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The paper deals with the stochastic collocation analysis of a time domain response of a straight thin wire scatterer buried in a lossy
half-space. The wire is excited either by a plane wave transmitted through the air-ground interface or by an equivalent current
source representing direct lightning strike pulse. Transient current induced at the center of the wire, governed by corresponding
Pocklington integrodifferential equation, is determined analytically. This antenna configuration suffers from uncertainties in
various parameters, such as ground properties, wire dimensions, and position. The statistical processing of the results yields
additional information, thus enabling more accurate and efficient analysis of buried wire configurations.

1. Introduction

The analysis of scattering properties of the perfectly conduct-
ing (PEC) objects buried in a lossy half-space has been of
continuous interest in the various areas of application, such as
ground penetrating radar (GPR) systems and related applica-
tions in civil engineering [1], as well as design and modeling
of lightning protection systems (LPS) [2, 3]. Consequently, a
deeper insight of scattering phenomena occurring in a lossy
medium [4, 5] as well as the development of uncertainty
analysis is required [6, 7].

Induced transient current distribution represents a fun-
damental quantity that can be used for determining other
parameters of interest in the analysis of a scatterer (e.g.,
scattered voltage and transient input impedance) [8, 9].

The transient current induced along the wire scatterer,
featuring a thin wire approximation, can be obtained using
direct approach related to modeling of the electromagnetic
(EM) wave coupling to a thin wire structure directly in time
domain, providing better physical insight, accurate modeling
of highly resonant structures, and easier implementation

of nonlinearities [10]. This current is governed by inte-
grodifferential equation of Pocklington type. An analytical
solution of this equation can be obtained when dealing
with canonical geometries, using carefully chosen set of
approximations [11, 12]. The main advantage of analytical
solution is the possibility of implementation for benchmark
purposes, as well as for quick engineering estimation of the
observed phenomenon [13]. Furthermore, analytical solution
can be used within hybrid approaches for modeling complex
structures, wherein computational time can be significantly
reduced [9].

Variations in parameters can be explained by different
causes, for example, by inability to obtain precise input para-
meters via measurement or changes in the obtained parame-
ters due to variations in environmental conditions. The ana-
lysis of random variations regarding geometries and environ-
ment and/or materials of interest that may lead to significant
misunderstanding or even errors in the analysis of buried
objects is of interest [14]. Due to uncertain variations of
parameters of interest, some techniques for an efficient inte-
gration of stochastic modeling have been developed [15].The
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Figure 1: A horizontal thin wire scatterer buried in a lossy medium
excited via plane wave.

paper aims to demonstrate the ability of a precise analytical
deterministic method to compute the currents induced on a
straight buried wire, combined with an efficient and accurate
stochastic method (SC) to integrate uncertainties with regard
to parameters accuracy.

In Section 2, the fundamentals of the analytical solution
of the space-time integrodifferential equation of Pocklington
type are given for plane wave excitation as well as equiva-
lent current source. The basis of the Stochastic Collocation
method with the emphasis on its advantages in regard to
other methods is given in Section 3. Computational results
anddiscussion are outlined in Section 4,while the concluding
remarks are given in Section 5.

2. Antenna Theory Formulation
and Analytical Solution

2.1. Plane Wave Excitation. A horizontal thin wire scatterer
of length 𝐿 and radius 𝑎 is buried in a lossy medium at
depth 𝑑. Properties of the medium are given with electrical
permittivity 𝜀 and conductivity 𝜎. The wire is illuminated by
a transmitted part of a transient electromagnetic (EM) wave
of normal incidence, as shown in Figure 1.

Time domain formulation for the transient analysis of
horizontal straight wire buried in a lossy medium is based
on the space-time Pocklington integrodifferential equation
given with [16]
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where 𝑖(𝑥󸀠, 𝑡 − 𝑅/V) is the unknown space-time dependent
current, 𝐸tr

𝑥
is the tangential component of the transmitted

field, and Γ
MIT
ref is the corresponding reflection coefficient

arising from theModified ImageTheory (MIT) [17]. Detailed
derivation of (1) can be found in [16].

The distance from the source point in the wire axis to the
observation point located on the wire surface is
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2
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while the distance from the source point on the image wire to
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image theory, is
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The influence of the earth-air interface is taken into
account via the reflection coefficient arising from the MIT
and is given with [17]
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Note that the reflection coefficient (5) represents rather
simple characterization of the earth-air interface, taking into
account onlymediumproperties. An accuracy of (5) has been
discussed in [16].

Undertaking the analytical solution procedure docu-
mented in [16], the expression for the time dependent
induced current for the case of impulse excitation can be
written as follows:

𝑖 (𝑥, 𝑡) =
4𝜋

𝜇

{{

{{

{

𝑅 (𝑠
Ψ
) [1 −

cosh (𝛾
Ψ
(𝐿/2 − 𝑥))

cosh (𝛾
Ψ
(𝐿/2))

]

⋅ 𝑒
(𝑡+𝑎/V)𝑠Ψ −

𝜋

𝜇𝜀𝐿2

∞

∑

𝑛=1

2𝑛 − 1

±√𝑏2 − 4𝑐
𝑛
𝑠
1,2𝑛

Ψ (𝑠
1,2𝑛

)

⋅ sin (2𝑛 − 1) 𝜋𝑥

𝐿
𝑒
(𝑡+𝑎/V)𝑠1,2𝑛

}}

}}

}

,

(7)



International Journal of Antennas and Propagation 3

where function Ψ(𝑠) and coefficients 𝑅(𝑠
Ψ
) and 𝑠

Ψ
represent

physical properties of the system, taking into account the
dimensions of the wire and the distance from the interface:
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Furthermore, other coefficients in (7) correspond to the
properties of the medium and are given as follows:
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Expression (7) represents the impulse response. Con-
sequently, the response to an arbitrary excitation requires
convolution. Only normal incidence is considered and the
plane wave in the form of the double exponential pulse is
assumed:

𝐸
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The transmitted electric field exciting the buried wire in
the Laplace domain is given by [18]
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where Γtr(𝑠) represents Fresnel transmission coefficient
defined by [16]

Γtr (𝑠) =
2√𝑠𝜀0

√𝑠𝜀 + 𝜎 + √𝑠𝜀0

. (12)

As the convolution, that is, the time domain counterpart
of (11), would be too complex to be calculated analytically, the
numerical convolution is carried out, as it is presented in [16].

2.2. Equivalent Current Source Excitation. A horizontal thin
wire excited at one endwith an equivalent current source (i.e.,
grounding electrode) of length 𝐿 and radius 𝑎 is buried in a
lossy medium at depth 𝑑. Properties of the medium are given
as electrical permittivity 𝜀 and conductivity 𝜎, as shown in
Figure 2.
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Figure 2: A horizontal thin wire scatterer buried in a lossy medium
excited via equivalent current source.

Governing equation for the unknown current induced
along the wire is given in the form of time domain homo-
geneous Pocklington integrodifferential equation [19]:
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(13)

The parameters in (13) are defined with expressions (2)
through (6).

Integrodifferential equation (13) is solved analytically,
using some carefully chosen approximations. As it has been
shown in [19] time domain impulse response counterpart is
obtained as follows:
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Equation (14) represents an analytical expression for the
space-time distribution of the current induced along the thin
wire excited by an equivalent current source in the form of
the Dirac pulse.

To take into account realistic excitation of a lightning
strike, one of the functionsmost frequently used is the double
exponential pulse, given as [19]
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Analytical convolution is undertaken with (14) and (16),
to obtain the following expression for the current flowing
along the electrode:
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Equation (17) represents the expression for the space-
time distribution of the current induced along the wire
due to a double exponential pulse equivalent current source
excitation.

3. Theoretical Principles and Statistical
Methodology

First of all, the aim of this proposal is to focus on one
particular aspect of uncertaintymodeling. As detailed in [20],
a huge difference exists between quantification of sources
of uncertainty and Uncertainty Propagation (UP). In the
following, we will lay emphasis on UP, assuming arbitrary
variations of random inputs.

Among the huge diversity of statistical approaches avail-
able in the literature, the purpose of this paper is to focus
on spectral stochastic techniques [6]. Relying on the physical
problem under consideration, the statistics of the current 𝐼
induced in the center of the buried wire is expanded over an
adapted function basis.The proposedmethodology is relying
on stochastic collocation methods as previously introduced
in [21] for efficient computations of radar cross section from
targets assuming uncertain geometrical inputs. A particular
care was taken in [22] to optimization of SC methods.

In the following section, we will depict the proposed
methodology according to an illustrative test case including
one random variable (RV).

3.1. Theoretical Principles over 1-RV Polynomial Expansion.
Without loss of generality, the theoretical principles are
depicted considering only one random parameter 𝑋 (e.g.,
assuming uncertainty regarding soil conductivity 𝜎 and its
impact on current 𝐼). In this framework, we may assume a
given mapping through function 𝑓 : 𝑅 → 𝑅 and a RV 𝑋

given by an a priori probabilistic distribution (𝑓 standing
for the relation between 𝐼 and 𝜎). In the following, we will
establish the relations needed to access mean and variance
of RV 𝑌 = 𝑓(𝑋). First, an approximation of function 𝑓 is
required over 𝑛th order Lagrange polynomial basis:
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quadrature rule for polynomials with a degree lower or equal
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moment of a given random output considers integral terms.
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Finally, relation (25) is straightforward computed based
upon weighted points (𝑥

𝑖
, 𝜔
𝑖
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As one may notice by decomposing the successive steps,
computing the set of weighted points is quite simple because
of the well-known property of Lagrange polynomials as the
aforementioned. As it is the case for Galerkin-like methods
[6], previous remarks entirely justify the choice of the same
set of points for Gauss quadrature (computing efficiently
the required integral) and collocation points (from Lagrange
polynomials expansion of the given mapping). It is relatively
easy to obtain the mean value from relation (27). Conse-
quently, the same principlemay be followed when computing
variance of RV 𝑓(𝑋):
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The replacement of relation (30) in (29) leads to
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Similar to mean computing, most terms in this equation
vanish (due to Kronecker property: i.e., nonzero terms are
governed by 𝑖 = 𝑗 = 𝑘) which involves

var (𝑓 (𝑋)) ≈

𝑛

∑

𝑘=0

𝜔
𝑘
𝑓
2

𝑘
− 𝐸 [𝑓 (𝑋)]

2

. (32)

By introducing (26), we may derive an approximated
value of variance for RV 𝑓(𝑋), as follows:

var (𝑓 (𝑋)) ≈

𝑛

∑

𝑘=0

𝜔
𝑘
(𝑓 (𝑥
𝑘
))
2

− 𝐸 [𝑓 (𝑋)]
2

. (33)

In the following and in order to simplify the purpose,
we define the statistical moments around one given output
𝐼 as follows, [𝐼]

𝑢
, where 𝑢 represents a given order of

statistical moment (e.g., previous expectation of 𝑓(𝑋) is
defined as 𝐸[𝑓(𝑋)] = [𝐼]

1
). Thus, relations (27) and (33)

may be rewritten using previous term [𝐼]
𝑢
as follows: [𝐼]

𝑢
≈

∑
𝑛

𝑖=0
𝜔
𝑖
Φ
𝑢

(𝑥
𝑖
), with Φ

𝑢

(𝑥
𝑖
) such as Φ

1

(𝑥
𝑖
) = 𝑓(𝑥

𝑖
) and

Φ
2

(𝑥
𝑖
) = (𝑓(𝑥

𝑖
) − 𝐸[𝑓(𝑋)])

2. In this framework, Φ𝑢 stands
for a mapping (out of any consideration around polynomials
used for expansion) dedicated to one statistical moment 𝑢.

Thus, the generalization to multi-RVs cases may be
obtained easily following the same strategy. We propose here
to adapt previous notations by assuming random vector
X = (𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑁
)
𝑇. Relying on previous notations for

mapping Φ
𝑢, we may now compute 𝑢th statistical moment

of output 𝐼 such as

[𝐼]
𝑢
(X) ≈

𝑛1

∑

𝑖1=0

⋅ ⋅ ⋅

𝑛𝑁

∑

𝑖𝑁=0

𝜔
𝑖1 ,...,𝑖𝑁

Φ
𝑢

(X) , (34)

where 𝜔
𝑖1 ,...,𝑖𝑁

stands for weight of the expansion for random
vector X of size 𝑁 obtained from the generalization of
relations (27) and (33) previously established. Relation (34)
may imply different expansion orders 𝑛

𝑠
(𝑠 representing

the index of the random parameter 𝑋
𝑠
) among X (see

Section 4.3.3 for application). Some more details related to
this approach are available in [23].

3.2. Multiple Independent Random Variables Principle. The
fundamentals of SC technique [23] applied to the buried wire
configuration taking into account three Random Variables
(3-RVs) are outlined. The principle through which one
operates with a random output 𝐼 (current) depending on
random parameters (ground conductivity 𝜎 in mS/m, wire
length 𝐿, and depth 𝑑 in m) is illustrated. As depicted in
relation (34), the SC technique is compatible with higher RV
dimensions.The problem of interest requires one to model 3-
RVs 𝑢̂

1
, 𝑢̂
2
, and 𝑢̂

3
(randomlymodelled physical parameters),

respectively𝑋
1
,𝑋
2
, and𝑋

3
.The random variations related to

independent 𝑋
1
, 𝑋
2
, and 𝑋

3
may be defined from the initial

values 𝑋0
1
, 𝑋0
2
, and 𝑋

0

3
. Applying the same strategy as docu-

mented in [23], function (𝑟, 𝑠, 𝑡) → (𝐼(𝑋
0

1
, 𝑋
0

2
, 𝑋
0

3
; 𝑟, 𝑠, 𝑡)) is

projected on a Lagrangian basis:

𝐼 (𝑋
0

1
, 𝑋
0

2
, 𝑋
0

3
; 𝑟, 𝑠, 𝑡)

≈

𝑛1

∑

𝑖=0

𝑛2

∑

𝑖=0

𝑛3

∑

𝑖=0

𝐼
𝑖𝑗𝑘
(𝑋
0

1
, 𝑋
0

2
, 𝑋
0

3
) 𝐿
𝑖
(𝑟) 𝐿
𝑗
(𝑠) 𝐿
𝑘
(𝑡) ,

(35)

where 𝐼
𝑖𝑗𝑘
(𝑋
0

1
, 𝑋
0

2
, 𝑋
0

3
) = 𝐼(𝑋

0

1
, 𝑋
0

2
, 𝑋
0

3
; 𝑟
𝑖
, 𝑠
𝑗
, 𝑡
𝑘
), 𝑟
𝑖
, 𝑠
𝑗
, and

𝑡
𝑘
are the SC points required in corresponding random

direction (i.e., accordingly to𝑋
1
,𝑋
2
, and𝑋

3
parameters).
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3.3. Computation of SC Statistical Moments: Advantages and
Drawbacks. As previously stated, the computation of output
𝐼 statistics from relation (34) through a tensor product in each
direction (i.e., for each RV) is rather simple.The SC technique
gives the collocation sets of weighted points necessary to
compute the needed statistics (e.g., mean and standard
deviation). However, the technique also requires a particular
attention regarding the cost/benefit ratio when increasing X
dimensions (tensor product of RV). Some methods for the
improvement of stochastic techniques have been presented in
[7, 14]. The part to follow proposes an alternative strategy to
iteratively (i.e., increasing one RV at a time) and completely
construct random model.

3.4. Statistical Convergence in relation to System Sensitivity.
This part focuses on the SC requirements for variance
convergence to improve the knowledge of the model sensi-
tivity regarding each parameter independently. However, the
interactions between RVs are not taken into account, but a
view of the SC convergence and an idea of the RV global
sensitivity are given.

First, it is compulsory to ensure the number of SC points
necessary to assess convergence by computing statistics of the
current.

There is no mathematical proof for SC convergence;
despite all, based upon criterion proposed in [23], the SC
convergence from SCmethodwith 𝑠

𝑤
weighted points for RV

number 𝑤 is given by

𝐺
𝑤
([𝐼]
𝑠𝑤

𝑢
) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

[𝐼]
𝑠𝑤

𝑢
− [𝐼]
𝑠𝑤+2

𝑢

[𝐼]
𝑠𝑤

𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, (36)

where [𝐼]𝑠𝑤
𝑢

is 𝑢th order statistical moment computed from
𝑠
𝑤
SC orders (i.e., involving 𝑠

𝑤
+1 SC points according to

relation (34), SC points are so-called “sigma” points). It
can be noticed that the level of required convergence may
be chosen arbitrarily (e.g., convergence criterion in relation
(36) is lower than −1 dB). Criterion from relation (36) is
defined considering, respectively, odd or even SC orders
(𝑠
𝑤
). Indeed, even (resp., odd) number for 𝑠

𝑤
implies (Gauss

quadrature laws) taking into account (resp., or not taking
into account) mean value of RV 𝑋 as a given “sigma”
point. This may lead to a kind of “chessboard” effect when
dealing with iterative convergence of the technique, and
classically to distinguish SC convergence from even and
odd 𝑠

𝑤
number is well admitted. It is to be noted that

the iterative process proposed in this work is quite similar
to practice for the assessment of convergence and/or error
Monte Carlo-like sampling methods. Indeed, assuming some
given error/convergence threshold, it is possible to define
stopping criterion (similar to previous relation) by computing
confidence intervals (CIs). This often requires assumptions
about the statistical distribution followed by the random
output of interest, but some other techniques exist to infer
trustworthy CIs. Some works were proposed in [24] to
demonstrate the interest of bootstrapping techniques in this
framework. An interesting idea may be to implement this
method jointly with SC expansion to improve the assessment
of CIs using, for instance, Bayesian Bootstrap [25].

SC method provides interesting global (i.e., relative
to the entire bandwidth of study) information about the
convergence and the number of SC points required. As a
first approximation, the convergence of SC method informs
about the continuity and/or discontinuity of the deterministic
mapping under study (e.g., the current at the center of the
buried electrode subject to random variations). Variance-
based criteria are often used [23] to assess the sensitivity of
random parameters in such modeling.

The variance computing to rank most influential param-
eters over the whole time simulation duration is proposed.
Assuming a randommodel with three RVs (𝑋

1
,𝑋
2
, and𝑋

3
),

the SC method may provide the experimental design (i.e.,
set of weighted points) required to compute the variance of
a given output 𝐼. In this framework, the criteria based upon
cross-correlation between time variance obtained from the
full tensorized SC model in relation (34) and the variances
assuming one RV at a time (𝑋

1
,𝑋
2
, and𝑋

3
)may be helpful to

provide global sensitivity indices of most influential random
parameters given with

𝐹𝑋 (𝑋
𝑖
) =

∑
𝜏
𝑅
𝑋𝑖𝑋tot([𝐼]

𝑠𝑤

2
)

∑
𝜏
𝑅
𝑋tot𝑋tot([𝐼]

𝑠𝑤

2
)

, (37)

where 𝑅
𝑋𝑖𝑋tot

is the cross-correlation between the variances
[𝐼]
𝑠𝑤

2
obtained from 1-RVmodel including RV𝑋

𝑖
and the full

tensorizedmodel including thewhole RVs.As a consequence,
the denominator of relation (37) stands for autocorrelation of
the variance of the full tensorized model. Summing all terms
over the observation time 𝜏 offers a global criterion regarding
the entire time simulation. Practically, this criterion may be
obtained without any additional computing costs since full
tensorized model contains the results required to compute
statistical moments regarding only one RV at a time.

4. Numerical Results from an Iterative
Construction of the Random Model

Considering deterministic cases presented in Sections 2.1 and
2.2, the random model proposed in this paper will be vali-
dated in this section assuming different random parameters.

4.1. Definition of Test Cases. Different test cases that will be
used are introduced. Table 1 summarizes three different con-
figurations based upon the definition of parameters in Figures
1 and 2, including different kinds of uncertain parameters:
materials (soil conductivity), geometries (burial depth and
length of electrode), and sources parameters (lightning front
times and time-to-half).

Data provided in Table 1 assumes uniform distribution of
RVs. Without any loss of generality, it would be possible to
apply SC strategy with different random distributions (e.g.,
normal, log-normal, and exponential).

The validation of the benefits that could be expected from
SC modeling will be provided in the next section including
different test cases, an overview of the SC convergence,
and capability to predict the sensitivity of parameters. The
advantage of SC will be highlighted in comparison with
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Table 1: Description of three test cases with deterministic and random parameters (see Figures 1 and 2).

Test
case # Deterministic parameters Random parameters

RV1 RV2 RV3

(1)

Burial depth
Electrode diameter
Soil permittivity, permeability
Equivalent source excitation

Soil conductivity, uniformly
distributed between 1 and
10mS/m

Electrode length, uniformly
distributed between 45 and
55m

—

(2)

Burial depth
Electrode diameter, length
Soil permittivity, permeability,
conductivity

Lightning front times,
uniformly distributed between
0.4 and 4 𝜇s

Lightning time-to-half,
uniformly distributed between
50 and 70 𝜇s

—

(3)
Electrode diameter
Soil permittivity, permeability
Plane wave source

Soil conductivity, uniformly
distributed between 1 and
9mS/m

Electrode length, uniformly
distributed between 9.5 and
10.5m

Burial depth, uniformly
distributed between 2.5 and 5.5m

classical global sensitivity analysis techniques such as Sobol’s
indices [26].

4.2. Equivalent Current Source Excitation. The purpose of
this section is to focus on two kinds of uncertainties: envi-
ronmental parameters such as the soil conductivity and the
length of the electrode will be assumed as random; particular
attention will be taken regarding random variations consid-
ering source (lightning) parameters.

4.2.1. SC Convergence and Stochastic Results for the Electrode
and Soil Parameters (Test Case (1), Table 1). The random
parameters (𝜎 and 𝐿) are modeled modifying the intensity of
uncertainty with a uniform distribution 𝑈[1; 10] (in mS/m)
for soil conductivity and𝑈[45; 55] (inm) for electrode length.

First, it is necessary to define the number of SC points
required to obtain converged results. The SC set of points
(tensor product), regarding 𝑠

1
×𝑠
2
, needed for soil conductiv-

ity and electrode length is constructed. Based upon previous
work [27], far less sensitivity is expected from 𝐿 than from 𝜎.
A convergence criterion is defined in (36).

Figure 3 depicts the relative convergence gaps obtained
considering different SC set of points. Except for 𝑡 ∈

[0; 0.25 𝜇s] (zero current), 𝐺
2
([𝐼]
3

1
) (red curve) is lower than

−4 dB which validates the convergence of mean current
obtained from 3 simulations. Increasing the SC approxima-
tion order from 5 to 9 points (resp., green, blue, and pink
curves in Figure 3) shows that 5 points are necessary for soil
conductivity to reach a converged result with 𝐺

1
([𝐼]
5

1
) lower

than −2 dB. Similar to mean computation, Figure 4 offers
a clear validation of the SC convergence regarding higher
statistical moments (for instance, kurtosis) over the whole
simulation duration: a set of 7 × 3 points is required to get
a convergence lower than −2 dB.

With reference to Figures 3 and 4, a view of mean
current and the statistical dispersion around it is proposed in
Figure 5. The proposed “deterministic” results (black curves)
are obtained from extreme values and show the time nonlin-
earity of the system.The converged results from SC technique
(green curves) provide robust and trustworthy margins for
computing mean current.
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Figure 3: Relative gap between consecutive SC orders (𝑛; 𝑛 + 2)
regarding the averaged value of the current (center of the electrode).

Figures 6 and 7 show the diversity of statistical results
obtained fromSCmethod (without any additional computing
costs) with 5 × 3 points. The current variance gives a quick
view of more sensitive time areas: for instance, there is no
match between maxima of mean and variance, Figure 6.
The converged data from Figure 7 is crucial to better assess
statistical behavior of the system with only 7 × 3 points.

4.2.2. Stochastic Results for the Parameters of the Lightning
(Test Case (2), Table 1). This part focuses on the importance
of the equivalent current source parameters (representing
lightning current and considering uncertain front time and
time-to-half) as uncertain inputs [28].

Figure 8 was obtained from 32 + 52 + 72 = 83 simulations
(results from SC order 2 not shown here with 3 × 3 points).
Obviously, high rates of convergence are reached for current
mean since results (green, Figure 8) from 5 × 5 points (i.e., 5
points for each RV) almost overlap data involving 7 × 7 SC
points (blue, Figure 8). Current variance provides interesting
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regarding the kurtosis of the current (center of the electrode).
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Figure 5: Comparison of dispersion margins obtained from “deter-
ministic” and SC simulations (current mean).

information about the dispersion of data aroundmean values
(via standard deviation in Figure 8). Thus, the standard
deviation is about 20mA at 𝑡 = 100 𝜇s.

Figure 9 shows the statistical variations of average and
mean + 2 standard deviation of the current in function of
position along the electrode, at time instant 𝑡 = 4 𝜇s. Similar
to Figure 8, the convergence is reachedwith a restricted num-
ber of simulations. The statistical observation lays emphasis
on the greater dispersion of the results in the first half
of the electrode (zero-variance terminals). The standard
deviation of the current is about 50mA at the center of the
electrode.
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Figure 6: First and second statistical orders of the current (i.e.,mean
and variance) with 5 × 3 SC points (2 RV).
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Figure 7: Third and fourth statistical orders of the current (i.e.,
skewness and kurtosis) with 7 × 3 SC points (2 RV).

4.3. Plane Wave Excitation (Test Case (3)). This section deals
with some numerical results and statistics considering the
current at the center of the wire excited by a transmitted plane
wave. The entire stochastic modeling is based upon realistic
values of environmental parameters (Table 1):

(i) Soil conductivity 𝜎: 𝜎 = 𝜎
0

+ 𝑢̂
0

1
with 𝜎

0

= 𝑋
0

1
=

5mS/m and 𝑢̂
0

1
a zero-mean RV with a uniform

distribution from 1 to 9mS/m.

(ii) Length 𝐿 of wire: 𝐿 = 𝐿
0

+ 𝑢̂
0

2
with 𝐿

0

= 𝑋
0

2
= 10m

and 𝑢̂
0

2
a zero-mean RV with a uniform distribution

from 9.5 to 10.5m.

(iii) Burial depth d: 𝑑 = 𝑑
0

+ 𝑢̂
0

3
with 𝑑0 = 𝑋

0

3
= 4m and

𝑢̂
0

3
a zero-mean RV with a uniform distribution from

2.5 to 5.5m.

Without loss of generality, the problem can be addressed
following different assumptions about the statistical distribu-
tion laws [29].
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the electrode (test case (2)).

4.3.1. Numerical Results for Entire Random Model: Fully
Tensorized Modeling. Figure 10 shows mean (+ one standard
deviation) of the current at the center of the wire under
uncertain constraints fully tensorized (i.e., with 3 RVs). The
main difficulty relies on the number of samples needed to
assess converged statistics: 33 + 53 + 73 + 93 = 1224 points
are required to ensure the asymmetrical convergence of 6th
order (i.e., 7 points for each RV).

The sensitivity analysis provides relevant information
needed to decrease the total number of SC points required
for each RV and optimize the “full-tensor” random model
to an “asymmetrical” one. To that end, and assuming the
effects between random parameter are weak (which should
be the case here regarding the physical nature of those
parameters), SC may help to provide information about the
relative importance of each parameter.
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Figure 10: Currents at the center of the wire (“full-tensor” model).

4.3.2. Sensitivity Analysis Assuming Low Levels of Interaction
between Random Parameters. Figure 11 shows the results
obtained by applying relation (37) for RV1, RV2, and RV3.
As expected, fewer points are expected to ensure high
convergence rate for RV2 (𝐿) than for RV1 (𝜎) and RV3 (𝑑).

Figure 12 emphasizes the importance of RV1 over other
RVs: the relative dispersion from soil conductivity is larger
than the one given by the length of the wire. An intermediate
level is expected from RV2 (burial depth). In Figure 12,
a quick overview of the 1-RV model sensitivity through-
out the simulation time is given. This first-order trend is
validated regarding the current variance computed from
a full tensorized SC model (7 × 7 × 7 points, black in
Figure 12): in comparison with results obtained from 1-RV
SC modeling and mostly over the whole simulation duration
soil conductivity is the most influential parameter. From the
beginning to 100 ns, burial depth seems to play a key role.
Finally, as expected, the line length of the electrode does
not play a major role. As previously explained, the variances
(Figure 12) offer a first assessment of the influence of each
random parameter. The SC method gives an overview of the
potential relative influence of each random variable.Thismay
be emphasized from the criterion given in relation (37) where
𝐹𝑋(𝑋

1
) = 0.86, 𝐹𝑋(𝑋

2
) = 0.001, and 𝐹𝑋(𝑋

3
) = 0.14. This

even more emphasizes the high similarity between variances
given by 𝑋

1
(conductivity) relative to the full tensorized

random model, following 𝑋
3
parameter (burial depth), and

finally 𝑋
2
(length of the electrode) which is in accordance

with previous statement for sensitivity analysis.
The advantage of SC comparatively to alternative classical

global sensitivity analysis is to provide quick and accurate
view of the influence of RVs at each time of the simulation.
Thus, assuming low levels of interactions between random
parameters, the first-order global sensitivity analyses from
[26] are relevant to rank most influential parameters. In this
framework, since it would be too demanding to compute
previous criteria at each time of simulation, the focus is
put on the maximum of current over the entire duration of
simulation (max(I)).



10 International Journal of Antennas and Propagation

0 0.2 0.4 0.6 0.8 1
−8

−6

−4

−2

0

2

4

Time (𝜇s)

SC
 g

ap
 (v

ar
ia

nc
e)

 (d
B)

Gap - RV3 - 7 pts→9 pts
Gap - RV2 - 3 pts→5 pts
Gap - RV1 - 7 pts→9 pts

Figure 11: Relative gap (variance of the current) while increasing SC
orders for 1-RV stochastic models.

×10
−6

Time (𝜇s)
0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

va
r(

cu
rr

en
t) 

(A
2
)

RV3 burial depth, SC 7pts
RV2 line length, SC 7pts
RV1 soil conductivity, SC 7pts
Full tensorized model, SC 7× 7× 7pts

Figure 12: Variances of current computed from different stochastic
modeling.

Figure 13 gives an overview of the distribution of currents
at the center of the electrode with random MC distributions
of 𝑋
1
, 𝑋
2
, and 𝑋

3
from 0 to 1 𝜇s. It is interesting to put

the emphasis on the current amplitude since it plays a key
role during the design of the lightning protection systems.
In this framework and relying on Figure 13, Figure 14 shows
the variability of max(I) throughout its empirical cumulative
distribution function (CDF).The levels of variations are quite
spread since max(I) is between 2 and 10mA. Regarding time
to maximum of current, Figure 15 offers also a synthetized
view of its variability: it is between 80 ns and 220 ns. As
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Figure 13: MC simulations (100 arbitrary chosen realizations of𝑋
1
,
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, and𝑋
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) of current at the center of the electrode.
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Figure 14: Empirical cumulative distribution function (CDF) of
maximum of current (max(I)) for 100 MC simulations (Figure 13).

depicted in Figures 10 and 12, the maximum statistical
dispersion (i.e., maximum variance) is expected over this
time interval [50 ns; 250 ns]. By computing classical first-
order global sensitivity indices 𝑆

𝑖
(𝑖 = 1, 2, 3) from [26]

regarding max(I), it is possible to rank RVs from most to
least influential: respectively, 𝑆

1
= 0.95, 𝑆

3
= 0.04, and

𝑆
2
= 0.004. Thus, the results are in accordance with those

previously obtained from relation (37) and SC simulations.
It should be noticed that more than ten times speedup is
obtained by SC approach relatively to classical calculation of
Sobol’s indices. Indeed, simultaneously to the quantification
of the statistical moments of current, the simulations with
full tensorized SC models (including convergence testing
for SC orders) were achieved in less than 1 hour, whereas
global sensitivity analysis requires 8 hours of simulation (PC
Intel Xeon 3.30GHz, 16 Go RAM). Indeed, depending on
the nature of the assumed random inputs (type: geometrical,
electrical ones, for instance; king of uncertainty: distribution,
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Figure 15: Empirical cumulative distribution function (CDF) of
time to maximum of current (𝑡max(𝐼)) for 100MC simulations
(Figure 13).

range of variation. . .), the computing time required for one
call to deterministic time domain model is varying between
5 and 7 seconds. It is to be noticed that SC method reveals to
be competitive in comparison toMC simulations (required to
compute Sobol’s indices) since a quasi-10x speedup is reached
in that case. Moreover, from a sensitivity analysis point of
view, the experimental design (so-called “sigma” points used
for SC) provides not only a quantitative view of the impact of
uncertainties around input parameters but also a trustworthy
overview of the sensitivity of these parameters throughout
variance-based method. Finally, the global sensitivity anal-
ysis as the one expected from MC-Sobol’s indices may be
extended without any additional computing costs to a huge
variety of outputs (not only restricted to max(I) here for
Sobol’s indices).

4.3.3. 3-RV Full-Tensor Optimization (Asymmetrical SC).
In this section, the optimization of the symmetrical full
tensorized SC experimental design is provided (in order to
improve the efficiency of SC strategy).

Figure 16 provides convergence rates from the current
variance including a complete random model: only 5 points
are necessary to precisely describe the influence of random
burying depth d (RV3). Nearly zero levels of the current
(mean and variance) below 0.03 𝜇s involve instability of
the convergence criterion (and positive SC gaps). Finally,
Figure 17 shows a good agreement between fully tensorized
statistics of the current obtained with 343 points and the
results given with 105 following previously depicted strategy.

5. Conclusion

The coupling of deterministic time domain analytical solu-
tions of the Pocklington integrodifferential equation with
stochastic collocation technique provides crucial information
for the calculation of the response of wire configurations
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Figure 16: Relative gap with increasing SC orders (RV3).
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Figure 17: Current from fully tensorized SC (73 pts) and asymmet-
rical number of points (𝜎: 7, L: 3, d: 5).

buried in lossy ground. The robustness, accuracy, and con-
vergence of the two techniques (deterministic and stochas-
tic) ensure useful statistics for designing various GPR or
lightning protection systems by taking into account their
intrinsic random characteristics (variations due to material
parameters). The rapidity and the accuracy of the analytical
expression offer interesting prospects to take benefit from
SC method: robustness for time simulations (characterized
by their high transient variations), quick convergence, and
nonintrusiveness. Future work will be devoted to the analysis
of benefit of the use of the space-time Pocklington equation
coupled with proposed stochastic strategy in comparison
with other costly sampling methods such as Monte Carlo.
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[23] H. Dodig, S. Lalléchère, P. Bonnet, D. Poljak, and K. El
Khamlichi Drissi, “Stochastic sensitivity of the electromagnetic
distributions inside a human eye modeled with a 3D hybrid
BEM/FEM edge element method,” Engineering Analysis with
Boundary Elements, vol. 49, pp. 48–62, 2014.
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