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The paper examines the antenna model for the transient analysis of electromagnetic field coupling to straight wire configurations
buried in a lossy half-space. The wire antenna theory (AT) model is implemented directly in the time domain and it is based
on the corresponding space-time Pocklington integrodifferential equation. The solution of the Pocklington equation is carried
out analytically. The obtained results are compared against the results calculated via the transmission line (TL) approach. The TL
approach is based on the telegrapher’s equations, which are solved using the modified transmission line method (MTLM) and
Finite Difference Time Domain (FDTD) technique, respectively. Some illustrative computational examples for buried straight wire
scatterer and horizontal grounding electrode are given throughout this work.

1. Introduction

The analysis of transient electromagnetic field coupling to
buriedwire configurations is of interest in antennas, propaga-
tion, and electromagnetic compatibility (EMC) applications,
for example, communications and power cables, geophysical
investigations, grounding systems, and ground penetrating
radars (GPR). This rather simple geometry itself could be
used as a canonical reference structure to test numeri-
cal methods and codes, respectively. Furthermore, similar
subject has been widely discussed in relevant literature
regarding several EMC topics pertaining to interconnected
lines, communications, and antennas; for example, see [1–
3]. The problem can be posed in either frequency or time
domain by using the transmission line (TL) model or wire
antenna theory (AT), also called the full-wave model [4,
5] with the latter approach being considered as a more
rigorous one. In particular, the TL approach is considered to
be quite sufficient approximation for long conductors with

electrically small cross sections. However, TL model is not
precise for finite length wires and high frequency excita-
tions.

On the other hand, a principal drawback of the wire
antenna model is rather high computational cost. Using
certain enhanced TL models, one may overcome some
limitations of the standard TL model restrictions [6].

The comparison between time domain wire antenna
model and TL model pertaining to a single buried conductor
has been presented in [7]. Time domain formulation used in
[8, 9] arises from the wire antenna theory and is based on the
corresponding time domain Pocklington integrodifferential
equations for thin wires buried in a lossy half-space. The
TL formulation is based on the telegrapher’s equations. The
Pocklington equation is solved analytically [9], while the
telegrapher’s equations are treated using the modified trans-
mission line method (MTLM) [7].

Furthermore, transient analysis of a horizontal grounding
electrode using both antenna theory and TL approximation
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has been reported in [10]. The Pocklington equation is
solved analytically [11], while the TL equations are treated
using the Finite Difference Time Domain (FDTD) method
[10].

This paper revisits and fully extends the full-wave (AT)
analysis methods of transient electromagnetic coupling to
straight buried wire scatterer and horizontal grounding
electrode configurations directly in the time domain pre-
sented in [6–11]. A comparison of the AT results with TL
model results is given throughout the paper. Total leakage
current has been determined directly in the time domain,
as well. Note that frequency domain Pocklington equation is
solved numerically via Galerkin-Bubnov Indirect Boundary
Element Method [5], while the time domain Pocklington
equation is solved analytically. Modelling of straight buried
scatterer and horizontal grounding electrode, respectively, is
outlined in different sections.

2. Buried Wire Scatterers

This section deals with a direct time domain analysis of a
horizontal straight thin wire scatterer buried in a lossy half-
space and excited by a transmitted electromagnetic wave
using the rigorous approach based on the antenna theory.
More details could be found elsewhere, for example, in
[9]. The AT approach is based on the space-time variant
of the Pocklington integrodifferential approach. Though the
Green function of a stratified medium is well-known and
documented in a number of papers, for example, in [12–
14], the effect of the earth-air interface is taken into account
via the simplified reflection coefficient arising from the
Modified Image Theory (MIT) [8, 15, 16]. Namely, simple
frequency domain formulas derived in [15] were transferred
in the time domain in [16] and subsequently applied to the
finite length geometry in [8]. The space-time Pocklington
equation is solved analytically and the space-time current
distribution is obtained. Once the current is determined,
all other parameters of interest could be calculated, such as
charge distribution, scattered field, and voltage, respectively.
Such an analysis, related to the scattered voltages and charges,
as well to the near field distribution due to uniform plane
wave excitation, aiming to identify the scatteringmechanisms
of thin wires has been presented and has been also reported
in [17]. The obtained numerical results are compared to the
results calculated by means of the TL approach based on the
corresponding set of telegrapher’s equations handled via the
MTLM.Moreover, the results obtained via time domain inte-
gral equationmethod are compared to the results obtained by
numerically solving the space-frequency Pocklington equa-
tion via the Galerkin-Bubnov scheme of the Indirect Bound-
ary ElementMethod (GB-IBEM) plus the inverse fast Fourier
transform (IFFT) to obtain the corresponding transient
response.

2.1. Antenna Theory Approach. The geometry of interest,
related to the horizontal thin wire of length 𝐿 and radius
𝑎 buried in a lossy ground at depth 𝑑, is shown in
Figure 1.
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Figure 1: A horizontal thin wire buried in a lossy medium.

Direct time domain formulation for the transient analysis
of horizontal straight buried wire is based on the space-time
Pocklington integrodifferential equation given by [8]
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where 𝐼(𝑥, 𝑡−𝑅/V) is the space-time dependent current to be
determined, 𝐸tr

𝑥
is the tangential transmitted field, and Γ

MIT
ref

is the corresponding reflection coefficient arising from the
Modified ImageTheory [8, 15].

The distance from the source point in the wire axis to the
observation point located on the wire surface is
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+ 𝑎2, (2)
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where 𝜎, 𝜇, and 𝜀 stand for conductivity, permittivity, and
permeability, respectively.

The influence of the earth-air interface is taken into
account via the reflection coefficient arising from the MIT
given by [8, 15]
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where 𝛿(𝑡) is the Dirac impulse and the corresponding time
constants are

𝜏
1
=
𝜀
0
(𝜀
𝑟
− 1)

𝜎
, (7)

𝜏
2
=
𝜀
0
(𝜀
𝑟
+ 1)

𝜎
. (8)

Note that the reflection coefficient (6) represents rather
simple characterization of the earth-air interface, taking into
account only medium properties. Accuracy of (6) has been
discussed elsewhere, for example, in [8, 9].

The analytical procedure documented in [6] for the case
of delta pulse excitation yields the following expression:
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Note that coefficients 𝑅(𝑠
Ψ
) and 𝑠

Ψ
account for the properties

of the medium, the dimensions of the wire, and the distance
from the interface.

Expression (9) represents the impulse response of the
wire scatterer. Consequently, the response to an arbitrary
excitation requires convolution. In this paper, the normal
incidence is considered; that is, the plane wave in the form
of the double exponential function is assumed:
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where 𝐸
0
= 1V/m, 𝛼 = 4 ∗ 10

6 s−1, 𝛽 = 4.78 ∗ 10
8 s−1.

The transmitted electric field exciting the buried wire in
the Laplace domain is given by
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where Γtr(𝑠) is the Fresnel transmission coefficient [9]
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. (13)

As the analytical convolution, that is, the time domain
counterpart of (12), would be too complex to perform, the
numerical convolution is carried out, as reported in [9].

2.2. Transmission Line Model. Frequency domain analysis of
horizontal buried wire in a lossy medium excited via plane
wave can be carried out by the transmissions line equations
in the frequency domain [1]:
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where 𝑈(𝑥, 𝜔) and 𝐼(𝑥, 𝜔) are the induced voltage and
current along the conductor, respectively,𝑍(𝜔) is the per-unit
length impedance, and 𝑌(𝜔) is the effective per-unit length
admittance of the conductor, respectively.

The set of telegrapher’s equations (14) is solved using the
MTLM.The solution procedure is outlined in Appendix A.

Space-time voltage and current 𝑢(𝑥, 𝑡) and 𝑖(𝑥, 𝑡) are
obtained as the inverse Fourier transform of space-frequency
responses 𝑈(𝑥, 𝜔) and 𝐼(𝑥, 𝜔).

The per-unit lines parameters of buried horizontal wires
can be calculated by using the approach proposed in [4].

3. Results for Buried Wire Scatterer

Some illustrative computational examples related to the tran-
sient response of a buried wire scatterer excited via transient
plane wave (normal incidence) transmitted into the ground,
as shown in Figure 1, are presented in Figures 2 and 3.

The results obtained using the AT approach in both
frequency (FD) and time domain (TD), respectively, are
compared to the results obtained by the MTLM approach.
Figure 2 shows the transient current induced at the centre of
the short wire (𝐿 = 1m, 𝑑 = 30 cm, 𝑎 = 5mm, and 𝜀

𝑟
= 10)

for different values of ground conductivity.
Some discrepancies can be observed between the results

obtained via AT-TD and TL methods versus AT-FD method,
which is expected since two former methods have a similar
approximation which is not valid for shorter wires.

Figure 3 shows the transient current induced at the centre
of a longer wire (𝐿 = 10m). Again, there is a good agreement
between the results obtained via different techniques.

Finally, Figure 4 shows the transient current at the centre
of the same wire buried in a lossy ground with conductivity
𝜎 = 1mS/m for different burial depths.
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Figure 2: Transient current at the centre of the straight wire: 𝐿 = 1m and 𝑑 = 30 cm.

The effect of the image wire is clearly dependent on
depth 𝑑 and the medium conductivity 𝜎. The greater the
burial depth and soil conductivity are, the less significant the
influence of the image wire in the air is.

The results calculated via different approaches agree
satisfactorily inmost cases. Some bigger differences exist only
for the case of shorter wires and lower ground conductivity
which was expected due to the nature of the transmission line
model. AT-FD is considered to be the exact approach. The
results obtained lead to the conclusion that the approximate
solution of the time domain Pocklington equation directly in
the time domain is close to the MTLM solution of the TD
telegrapher’s equations.

The mathematical details regarding the AT solution
method could be found elsewhere, for example, in [5].

The computational cost is rather low if one uses analytical
solution compared to the AT-FD and TL model, respectively.
This is particularly of interest for more complex wire grid
configurations.

4. Horizontal Grounding Electrode

A direct time domain analysis of a horizontal grounding
electrode is of continuous interest in studies of lightning
protection systems (LPS).The proposed geometry is of inter-
est as a simple grounding system itself in some engineering
applications and it could be also useful as a benchmark for
testing other solution techniques.

This section deals with a transient analysis of a horizontal
grounding wire immersed in a lossy half-space by means of
a rigorous antenna theory and an approximate transmission
line approach, respectively. The AT formulation is based
on the homogeneous space-time Pocklington integrodiffer-
ential equation. The presence of the earth-air interface is,
as previously shown, taken into account via the simplified
reflection coefficient arising from the MIT. The TL approach
is based on the corresponding set of space-time telegrapher’s
equations. The Pocklington equation is solved analytically
while telegrapher’s equations have been numerically solved
via the Finite Difference Time Domain (FDTD) method.
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Figure 3: Transient current at the centre of the straight wire: 𝐿 = 10m and 𝑑 = 4m.
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Finally, the knowledge of space-time current behaviour
provides the calculation of the scattered voltage along the
electrode [18, 19] and consequently determines the transient
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Figure 5:Horizontal grounding electrode buried in a lossymedium.

impedance, one of themost important parameters of ground-
ing systems. This task will be addressed in a future work.

4.1. Antenna Theory Approach. The geometry of interest
related to the horizontal grounding electrode of length 𝐿 and
radius 𝑎, buried in a lossy medium of permittivity 𝜀 and
conductivity 𝜎 at depth 𝑑, is shown in Figure 5.The electrode
is energized at one end with an equivalent current source.
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Direct time domain analysis of the horizontal grounding
electrode is based on the following homogeneous space-time
Pocklington integrodifferential equation [11]:
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where 𝐼(𝑥


, 𝑡 − 𝑅/V) is the space-time current along the
electrode and Γ
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ref is the reflection coefficient (6) while 𝑅,
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are given with expressions (2) to (8),

respectively.
When dealing with the transient analysis of grounding

electrodes, the excitation function is usually defined in terms
of the equivalent current generator representing the lightning
strike current.

One of the simplest representations of the lightning
current, used in this paper, as well, is the double exponential
pulse [20]:
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The space-time current flowing along the horizontal

grounding electrode due to the double exponential current
source (16) is given by [1]
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More mathematical details regarding the analytical solution
of (15) are available in [11].

4.2. Transmission Line Model. Using the framework of the
transmission line theory, the current and voltage induced

along the horizontal grounding electrode can be obtained by
solving the set of telegrapher’s equations [21]:
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where V(𝑥, 𝑡) and 𝑖(𝑥, 𝑡) are induced voltage and current
along the conductor, respectively, and𝑅 is the per-unit length
series resistance. 𝐿, 𝐺, and 𝐶 are the effective per-unit length
inductance, conductance, and capacitance of the conductor,
respectively. The zero-current conditions at the open wire
ends are assumed; that is, 𝑖(0, 𝑡) = 0 and 𝑖(𝐿, 𝑡) = 0.

Furthermore, the per-unit lines parameters of buried
horizontal wires can be calculated using the following expres-
sions [20]:
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As in antenna theory, the electrode is assumed to be perfectly
conducting (PEC); that is, 𝑅 = 0. Note that 𝑙, 𝑎, and 𝑑

are the length, radius, and depth, respectively, of the buried
horizontal electrode, while 𝜇

0
, 𝜀
𝑟
, and 𝜎 are the permeability

of air, the relative permittivity, and the conductivity of the
ground, respectively.

The solution of telegrapher’s equations (19) is carried out
using the Finite Difference Time Domain (FDTD) method
[7] and it is outlined in Appendix B.

4.3. The Leakage Current. One of the parameters that can be
useful in the analysis of the grounding electrode properties is
the leakage current density [22].

The concept of leakage current density flowing radially
from the electrode is depicted in Figure 6.

This current density can be evaluated as the product of
the radial field component 𝐸

𝜌

𝐸
𝜌
= −

1

𝑗𝜔𝜀eff ⋅ 2𝜋𝜌

𝜕𝐼 (𝑧)

𝜕𝑧
(21)

and the soil conductivity 𝜎.
Thus, the leakage current density is given by [12]

𝐽
𝑙
= 𝜎 ⋅ 𝐸

𝜌
= −

𝜎

𝑗𝜔𝜀eff ⋅ 2𝜋𝜌

𝜕𝐼 (𝑧)

𝜕𝑧
. (22)

The total current flowing out of the electrode can be obtained
by integrating the current density along the cylinder

𝐼
𝑙,tot = ∫

𝑆

⃗𝐽
𝑙
⋅ 𝑑 ⃗𝑆

= −
𝜎

𝑗𝜔𝜀eff ⋅ 2𝜋
∫

2𝜋

0

∫

𝐿

0

1

𝜌

𝜕𝐼 (𝑧)

𝜕𝑧
𝜌 𝑑𝜙 𝑑𝑧

(23)
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Figure 6: The leakage current density.

and is given by

𝐼
𝑙,tot =

𝜎

𝑗𝜔𝜀eff
𝐼 (0) . (24)

In the Laplace domain, (24) becomes

𝐼
𝑙,tot (𝑠) =

1

1 + 𝑠𝑇
𝐼
𝑔
(𝑠) , (25)

where 𝑇 = 𝜀/𝜎.
It is convenient to rewrite (25), as follows:

𝐼
𝑙,tot (𝑠) = 𝐻 (𝑠) ⋅ 𝐼

𝑔
(𝑠) , (26)

where𝐻(𝑠) can be written in the form

𝐻(𝑠) =
1/𝑇

𝑠 + 1/𝑇
. (27)

The product from (26) in the Laplace domain corresponds to
the convolution in the time domain:

𝑖
𝑙,tot (𝑡) = ∫

𝑡

0

ℎ (𝑡 − 𝜏) 𝑖
𝑔
(𝜏) 𝑑𝜏, (28)

where 𝑖
𝑔
(𝑡) is given by (16) and ℎ(𝑡) is the time domain

counterpart of (27):

ℎ (𝑡) =
1

𝑇
𝑒
−𝑡/𝑇

. (29)

Inserting (16) and (29) into (28) yields

𝑖
𝑙,tot (𝑡) = ∫

𝑡

0

1

𝑇
𝑒
−(𝑡−𝜏)/𝑇

𝐼
0
(𝑒
−𝛼𝜏

− 𝑒
−𝛽𝜏

) 𝑑𝜏. (30)

The solution of (30) is straightforward and can be written in
the form

𝑖
𝑙,tot (𝑡) =

𝐼
0

𝑇
𝑒
−𝑡/𝑇

⋅ {
1

𝛼 − 1/𝑇
[1 − 𝑒

−𝑡(𝛼−1/𝑇)

]

−
1

𝛽 − 1/𝑇
[1 − 𝑒

−𝑡(𝛽−1/𝑇)

]} .

(31)
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Figure 7: Transient current at the centre of the electrode: 𝐿 = 1m,
𝜎 = 10mS/m, and 0.1/1 𝜇s pulse.

5. Results for the Horizontal Grounding
Electrode

All examples are related to the horizontal electrode of radius
𝑎 = 5mm, buried in a lossy half-space with relative permit-
tivity 𝜀

𝑟
= 10 at depth 𝑑 = 0.5m. The grounding electrode

is energized with the double exponential current source with
𝐼
0
= 100 kA. The transient current is determined by (17).

The obtained analytical results are compared to the numerical
results obtained by solving telegrapher’s equations (19) via
FDTD method. Figure 7 shows the transient response at the
centre of the 1m long electrode buried in a lossy medium
(𝜎 = 10mS/m) and excited by the 0.1/1 𝜇s pulse defined by
the following set of parameters:

𝛼 = 0.07924 ⋅ 10
7

(1/s) ,

𝛽 = 4.0011 ⋅ 10
7

(1/s) .
(32)

Figures 8 and 9 show the transient response at the centre of
the 10m long electrode for the soil conductivity 𝜎 = 1mS/m
and 𝜎 = 10mS/m, respectively.

The transient response at the centre of the 20m long
electrode buried in the lossy medium with the conductivity
𝜎 = 1mS/m is shown in Figure 10.

It can be observed that the results obtained by means of
the AT and TL approach, respectively, agree rather satisfacto-
rily.

Therefore, it can be concluded that the approximations
adopted within the analytical solution procedure of integrod-
ifferential equation (15) to a certain extent correspond to the
approximations adopted in the TL model itself.

This is an important conclusion as the proposed ana-
lytical formula could be used instead of FDTD solution
of telegrapher’s equations in the time domain. Moreover,
the space-time expression provides a further calculation of
the transient voltage along the electrode and consequently
transient impedance without using FFT which could be
a cause of significant errors within the frequency domain
approach. This task will be addressed in the future work.
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Figure 8: Transient current at the centre of the electrode: 𝐿 = 10m,
𝜎 = 1mS/m, and 0.1/1 𝜇s pulse.
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Figure 9: Transient current at the centre of the electrode: 𝐿 = 10m,
𝜎 = 10mS/m, and 0.1/1 𝜇s pulse.

Regarding electrode length, the analytical solution of the
current waveform seems to improve for higher electrode
length (𝐿 = 10m). Such behaviour is expected, as the approx-
imations in analytical solution of the thin wire integral
equation are rather close to certain assumption adopted
within the transmission line (TL) approach [11].

Figure 11 shows a time dependent total leakage current
flowing out of the electrode in the normal direction, for the
ground permittivity 𝜀

𝑟
= 10 and different values of ground

conductivity.The double exponential excitation (16) is related
to the 0.1/1/𝜇s, 1 A pulse.

It is visible from Figure 11 that the higher the conductivity
the faster the die-off of the total leakage current curve. It can
also be observed from Figure 11 that the leakage current is
around 5 orders of magnitude lower than the axial current
along the electrode. This is a direct consequence of the
assumption that the wire is perfectly conducting.

6. Conclusion

Direct time domain analysis of the transient behaviour of
the buried wire scatterer and horizontal grounding electrode
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Figure 10: Transient current at the centre of the electrode: 𝐿 = 20m,
𝜎 = 1mS/m, and 0.1/1 𝜇s pulse.

based on the rigorous antenna theory model has been
discussed in this work. The AT approach is based on the
corresponding space-time Pocklington integrodifferential
equation.The influence of the earth-air interface is taken into
account via the simplified reflection coefficient arising from
the Modified Image Theory. The corresponding Pocklington
equation is solved analytically. The obtained results are
compared to the results obtained via the approximate TL
approach, based on the set of the corresponding telegrapher’s
equations solved via Modified Transmission Line Method
and the Finite Difference TimeDomainmethod, respectively.
In the case of wire scatterer, AT-TD results are also compared
to the results obtained via the AT-FD approach combined
with IFFT. The results calculated via different approaches
agree rather satisfactorily. A trade-off between the AT-TD
analytical approach, AT-FDnumerical approach, and numer-
ical solution of the telegrapher’s equation has been carried out
throughout the paper.

Appendices

A. MTLM Solution of Telegrapher’s Equations

The set of telegrapher’s equations [1] is as follows:

𝜕V (𝑥, 𝑡)
𝜕𝑥

+ 𝑧 (𝑡) ∗ 𝑖 (𝑥, 𝑡) = 𝐸
tr
𝑥
(𝑥, 𝑡) ,

𝜕𝑖 (𝑥, 𝑡)

𝜕𝑥
+ 𝑦 (𝑡) ∗ V (𝑥, 𝑡) + 𝐶

𝜕V (𝑥, 𝑡)
𝜕𝑡

= 0,

(A.1)

where ∗ is the convolution product. In the frequency domain
(A.1) can be written as follows [1]:

𝜕𝑈 (𝑥, 𝜔)

𝜕𝑥
+ 𝑍𝐼 (𝑥, 𝜔) = 𝐸

tr
𝑥
(𝑥, 𝜔) ,

𝜕𝐼 (𝑥, 𝜔)

𝜕𝑥
+ 𝑌𝑈 (𝑥, 𝜔) = 0.

(A.2)
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(b) 𝜎 = 1mS/m
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Figure 11: Total leakage current versus time.

The solution of transmission line equations for a buried
wire excited by an external field 𝐸

tr
𝑥
(𝜔) transmitted into the

ground, given by (12), can be written in the form

𝐼 (𝑥, 𝜔) = 𝐴 (𝜔) 𝑒
−Γ𝑥

+ 𝐵 (𝜔) 𝑒
Γ𝑥

+
𝐸
tr
𝑥
(𝜔)

𝑍 (𝜔)
, (A.3)

where 𝐴(𝜔) and 𝐵(𝜔) are determined from the zero-current
conditions at the wire ends

𝐼 (0, 𝜔) = 𝐼 (𝐿, 𝜔) = 0 (A.4)

and are given by

𝐴 (𝜔) =
𝐸
tr
𝑥
(𝜔)

𝑍 (𝜔)

(1 − 𝑒
Γ𝐿

)

(𝑒Γ𝐿 − 𝑒−Γ𝐿)
,

𝐵 (𝜔) = −
𝐸
tr
𝑥
(𝜔)

𝑍 (𝜔)

(1 − 𝑒
−Γ𝐿

)

(𝑒Γ𝐿 − 𝑒−Γ𝐿)
.

(A.5)

Per-unit length parameters 𝑍(𝜔) and 𝑌(𝜔) are defined by
relation

𝑍 [Γ (𝜔)] ⋅ 𝑌 [Γ (𝜔)] = [Γ (𝜔)]
2

, (A.6)

where [7]

𝑍 (Γ)

=
𝑗𝜔𝜇
0

2𝜋
[𝐾
0
(𝛾
1
𝑎) − 𝐾

0
(𝛾
1
(2𝑑 − 𝑎)) + 𝐼

1
(Γ)] ,

𝑌 (Γ) =
𝑗2𝜋𝜔𝜀eff

𝐾
0
(𝛾
1
𝑎) − 𝐾

0
(𝛾
1
(2𝑑 − 𝑎)) + 𝑘

2

1
𝐼
2
(Γ)

.

(A.7)

Furthermore, 𝐼
1
and 𝐼
2
are determined by integrals

𝐼
1
(Γ) = ∫

+∞

−∞

𝑒
−2𝑢1𝑑

𝑢
1
+ 𝑢
2

𝑑𝜆.

𝐼
2
(Γ) = ∫

+∞

−∞

𝑒
−2𝑢1𝑑

𝑘
2

2
𝑢
1
+ 𝑘
2

1
𝑢
2

𝑑𝜆,

(A.8)

where 𝐾
0
is zero order Bessel function of the second kind,

while 𝑢
1
and 𝑢

2
are given by

𝑢
1
= (𝜆
2

− Γ
2

− 𝑘
2

1
)
1/2

= (𝜆
2

+ 𝛾
2

1
)
1/2

,

𝑢
2
= (𝜆
2

− Γ
2

− 𝑘
2

2
)
1/2

= (𝜆
2

+ 𝛾
2

2
)
1/2

,

(A.9)
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where 𝑘
1
and 𝑘

2
are the propagation constants of a lossy

ground and air, respectively, and are expressed as follows:

𝑘
2

1
= 𝜔
2

𝜇
0
𝜀eff ,

𝑘
2

2
= 𝜔
2

𝜇
0
𝜀
0
,

(A.10)

with

𝜀eff = 𝜀
0
𝜀
𝑟
− 𝑗

𝜎

𝜔
. (A.11)

Space-time current 𝐼(𝑥, 𝑡) is obtained as the inverse Fourier
transform of space-frequency response 𝐼(𝑥, 𝜔).

B. FDTD Solution of Telegrapher’s Equations

A set of telegrapher’s equations
𝜕V (𝑥, 𝑡)
𝜕𝑥

+ 𝑅𝑖 (𝑥, 𝑡) + 𝐿
𝜕𝑖 (𝑥, 𝑡)

𝜕𝑡
= 0,

𝜕𝑖 (𝑥, 𝑡)

𝜕𝑥
+ 𝐺V (𝑥, 𝑡) + 𝐶

𝜕V (𝑥, 𝑡)
𝜕𝑡

= 0

(B.1)

are solved using the FDTD method.
Discretizing the electrode into 𝑁

𝑠
segments, with seg-

ment length Δ𝑥 and the time interval of interest into 𝑛𝑡

sections, with increment Δ𝑡, it follows that

V𝑛+1
𝑘

= 𝐷 [𝐸 ⋅ V𝑛
𝑘
− (𝑖
𝑛+1/2

𝑘
− 𝑖
𝑛+1/2

𝑘−1
)] ,

for 𝑘 = 2, 3, . . . , 𝑁,

𝑖
𝑛+3/2

𝑘
= 𝐴 [𝐵 ⋅ 𝑖

𝑛+1/2

𝑘
− (V𝑛+1
𝑘+1

− V𝑛+1
𝑘

)] ,

for 𝑘 = 1, 2, . . . , 𝑁,

(B.2)

where
V𝑛
𝑘
= V [(𝑘 − 1) Δ𝑥, 𝑛Δ𝑡] , for 𝑛 = 0, 1, . . . , 𝑛𝑡,

𝑖
𝑛

𝑘
= 𝑖 [(𝑘 −

1

2
)Δ𝑥, 𝑛Δ𝑡] , for 𝑛 = 0, 1, . . . , 𝑛,

𝐴 = (
Δ𝑥

Δ𝑡
𝑙 + Δ𝑥

𝑟

2
)

−1

,

𝐵 = (
Δ𝑥

Δ𝑡
𝑙 − Δ𝑥

𝑟

2
)

−1

,

𝐷 = (
Δ𝑥

Δ𝑡
𝑐 + Δ𝑥

𝑔

2
)

−1

,

𝐸 = (
Δ𝑥

Δ𝑡
𝑐 − Δ𝑥

𝑔

2
)

−1

.

(B.3)

Incorporating the appropriate boundary conditions for volt-
ages at the wire ends, V𝑛

1
, V𝑛
𝑛𝑥+1

are evaluated from the
following expressions:

V𝑛+1
1

= 𝐷 [𝐸 ⋅ V𝑛
1
− 2𝑖
𝑛+1/2

1
+ (𝑖
𝑛+1

𝑔
− 𝑖
𝑛

𝑔
)] ,

V𝑛+1
𝑛𝑥+1

= 𝐷(𝐸 ⋅ V𝑛
𝑛𝑥
+ 2𝑖
𝑛+1/2

𝑛𝑥
) .

(B.4)

The current excitation 𝐼
𝑛

𝑔
at the time instant 𝑡 = 𝑛Δ𝑡 is given

by (16).

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] G. S. Shinh, N.M. Nakhla, R. Achar, M. S. Nakhla, A. Dounavis,
and I. Erdin, “Fast transient analysis of incident field coupling
to multiconductor transmission lines,” IEEE Transactions on
Electromagnetic Compatibility, vol. 48, no. 1, pp. 57–73, 2006.

[2] P. Bernardi, R. Cicchetti, and C. Pirone, “Transient response of
a microstrip line circuit excited by an external electromagnetic
source,” IEEE Transactions on Electromagnetic Compatibility,
vol. 34, no. 2, pp. 100–108, 1992.

[3] M. Leone and H. L. Singer, “On the coupling of an external
electromagnetic field to a printed circuit board trace,” IEEE
Transactions on Electromagnetic Compatibility, vol. 41, no. 4, pp.
418–424, 1999.

[4] F. M. Tesche, M. Ianoz, and T. Karlsson, EMC Analysis Methods
and Computational Models, John Wiley & Sons, New York, NY,
USA, 1997.

[5] D. Poljak,AdvancedModeling inComputational Electromagnetic
Compatibility, Wiley-Interscience, Hoboken, NJ, USA, 2007.

[6] D. Poljak, V. Doric, S. Antonijevic, K. El Khamlichi Drissi,
and K. Kerroum, “Electromagnetic field coupling to overhead
wires: comparison of wire antenna and transmission line model
in the frequency and time domain,” in Proceedings of the
19th International Conference on Applied Electromagnetics and
Communications (ICECom ’07), pp. 1–4, IEEE, Dubrovnik,
Croatia, September 2007.

[7] D. Poljak, S. Sesnic, K. El Khamlichi Drissi, and K. Kerroum,
“Transient response of a buried wire,” in Proceedings of the IEEE
21st International Conference on Applied Electromagnetics and
Communications (ICECom ’13), pp. 1–4, Dubrovnik, Croatia,
October 2013.

[8] D. Poljak and N. Kovac, “Time domain modeling of a thin
wire in a two-media configuration featuring a simplified reflec-
tion/transmission coefficient approach,” Engineering Analysis
with Boundary Elements, vol. 33, no. 3, pp. 283–293, 2009.
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