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It should be noted that the peak sidelobe level (PSLL) significantly influences the performance of the multibeam imaging sonar.
Although a great amount of work has been done to suppress the PSLL of the array, one can verify that these methods do not
provide optimal results when applied to the case of multiple patterns. In order to suppress the PSLL for multibeam imaging sonar
array, a hybrid algorithm of binary particle swarm optimization (BPSO) and convex optimization is proposed in this paper. In
this algorithm, the PSLL of multiple patterns is taken as the optimization objective. BPSO is considered as a global optimization
algorithm to determine best common elements’ positions and convex optimization is considered as a local optimization algorithm
to optimize elements’ weights, which guarantees the complete match of the two factors. At last, simulations are carried out to
illustrate the effectiveness of the proposed algorithm in this paper. Results show that, for a sparse semicircular array with multiple
patterns, the hybrid algorithm can obtain a lower PSLL compared with existing methods and it consumes less calculation time in

comparison with other hybrid algorithms.

1. Introduction

The multibeam imaging sonar is becoming more and more
popular for its high resolution in the applications of underwa-
ter detection [1]. The system may comprise an array of 100-
200 channels each associated with a hydrophone, amplifier,
filter, and analog-to-digital converter (ADC), which results
in considerable hardware complexity and computational load
[2]. Consequently, it is meaningful to design a sparse array by
selectively removing some elements, while keeping the same
spatial aperture of the array. Once the number of elements
and the spatial aperture have been fixed, the beam pattern
of the sparse array, as compared with that of an equally
spaced array, exhibits about the same mainlobe width but is
characterized by much higher sidelobe level [3]. Thus beam
performance optimization under multiple-pattern conditions
is a priority. Here the design of the optimization model
involves the peak sidelobe level (PSLL) suppression of mul-
tiple patterns for a sparse array, with the constraint of fixed
number of elements and spatial aperture. Since the height of

PSLL depends on the element parameters (i.e., positions and
weight coeflicients), it is important to select both the best
common elements’ positions for multiple patterns and the
best elements’ weights for each single pattern of an unequally
spaced array.

This is a high-dimensional nonlinear problem which has
received more and more attention in the past thirty years
[4]. A range of techniques have been proposed for sidelobe
level suppression with single-pattern requirement, such as
simulated annealing (SA) algorithm, genetic algorithm (GA),
and particle swarm optimization (PSO) [5]. Some meth-
ods only determine optimal sidelobe-minimizing positions
assuming the weights were constant [6, 7]. In [8], the authors
attempted to simultaneously optimize the weights and the
positions of a linear array using SA algorithm. Recently,
hybrid evolutionary algorithms were inspired by combining
two algorithms together, which could suppress sidelobe level
more effectively [9-11]. The work in [12] optimized elements’
positions firstly and weight coeflicients secondly, which
resulted in a mismatch between the two factors. The work in



[13] studied pattern synthesis of unequally spaced array based
on the hybrid algorithm of GA and convex optimization, but
GA has a very slow convergence speed in high-dimensional
problems. What is more, these methods can not be easily
extended to the case of multiple patterns since best elements’
positions usually change with different patterns; thus the
problem of minimizing the sidelobe level in the multibeam
imaging sonar array has not been addressed yet.

PSO attracts more and more attention nowadays since it is
easy to implement compared with other global optimization
techniques. Binary particle swarm optimization (BPSO) [14]
is used to solve discrete optimization problems in the binary
search spaces. However, both PSO and BPSO may easily get
trapped in local optima and show slow convergence rate
when solving complex and high-dimensional multimodal
objective functions. Motivated by the work in [13], a hybrid
optimization algorithm of BPSO and convex optimization
[15] is proposed in this paper, where convex optimization
has strong local optimization capability. In our study, BPSO
is used to determine optimal common elements’ positions
for multiple patterns globally, while convex optimization is
used to optimize elements’ weights for each pattern locally,
which guarantees the complete match of the two factors
and gets better optimization performance by reducing the
dimension of particles in BPSO. Simulations demonstrate
that, with the constraint of fixed number of elements, the
proposed algorithm can effectively suppress the PSLL of
sparse sonar array for multiple-pattern case while consuming
less calculation time compared with other hybrid algorithms.

2. Model of Optimization

Let us consider the semicircular array of multibeam imaging
sonar with N elements, which are uniformly distributed
shown in Figure 1. Assuming that the incident signal impinges
upon the array with the arriving angle 0 from the far field, the
steering vector of the array is represented by
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where ¢ = (k- 1)/(N - 1) for k = 1,2,..., N. In addition,
R is the radius of the array and A is the wavelength of the
incident signal. Therefore, the response of the array is then
given by
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where | = 1,2,...,L, L denotes the total number of
the desired patterns and w,(f) denotes the weight coefhi-
cient of the kth element for the Ith pattern. We denote
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FIGURE 1: Diagram of the semicircular array.
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The problem considered here is to minimize the sidelobe level
with multiple desired patterns in the sparse sonar array. The
patterns include pencil beams with different mainlobe direc-
tions. For different patterns, the elements have optimized
common positions but with probably different weight coeffi-
cients. The elements’ positions can be expressed as the binary
vector X; = (x;,%,,...,Xxy) . In order to keep the array
aperture fixed, we must guarantee x; = 1 and x; = 1. The
remaining components in X, are either “1” (preserved) or “0”
(removed). The real and the imaginary part of the weights can
be expressed as X, = (Xpy1> Xnsao-- > Xon) > X5 = (Xoners
XoNt2> - > X3 oL respectively, where each component ranges
from -1 to 1. Thus the joint optimization variable is X =
[XT,XT,XI]" and the problem can be formulated as

min PSLL
X

st. PP(0,)=1, I=1,2,...,L
x=1, x5y =1 (4)

X5y X35...,XN_; =0 o0r 1

-1 < XniXNg0s -5 X3y S 1.

Here, “min” represents the abbreviation of “minimize” and
“s.t.” represents the abbreviation of “subject to.” The first line
of (4) involves the objective function needed to be minimized
and the remaining four lines involve the constraints. In
addition, 6, denotes the mainlobe direction for the Ith
pattern and PSLL denotes the peak sidelobe level for multiple
patterns which is expressed as

I
PP (6s)
PSLL = max max §|———~ , (5)
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where 93,-’ i =1,2,...,1, are the sampling angles of the side-
lobe region €, for the Ith pattern.
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3. Proposed Algorithm

3.1. Binary Particle Swarm Optimization. Particle swarm op-
timization (PSO) is a population-based stochastic optimiza-
tion algorithm proposed by Eberhart and Kennedy in 1995. It
is inspired by social behavior of birds, which can effectively
solve complicated optimization problems in the real search
space.

A binary version of PSO, that is, binary particle swarm
optimization (BPSO), was proposed to solve discrete opti-
mization problems. What makes BPSO different from PSO
is that each component of the particle position only has two
possible values, “0” or “1.” In BPSO, the velocity and position
updating equation can be expressed as

1 ¢ t t
Vg =w* v, +c *rand () * (pid—xid)+c2

* rand () = (p;d - xfd),

(6)
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where x;; and v, respectively, denote the dth component of
the position vector and velocity vector of the ith particle, p;;
denotes the dth component of the personal optimal position
of the ith particle, and p,,; denotes the dth component of
the global optimal position obtained so far by all particles.
Besides, w is a parameter known as the inertia weight, ¢
and ¢, are nonnegative constants called acceleration factors,
denotes the current iteration, ¢ + 1 denotes the next iteration,
r;; = rand() represents a random number distributed
between (0, 1), and S(x) denotes Sigmoid function given by

1
1+e™

S(x) = (7)

Considering that the velocity of the particles is often con-
strained within [=v,,, Vo), S(V),) is especially described as
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Thus S(vﬁd) varies between [1/(1+e"™=), 1/(1+e "™=)], which
is a subset of [0, 1].

In this paper, BPSO is adopted to determine the best
elements’ positions of the sparse sonar array with elements
placed at optional positions. The first position and last
position are always occupied and the rest of the positions are
uncertain. The fitness function has only one term that aims at
minimizing the PSLL for multiple patterns according to (5).

3.2. Convex Optimization. Convex optimization refers to
the minimization of a convex objective function subject to

convex constraints. Since the joint optimization variable is
very high-dimensional, the improved BPSO mixed with the
convex optimization is proposed to get better optimization
performance by reducing the dimension of particles. For
each particle, the weights for each pattern can be optimized
by convex optimization when computing fitness value, on
the premise that the elements’ positions x;,x,,...,xy are
selected by BPSO. For different patterns, the elements have
optimized common positions but with probably different
weight coefficients. Thus the optimization subproblem in the
fitness function can be formulated as

for [=1:L
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where 0g,i = 1,2,...,1, are the sampling angles of the side-
lobe regibn for the Ith pattern and 6, denotes the mainlobe
direction for the Ith pattern.

As is known to all, formulation (9) is a convex problem
that can be solved by SeDuMi or CVX of the Matlab toolbox
effectively, which is helpful to save the calculation time of
the hybrid algorithm. When the optimization subproblem
is solved, the best weight coeflicients for the Ith pattern are
wh = [wgl), wgl), ceo wg\l])], I=1,2,..., L. Then the peak side-
lobe level for multiple patterns is taken as the return value of
the fitness function for each particle according to (5).

3.3. Procedure of the Hybrid Algorithm. In this paper, the
hybrid algorithm of BPSO and convex optimization is pro-
posed to optimize the beam performance, especially min-
imizing the sidelobe level of the sparse sonar array. BPSO
is applied as global optimization algorithm to optimize the
common elements’ positions and then convex optimization
is applied as local optimization algorithm to optimize the
weights when computing fitness value. All these guarantee
that the particles can search the whole space with little
possibility of falling into the local optimal solution. It is worth
noting that the element number of the sparse array is fixed
during the update of the particles’ positions; that is to say, the
number of components that are “1” for each particle position
should be unchangeable. If it varies, a few components will
be randomly set to “1” or “0.” The procedure of the proposed
algorithm is shown in Figure 2. Finally, the hybrid algorithm
will converge to a set of common elements’ positions and
multiple sets of weight coefficients with fixed number of
elements.

4. Evaluations

For the multibeam imaging sonar, let us consider the semi-
circular array with 120 elements placed at 180 optional
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TaBLE 1: PSLL and calculation time of different methods.

Method PSLL (dB) Calculation time (hour)
BPSO (only optimize positions) —7.4894 —
BPSO with PSO (optimize positions firstly and weights secondly) -16.0519 73.8
Hybrid algorithm of genetic algorithm and convex optimization -19.5392 16.5
Proposed algorithm in the paper -22.1643 7.5
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Obtain optimal positions and weight coefficients

End

FIGURE 2: Procedure of the proposed algorithm.

positions, and the array is required to generate 538 beam
patterns. The patterns include pencil beams whose mainlobe
directions are uniformly distributed in the steering region,
that is, [45°, 135°]. The radius of the array is 0.12m and the
wavelength of the incident signal is 0.0033 m.

In the BPSO, a population pool including 100 particles is
initialized and the maximum number of runs is set equal to
100. The parameter values are chosenasw = 1,¢ =¢, = 2
for the search process and the maximum velocity is set as
Vmax = 0.0. Figure 3 shows the beam pattern that is optimized
by the proposed algorithm in this paper. It can be seen that the
PSLL of multiple patterns can be suppressed to —22.1643 dB.
Figure 4 shows the elements’ distribution of the sparse array
obtained by the proposed algorithm. The behavior of weight
coefficients is significantly difficult to depict here because
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FIGURE 3: Beam pattern optimized by the proposed algorithm.
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FIGURE 4: Elements’ distribution of the proposed algorithm.

the algorithm obtains multiple sets of weights for multiple
patterns.

For comparison, we apply the methods in [6, 12, 13] to
multiple-pattern conditions and give the obtained results in
Table 1. In the GA, the population size and the maximum
number of runs are both set equal to 100. The crossover
probability is set as 0.6 and the mutation probability is set
as 0.04. The beam patterns are, respectively, visualized in
Figures 5, 6,and 7. The average convergence curves of the pro-
posed method and the other three methods discussed above
are depicted in Figure 8. It demonstrates that the proposed
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FIGURE 5: Beam pattern by only optimizing elements’ positions.
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FIGURE 6: Beam pattern optimized by BPSO firstly and PSO sec-
ondly.

algorithm has excellent global optimization performance and
fast convergence speed.

In conclusion, the simulations demonstrate the effective-
ness of the proposed optimization algorithm based on BPSO
and convex optimization. Different from prior work in [6-
8,12,13], the algorithm proposed in this paper considers both
elements’ positions and weights during the PSLL suppression
and keeps the complete match of the two factors. It is more
important that the algorithm is applicable to the case of mul-
tiple patterns and can obtain a lower PSLL while consuming
less calculation time compared with other methods based on
the idea in prior literature.

5. Conclusion

In this paper, a hybrid optimization algorithm of BPSO
and convex optimization is proposed to suppress the peak
sidelobe level of sparse array for the multibeam imaging
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FIGURE 7: Beam pattern optimized by the hybrid algorithm of GA
and convex optimization.
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FIGURE 8: Convergence curves of different methods.

sonar. In this algorithm, BPSO is applied to determine
optimal common elements’ positions for multiple patterns
and convex optimization is to optimize the elements’ weights
for each single pattern. The results show that, for the sparse
semicircular array with 120 elements placed at 180 optional
positions, the PSLL can be suppressed to —22.1643 dB by the
proposed algorithm, which is lower than those reported in
literatures, and the calculation time is significantly decreased.
Thus the work here presents excellent optimization perfor-
mance for multibeam imaging sonar.
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