part is 𝜎
0

= 0.05 for all
three targets. Our definition of signal-to-noise ratio (SNR)
is SNR[dB] = 10log

10
(‖Ψw‖2/𝜎2

𝜀
) and the noise is gener-

ated independently from Gaussian distribution. We combine
energies of reconstructed signal corresponding to different
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Figure 3: Comparison of reconstructed target reflection coefficients. SNR = 10 dB, grid distance is 10m. (a) Group-Lasso, (b) Group-MP, and
(c) BSBL-ℓ

1
exploiting correlation.

transmit-receive paths for each grid point in the target state
space and define a new vector as

w̃ (𝑔) =
𝑀𝑇

∑
𝑚=1

𝑀𝑅

∑
𝑙=1

ŵ (𝑀𝑇𝑀𝑅 (𝑔 − 1) +𝑀𝑅 (𝑙 − 1) + 𝑚)
2,

𝑔 = 1, . . . , 𝐺.

(20)

In the following, each experiment was repeated for
100 trials. In [21] a metric is given below to analyze the
performance:

Δ =
min w̃∗

max w̃∗
, (21)

where w̃∗ contains the values that w̃ carries at the correct 𝐾
indices and w̃∗ takes 0 at the correct 𝐾 indices and takes the
same values as w̃ at every other index. And the authors in
[21] claimed that Δ > 1 can guarantee exact estimation of
the position. Since Δ can only represent the mean value of
accuracy in the 100 trials, so we define the success rate as a
new localization accuracy performance index, defined as the

percentage of successful trials in the 100 trials (a successful
trial was defined as the one when Δ > 1).

5.1. Comparison with Different Sparse Recovery Algorithms.
We start by comparing the BSBL-ℓ

1
methodwith two classical

methods, including Group-MP, Group-Lasso methods. Also
we examine the benefit of exploiting intrablock correlation
using BSBL-ℓ

1
algorithm. The normalized mean square

error (NMSE) is used as a performance index, defined by
‖ŵ − w‖2

2
/‖w‖2
2
.

Figure 2 depicts the NMSE results using different recov-
ery algorithms. As a benchmark result, the “pentagram” result
is calculated, which is the least-square estimate of w given
its true support.The BSBL algorithm exhibits significant per-
formance gains over non-BSBL algorithms. Figure 3 shows
the reconstructed reflection coefficients of three targets for
an SNR of 10 dB using different algorithms. From Figure 3
we can see that three algorithms are capable of estimating
the positions of targets but the performance of Group-Lasso
and Group-MP are intuitively poorer than BSBL-ℓ

1
method.

In order to quantitatively analyze the performance of the
three algorithms, we plot the metrics Δ and success rate
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Figure 4: Comparison of metrics versus SNR. Grid distance is 10m. (a) Δ; (b) success rate.

versus SNR in Figure 4. BSBL-ℓ
1
is applied with and without

correlation exploitation. In the first case, it adaptively learned
and exploited the intrablock correlation. In the second case, it
ignored the correlation, that is, fixingQ

𝑔
= I (∀𝑔). As can be

seen, the BSBL-ℓ
1
algorithm exhibits significant performance

gains over non-BSBL algorithms. In Figure 4(a), the value of
Δ remains above 1 for lower SNR for BSBL-ℓ

1
algorithmwhen

compared with Group-MP and Group Lasso methods. In
Figure 4(b), it is worth noting that when SNR ≥ 5 dB, BSBL-
ℓ
1
exactly recovers block sparse signals with a high success

rate (≥ 92%). Also we see that exploiting the intrablock
correlation greatly improves the performance of the BSBL-ℓ

1

in terms of both metrics.

5.2. Ability for Dense Targets Scenario. In this subsection,
we investigate the robust ability to find less-sparse solutions
with small errors in the case of dense targets. Three targets
are relocated at p

1
= [120, 300]m, p

2
= [100, 300]m, and

p
3
= [110, 280]m and the RCS values remain unchanged.
Figure 5 demonstrates that BSBL-ℓ

1
is capable of exactly

recovering less-sparse signals even for dense targets localiza-
tion with respect to other algorithms. Figure 6 compares the
location estimation performance in terms of the two metrics
for different algorithms when the targets are located densely.
As shown, its advantage over other conventional recovering
algorithms is manifested in terms of larger Δ and higher
success rate. The BSBL-ℓ

1
is accordingly suitable for dense

targets localization problem.

5.3. Robustness against Block CoherenceMeasure. The follow-
ing experiments are devoted to the performance evaluation
for the case of robustness of BSBL to the block coherence
measure [26], and it increases as the grid distance reduces
[21].

Table 1: Comparison of computational time and NMSE.

Grid size (m) BSBL Group-MP
Time (s) NMSE Time (s) NMSE

10 0.928 0.0169 0.653 0.0707
5 34.182 0.0177 11.178 0.279

Figure 7(b) shows the reconstructed reflection coeffi-
cients with smaller grid distance than that in Figure 7(a).
Accordingly, Figure 7(d) illustrates that the resolution is
improved compared with Figure 7(c). We plot the perfor-
mance versus SNR with reduced grid distance in Figure 8. As
expected, we note from Figure 8 that when the blocks of Ψ
are highly coherent, BSBL exploiting intrablock correlation
still maintains good performance compared with Figure 4,
while other algorithms have seriously degraded performance
in these two metrics.

Table 1 gives the computational time comparison of two
algorithms on a computer with dual-core 2.5GHz CPU,
2.0GiBRAM, andWindows 7OS, and SNR = 10 dB. It shows
BSBL-ℓ

1
needs extra time to obtain better estimate perfor-

mance compared with Group-MP algorithm. Also, we note
that as the grid distance decreases, the computational time
of two algorithms increases due to the larger dimensional
dictionarymatrix, and theNMSEof BSBL shows little change,
while NMSE of Group-MP degraded significantly, which is
caused by the highly coherent dictionary.

5.4. Robustness against Compressed Sensing. In this exper-
iment, we consider the case for compressed sensing (CS)



8 International Journal of Antennas and Propagation

40 60 80 100 120 140 160

220
240

260
280

300
320

340
0
5

10
15
20
25
30
35

A
m

pl
itu

de

Y (m)
X(m)

(a)

40 60 80 100 120 140 160

220
240

260
280

300
320

340
0
5

10
15
20
25
30
35

A
m

pl
itu

de

Y (m) X(m)

(b)

40 60 80 100 120 140 160

220
240

260
280

300
320

340
0
5

10
15
20
25
30
35

A
m

pl
itu

de

Y (m)
X(m)

(c)

Figure 5: Comparison of reconstructed target reflection coefficients in dense targets case. SNR= 10 dB, grid distance is 10m. (a) Group-Lasso,
(b) Group-MP, and (c) BSBL-ℓ

1
exploiting correlation.
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Figure 7: Comparison of reconstructed target reflection coefficients using BSBL-ℓ
1
method with different grid distance. SNR = 10 dB. (a)

Grid distance is 10m (3-D), (b) grid distance is 5m (3-D), (c) grid distance is 10m (contour plot), and (d) grid distance is 5m (contour plot).
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Figure 9: Comparison of metrics versus SNR for different percentages of samples. Grid distance is 10m. (a) Group-MP, Δ; (b) Group-MP,
success rate; (c) BSBL-ℓ

1
, Δ; (d) BSBL-ℓ

1
, success rate.

technique. The percentage of samples used is given as
𝑁CS/(𝑁𝑀𝑇𝑀𝑅), where 𝑁CS ≪ 𝑁𝑀

𝑇
𝑀
𝑅
is the CS sample

number. For reconstruction of w, we use Group-MP and
BSBL-ℓ

1
methods.

As is clear from Figure 9, on one hand, the performance
degrades as the percentage of samples reduces for both
algorithms; on the other hand, the performance for Group-
MP method dropped much more significantly than that for
BSBL-ℓ

1
. In other words, the reconstructed estimates of the

position using BSBL-ℓ
1
match the true values better while

using only 50% of the samples.

5.5. Impact of Off-Grid Mismatch Errors. Finally, we consider
the impact of off-grid mismatch errors. In the above experi-
ments, we assume that all the targets are exactly located on
the selected grid. The grid size is 10m. Here, three targets
are relocated at p

1
= [120, 262]m, p

2
= [63, 323]m, and

p
3
= [80, 240]m and the RCS values remain unchanged,

where p
1
and p

2
are beyond the fixed grid.

Compared with Figure 3(c), note that in Figure 10 when
the true locations are beyond the fixed grid, we cannot obtain
the exact location estimates due to errors caused by off-
grid mismatches, though three location estimates can be
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Figure 10: Off-grid reconstructed target reflection coefficients using BSBL-ℓ
1
method. SNR = 10 dB. (a) 3-D plot, (b) 2-D contour plot.

obtained according to three peaks projection. To deal with
this problem, we could employ smaller grid size to make the
targets located on the grid or approximate the error using
linearization method [24].

6. Conclusions

Multitarget direct localization using distributedMIMO radar
systems was discussed in this paper. Previous works generally
focused on the use of two-step procedures with exact data
association. In this paper, we introduced the block sparse
Bayesian learning algorithm for multitarget direct localiza-
tion by employing a new sparse modeling within a range
bin. The success rate was defined to analyze the performance
of the radar system. We experimentally demonstrated that
BSBL algorithm significantly outperforms some algorithms
by exploiting intrablock correlation in signals, especially
when the targets were located densely and the blocks of
dictionary were highly coherent. Finally, the CS technique
was applied to the block sparse recovery. Results showed
the BSBL was more robust than other algorithms when few
samples were used.

In future work, we will consider dealing with off-grid
target localization problem, where the targets are no longer
constrained in the sampling grid set. Further, wewill consider
the problem of target localization for distributed MIMO
radar in the presence of phase synchronization mismatch.
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